174 research outputs found

    MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation.

    Full text link
    Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma

    ILK Induces Cardiomyogenesis in the Human Heart

    Get PDF
    Integrin-linked kinase (ILK) is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart.Primary cultures of human fetal myocardial cells (19-22 weeks gestation) yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk × 2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C × 43) and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT) and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001). The number of cardioblast colonies was significantly decreased (p<0.05) when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILK(R211A)) resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILK(WT)). The cardiomyogenic effects of ILK(R211A) and ILK(WT) were accompanied by concurrent activation of β-catenin (p<0.001) and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILK(R211A) and ILK(WT). Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs).In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK overexpression bypasses the requirement of proximal PI3K activation for transduction of growth factor- and β1-integrin-mediated differentiation signals. Altogether, our data indicate that ILK represents a novel regulatory checkpoint during human cardiomyogenesis

    Design Considerations for Massively Parallel Sequencing Studies of Complex Human Disease

    Get PDF
    Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few “true” disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design

    Utility of the Health of the Nation Outcome Scales (HoNOS) in Predicting Mental Health Service Costs for Patients with Common Mental Health Problems : Historical Cohort Study

    Get PDF
    BACKGROUND: Few countries have made much progress in implementing transparent and efficient systems for the allocation of mental health care resources. In England there are ongoing efforts by the National Health Service (NHS) to develop mental health 'payment by results' (PbR). The system depends on the ability of patient 'clusters' derived from the Health of the Nation Outcome Scales (HoNOS) to predict costs. We therefore investigated the associations of individual HoNOS items and the Total HoNOS score at baseline with mental health service costs at one year follow-up.METHODS: An historical cohort study using secondary care patient records from the UK financial year 2012-2013. Included were 1,343 patients with 'common mental health problems', represented by ICD-10 disorders between F32-48. Costs were based on patient contacts with community-based and hospital-based mental health services. The costs outcome was transformed into 'high costs' vs 'regular costs' in main analyses.RESULTS: After adjustment for covariates, 11 HoNOS items were not associated with costs. The exception was 'self-injury' with an odds ratio of 1.41 (95% CI 1.10-2.99). Population attributable fractions (PAFs) for the contribution of HoNOS items to high costs ranged from 0.6% (physical illness) to 22.4% (self-injury). After adjustment, the Total HoNOS score was not associated with costs (OR 1.03, 95% CI 0.99-1.07). However, the PAF (33.3%) demonstrated that it might account for a modest proportion of the incidence of high costs.CONCLUSIONS: Our findings provide limited support for the utility of the self-injury item and Total HoNOS score in predicting costs. However, the absence of associations for the remaining HoNOS items indicates that current PbR clusters have minimal ability to predict costs, so potentially contributing to a misallocation of NHS resources across England. The findings may inform the development of mental health payment systems internationally, especially since the vast majority of countries have not progressed past the early stages of this development. Discrepancies between our findings with those from Australia and New Zealand point to the need for further international investigations

    Dissecting Nucleosome Free Regions by a Segmental Semi-Markov Model

    Get PDF
    BACKGROUND: Nucleosome free regions (NFRs) play important roles in diverse biological processes including gene regulation. A genome-wide quantitative portrait of each individual NFR, with their starting and ending positions, lengths, and degrees of nucleosome depletion is critical for revealing the heterogeneity of gene regulation and chromatin organization. By averaging nucleosome occupancy levels, previous studies have identified the presence of NFRs in the promoter regions across many genes. However, evaluation of the quantitative characteristics of individual NFRs requires an NFR calling method. METHODOLOGY: In this study, we propose a statistical method to identify the patterns of NFRs from a genome-wide measurement of nucleosome occupancy. This method is based on an appropriately designed segmental semi-Markov model, which can capture each NFR pattern and output its quantitative characterizations. Our results show that the majority of the NFRs are located in intergenic regions or promoters with a length of about 400-600bp and varying degrees of nucleosome depletion. Our quantitative NFR mapping allows for an investigation of the relative impacts of transcription machinery and DNA sequence in evicting histones from NFRs. We show that while both factors have significant overall effects, their specific contributions vary across different subtypes of NFRs. CONCLUSION: The emphasis of our approach on the variation rather than the consensus of nucleosome free regions sets the tone for enabling the exploration of many subtler dynamic aspects of chromatin biology

    Combining Structure and Sequence Information Allows Automated Prediction of Substrate Specificities within Enzyme Families

    Get PDF
    An important aspect of the functional annotation of enzymes is not only the type of reaction catalysed by an enzyme, but also the substrate specificity, which can vary widely within the same family. In many cases, prediction of family membership and even substrate specificity is possible from enzyme sequence alone, using a nearest neighbour classification rule. However, the combination of structural information and sequence information can improve the interpretability and accuracy of predictive models. The method presented here, Active Site Classification (ASC), automatically extracts the residues lining the active site from one representative three-dimensional structure and the corresponding residues from sequences of other members of the family. From a set of representatives with known substrate specificity, a Support Vector Machine (SVM) can then learn a model of substrate specificity. Applied to a sequence of unknown specificity, the SVM can then predict the most likely substrate. The models can also be analysed to reveal the underlying structural reasons determining substrate specificities and thus yield valuable insights into mechanisms of enzyme specificity. We illustrate the high prediction accuracy achieved on two benchmark data sets and the structural insights gained from ASC by a detailed analysis of the family of decarboxylating dehydrogenases. The ASC web service is available at http://asc.informatik.uni-tuebingen.de/

    State-of-the art data normalization methods improve NMR-based metabolomic analysis

    Get PDF
    Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples
    corecore