498 research outputs found

    Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings

    Full text link
    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance (T) and parity (P). Assuming the CPT theorem this implies CP-violation. The CP-violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10^{-29} e cm.Comment: 8 pages, 2 figure

    CP violation and the CKM matrix

    Get PDF
    Our knowledge of quark-flavor physics and CP violation increased tremendously over the past five years. It is confirmed that the Standard Model correctly describes the dominant parts of the observed CP-violating and flavor-changing phenomena. Not only does CP violation provide some of the most precise constraints on the flavor sector, but several measurements performed at the B-factories achieved much better precision than had been expected. We review the present status of the Cabibbo-Kobayashi-Maskawa matrix and CP violation, recollect the relevant experimental and theoretical inputs, display the results from the global CKM fit, and discuss their implications for the Standard Model and some of its extensions.Comment: 61 pages, 11 figures; review article to be published in Ann. Rev. of Nucl. and Part. Scienc

    Unanswered Questions in the Electroweak Theory

    Full text link
    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings. . . .Comment: 31 pages, 20 figures; prepared for Annual Review of Nuclear and Particle Science (minor changes

    Leptogenesis as the origin of matter

    Full text link
    We explore in some detail the hypothesis that the generation of a primordial lepton-antilepton asymmetry (Leptogenesis) early on in the history of the Universe is the root cause for the origin of matter. After explaining the theoretical conditions for producing a matter-antimatter asymmetry in the Universe we detail how, through sphaleron processes, it is possible to transmute a lepton asymmetry -- or, more precisely, a (B-L)-asymmetry -- into a baryon asymmetry. Because Leptogenesis depends in detail on properties of the neutrino spectrum, we review briefly existing experimental information on neutrinos as well as the seesaw mechanism, which offers a theoretical understanding of why neutrinos are so light. The bulk of the review is devoted to a discussion of thermal Leptogenesis and we show that for the neutrino spectrum suggested by oscillation experiments one obtains the observed value for the baryon to photon density ratio in the Universe, independently of any initial boundary conditions. In the latter part of the review we consider how well Leptogenesis fits with particle physics models of dark matter. Although axionic dark matter and Leptogenesis can be very naturally linked, there is a potential clash between Leptogenesis and models of supersymmetric dark matter because the high temperature needed for Leptogenesis leads to an overproduction of gravitinos, which alter the standard predictions of Big Bang Nucleosynthesis. This problem can be resolved, but it constrains the supersymmetric spectrum at low energies and the nature of the lightest supersymmetric particle (LSP). Finally, as an illustration of possible other options for the origin of matter, we discuss the possibility that Leptogenesis may occur as a result of non-thermal processes.Comment: 53 pages, minor corrections, one figure and references added, matches published versio

    Dynamical Mean-Field Theory within an Augmented Plane-Wave Framework: Assessing Electronic Correlations in the Iron Pnictide LaFeAsO

    Get PDF
    We present an approach that combines the local density approximation (LDA) and the dynamical mean-field theory (DMFT) in the framework of the full-potential linear augmented plane waves (FLAPW) method. Wannier-like functions for the correlated shell are constructed by projecting local orbitals onto a set of Bloch eigenstates located within a certain energy window. The screened Coulomb interaction and Hund's coupling are calculated from a first-principle constrained RPA scheme. We apply this LDA+DMFT implementation, in conjunction with continuous-time quantum Monte-Carlo, to study the electronic correlations in LaFeAsO. Our findings support the physical picture of a metal with intermediate correlations. The average value of the mass renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with the picture inferred from photoemission experiments. The discrepancies between different LDA+DMFT calculations (all technically correct) which have been reported in the literature are shown to have two causes: i) the specific value of the interaction parameters used in these calculations and ii) the degree of localization of the Wannier orbitals chosen to represent the Fe 3d states, to which many-body terms are applied. The latter is a fundamental issue in the application of many-body calculations, such as DMFT, in a realistic setting. We provide strong evidence that the DMFT approximation is more accurate and more straightforward to implement when well-localized orbitals are constructed from a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several difficulties associated with the use of extended Wannier functions associated with the low-energy iron bands. Some of these issues have important physical consequences, regarding in particular the sensitivity to the Hund's coupling.Comment: 16 pages, 9 figures, published versio

    CPT Violation, Strings, and Neutral-Meson Systems

    Get PDF
    This talk provides a short overview of recent results on possible CPT violation and some associated experimental signatures.Comment: Presented at Orbis Scientiae, January 199

    Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions

    Full text link
    We study fermions coupled to Yang-Mills matrix models from the point of view of emergent gravity. The matrix model Dirac operator provides an appropriate coupling for fermions to the effective gravitational metric for general branes with nontrivial embedding, albeit with a non-standard spin connection. This generalizes previous results for 4-dimensional matrix models. Integrating out the fermions in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the Poisson tensor to the Riemann tensor, and a dilaton-like term.Comment: 34 pages; minor change

    Search for electric dipole moments at storage rings

    Get PDF
    Permanent electric dipole moments (EDMs) violate parity and time reversal symmetry. Within the Standard Model (SM) they are many orders of magnitude below present experimental sensitivity. Many extensions of the SM predict much larger EDMs, which are therefore an excellent probe for the existence of "new physics". Until recently it was believed that only electrically neutral systems could be used for sensitive searches of EDMs. With the introduction of a novel experimental method, high precision for charged systems will be within reach as well. The features of this method and its possibilities are discussed.Comment: Proc. EXA2011, 6 pages; http://www.springerlink.com/content/45l35376832vhrg0

    Skyrmion Multi-Walls

    Full text link
    Skyrmion walls are topologically-nontrivial solutions of the Skyrme system which are periodic in two spatial directions. We report numerical investigations which show that solutions representing parallel multi-walls exist. The most stable configuration is that of the square NN-wall, which in the NN\to\infty limit becomes the cubically-symmetric Skyrme crystal. There is also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur
    corecore