28 research outputs found

    A multi-compartment single and multiple dose pharmacokinetic comparison of rectally applied tenofovir 1% gel and oral tenofovir disoproxil fumarate

    Get PDF
    This Phase 1, randomized, two-site (United States), double-blind, placebo-controlled study enrolled 18 sexually abstinent men and women. All received a single 300-mg dose of oral tenofovir disoproxil fumarate (TDF) and were then randomized 2:1 to receive single and then seven daily rectal exposures of vaginally-formulated tenofovir (TFV) 1% gel or a hydroxyethyl cellulose (HEC) placebo gel. Blood, colonic biopsies and rectal and vaginal mucosal fluids were collected after the single oral TDF, the single topical TFV gel dose, and after 7 days of topical TFV gel dosing for extracellular analysis of TFV and intracellular analysis of the active metabolite tenofovir diphosphate (TFVdp) in peripheral blood mononuclear cells (PBMCs) and isolated mucosal mononuclear cells (MMC), including CD4+ and CD4- cell subsets. With a single rectal dose, TFV plasma concentrations were 24-33 fold lower and half-life was 5 h shorter compared to a single oral dose (p = 0.02). TFVdp concentrations were also undetectable in PBMCs with rectal dosing. Rectal tissue exposure to both TFV and TFVdp was 2 to 4-log10 higher after a single rectal dose compared to a single oral dose, and after 7 daily doses, TFVdp accumulated 4.5 fold in tissue. TFVdp in rectal tissue homogenate was predictive (residual standard error, RSE = 0.47) of tissue MMC intracellular TFVdp concentration, with the CD4+ cells having a 2-fold higher TFVdp concentration than CD4- cells. TFV concentrations from rectal sponges was a modest surrogate indicator for both rectal tissue TFV and TFVdp (RSE = 0.67, 0.66, respectively) and plasma TFV (RSE = 0.38). TFV penetrates into the vaginal cavity after oral and rectal dosing, with rectal dosing leading to higher vaginal TFV concentrations (p<0.01)

    Pharmacokinetics of Two Common Antiretroviral Regimens in Older HIV-Infected Patients: A Pilot Study

    Get PDF
    The pharmacokinetics (PK) of antiretrovirals (ARVs) in older HIV-infected patients are poorly described. Here, the steady-state PK of 2 common ARV regimens (tenofovir [TFV]/emtricitabine [FTC]/efavirenz [EFV]; TFV/FTC/atazanavir [ATV]/ritonavir [RTV]) in older non-frail HIV-infected patients are presented

    Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients.

    Get PDF
    OBJECTIVE: To measure the in vivo variations of CYP3A activity induced by anti-HIV drugs in human immunodeficiency virus (HIV)1-positive patients. METHODS: A low oral dose of midazolam (MID) (0.075 mg) was given to the patients and the 30-min total 1-OH midazolam (1-OHMID)/MID ratio was determined. Patients were phenotyped either before the introduction of antiretroviral treatments (control group, 90 patients) or after a variable period of antiretroviral treatment (56 patients). Twenty-one subjects underwent multiple phenotyping tests (before and during the course of the treatment). RESULTS: The median MID ratio was 3.51 in the control group (range 0.20-14.6). It was 5-fold higher in the group with efavirenz (28 patients; median, range: 16.0, 3.81-367; P &lt; 0.0001), 13-fold lower with nelfinavir (18 patients; 0.27, 0.06-36.3; P &lt; 0.0001), 17-fold lower with efavirenz + ritonavir (three patients; 0.21, 0.05-0.47; P = 0.006), 50-fold lower with ritonavir (four patients; 0.07, 0.06-0.17; P = 0.0007), and 7-fold lower with nevirapine + (ritonavir or nelfinavir or grapefruit juice) (three patients; 0.48, 0.03-1.83; P = 0.03). CYP3A activity was lower in the efavirenz + ritonavir group (P = 0.01) and in the ritonavir group (P = 0.04) than in the nelfinavir group, although already strongly inhibited in the latter. CONCLUSION: The low-dose MID phenotyping test was successfully used to measure the in vivo variations of CYP3A activity induced by antiretroviral drugs. Efavirenz strongly induces CYP3A activity, while ritonavir almost completely inhibits it. Nelfinavir strongly decreases CYP3A activity, but to a lesser extent than ritonavir. The inhibition of CYP3A by ritonavir or nelfinavir offsets the inductive effects of efavirenz or nevirapine administered concomitantly. Finally, no induction of CYP3A activity was noticeable after long-term administration of ritonavir at low dosages (200 mg/day b.i.d.) or of nelfinavir at standard dosages (2,500 mg/day b.i.d.)

    The ex vivo pharmacology of HIV-1 antiretrovirals differs between macaques and humans

    Get PDF
    Non-human primates (NHP) are widely used for the pre-clinical assessment of antiretrovirals (ARVs) for HIV treatment and prevention. However, the utility of these models is questionable given the differences in ARV pharmacology between humans and macaques. Here, we report a model based on ex vivo ARV exposure and the challenge of mucosal tissue explants to define pharmacological differences between NHPs and humans. For colorectal and cervicovaginal explants in both species, high concentrations of tenofovir (TFV) and maraviroc were predictive of anti-viral efficacy. However, their combinations resulted in increased inhibitory potency in NHP when compared to human explants. In NHPs, higher TFV concentrations were measured in colorectal versus cervicovaginal explants (p = 0.042). In humans, this relationship was inverted with lower levels in colorectal tissue (p = 0.027). TFV-resistance caused greater loss of viral fitness for HIV-1 than SIV. This, tissue explants provide an important bridge to refine and appropriately interpret NHP studies
    corecore