741 research outputs found

    Non-invasive detection of ischemic vascular damage in a pig model of liver donation after circulatory death

    Get PDF
    Background and Aims: Liver graft quality is evaluated by visual inspection prior to transplantation, a process highly dependent on the surgeon's experience. We present an objective, noninvasive, quantitative way of assessing liver quality in real time using Raman spectroscopy, a laser-based tool for analyzing biomolecular composition. Approach and Results: A porcine model of donation after circulatory death (DCD) with normothermic regional perfusion (NRP) allowed assessment of liver quality premortem, during warm ischemia (WI) and post-NRP. Ten percent of circulating blood volume was removed in half of experiments to simulate blood recovery for DCD heart removal. Left median lobe biopsies were obtained before circulatory arrest, after 45 minutes of WI, and after 2 hours of NRP and analyzed using spontaneous Raman spectroscopy, stimulated Raman spectroscopy (SRS), and staining. Measurements were also taken in situ from the porcine liver using a handheld Raman spectrometer at these time points from left median and right lateral lobes. Raman microspectroscopy detected congestion during WI by measurement of the intrinsic Raman signal of hemoglobin in red blood cells (RBCs), eliminating the need for exogenous labels. Critically, this microvascular damage was not observed during WI when 10% of circulating blood was removed before cardiac arrest. Two hours of NRP effectively cleared RBCs from congested livers. Intact RBCs were visualized rapidly at high resolution using SRS. Optical properties of ischemic livers were significantly different from preischemic and post-NRP livers as measured using a handheld Raman spectrometer. Conclusions: Raman spectroscopy is an effective tool for detecting microvascular damage which could assist the decision to use marginal livers for transplantation. Reducing the volume of circulating blood before circulatory arrest in DCD may help reduce microvascular damage

    Genome Wide Identification of Recessive Cancer Genes by Combinatorial Mutation Analysis

    Get PDF
    We devised a novel procedure to identify human cancer genes acting in a recessive manner. Our strategy was to combine the contributions of the different types of genetic alterations to loss of function: amino-acid substitutions, frame-shifts, gene deletions. We studied over 20,000 genes in 3 Gigabases of coding sequences and 700 array comparative genomic hybridizations. Recessive genes were scored according to nucleotide mismatches under positive selective pressure, frame-shifts and genomic deletions in cancer. Four different tests were combined together yielding a cancer recessive p-value for each studied gene. One hundred and fifty four candidate recessive cancer genes (p-value<1.5×10−7, FDR = 0.39) were identified. Strikingly, the prototypical cancer recessive genes TP53, PTEN and CDKN2A all ranked in the top 0.5% genes. The functions significantly affected by cancer mutations are exactly overlapping those of known cancer genes, with the critical exception for the absence of tyrosine kinases, as expected for a recessive gene-set

    miRNA in situ hybridization in circulating tumor cells - MishCTC

    Get PDF
    irculating tumor cells (CTCs) must be phenotypically and genetically characterized before they can be utilized in clinical applications. Here, we present the first protocol for the detection of miRNAs in CTCs using in situ hybridization (ISH) combined with immunomagnetic selection based on cytokeratin (CK) expression and immunocytochemistry. Locked-Nucleic Acid (LNA) probes associated with an enzyme-labeled fluorescence (ELF) signal amplification approach were used to detect miRNA-21 in CTCs. This protocol was optimized using both epithelial tumor (MDA-MB468) and epithelial non-tumor (MCF-10A) cell lines, and miRNA-21 was selected as the target miRNA because of its known role as an onco-miRNA. Hematopoietic cells do not express miRNA-21; thus, miRNA-21 is an ideal marker for detecting CTCs. Peripheral blood samples were taken from 25 cancer patients and these samples were analyzed using our developed protocol. Of the 25 samples, 11 contained CTCs. For all 11 CTC-positive samples, the isolated CTCs expressed both CK and miRNA-21. Finally, the protocol was applied to monitor miRNA-21 expression in epithelial to mesenchymal transition (EMT)-induced MCF-7 cells, an epithelial tumor cell line. CK expression was lost in these cells, whereas miRNA-21 was still expressed, suggesting that miRNA-21 might be a good marker for detecting CTCs with an EMT phenotype.JJDM thanks the Spanish Ministerio de Economía y Competitividad for a Ramón y Cajal Fellowship (Grant CTQ2012-34778). This research was partially supported by Marie Curie Career Integration Grants within the 7th European Community Framework Program (FP7-PEOPLE-2011-CIG-Project Number 294142 to RMSM and FP7-PEOPLE-2012-CIG-Project Number 322276 toJJDM). Thisresearch wasalso partially supported by Consejeria de Salud de la Junta de Andalucı ́ a (PI0294-2012)

    Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming

    Get PDF
    BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information

    Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas

    Get PDF
    Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs) are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD) lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines

    Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy

    Get PDF
    Rose Bengal acetate photodynamic therapy (RBAc–PDT) induced multiple cell death pathways in HeLa cells through ROS and ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways, whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis occurred as early as 1 h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy, that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70; LC3B; GRP78 and phospho-eIF2α proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others, suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die through different mechanisms is a relevant clue in the choice and design of anticancer PDT

    Dysregulated Recruitment of the Histone Methyltransferase EZH2 to the Class II Transactivator (CIITA) Promoter IV in Breast Cancer Cells

    Get PDF
    One mechanism frequently utilized by tumor cells to escape immune system recognition and elimination is suppression of cell surface expression of Major Histocompatibility Class II (MHC II) molecules. Expression of MHC II is regulated primarily at the level of transcription by the Class II Transactivator, CIITA, and decreased CIITA expression is observed in multiple tumor types. We investigate here contributions of epigenetic modifications to transcriptional silencing of CIITA in variants of the human breast cancer cell line MDA MB 435. Significant increases in histone H3 lysine 27 trimethylation upon IFN-γ stimulation correlate with reductions in transcription factor recruitment to the interferon-γ inducible CIITA promoter, CIITApIV, and with significantly increased CIITApIV occupancy by the histone methyltransferase enhancer of zeste homolog 2 (EZH2). Most compelling is evidence that decreased expression of EZH2 in MDA MB 435 variants results in significant increases in CIITA and HLA-DRA mRNA expression, even in the absence of interferon-γ stimulation, as well as increased cell surface expression of MHC II. Together, these data add mechanistic insight to prior observations of increased EZH2 expression and decreased CIITA expression in multiple tumor types
    corecore