1,222 research outputs found
Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.
Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro
A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae.
Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies
Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes
Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization
Evolutionary and ecological insights from herbicideâresistant weeds: what have we learned about plant adaptation, and what is left to uncover?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149516/1/nph15723_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149516/2/nph15723.pd
Experimental aspects of SU(5)xU(1) supergravity
We study various aspects of supergravity as they relate to
the experimental verification or falsification of this model. We consider two
string-inspired, universal, one-parameter, no-scale soft-supersymmetry-breaking
scenarios, driven by the -terms of the moduli and dilaton fields. The model
is described in terms of the supersymmetry mass scale (\ie, the chargino mass
), , and the top-quark mass. We first determine the
combined effect on the parameter space of all presently available direct and
indirect experimental constraints, including the LEP lower bounds on sparticle
and Higgs-boson masses, the rate, the anomalous magnetic moment
of the muon, the high-precision electroweak parameters
(which imply m_t\lsim180\GeV), and the muon fluxes in underground detectors
(neutrino telescopes). For the still-allowed points in
parameter space, we re-evaluate the experimental
situation at the Tevatron, LEPII, and HERA. In the 1994 run, the Tevatron could
probe chargino masses as high as 100 GeV. At LEPII the parameter space could be
explored with probes of different resolutions: Higgs boson searches, selectron
searches, and chargino searches. Moreover, for m_t\lsim150\GeV, these
Higgs-boson searches could explore all of the allowed parameter space with
\sqrt{s}\lsim210\GeV.Comment: latex, 36 pages, 25 figures (not included). Figures are available via
anonymous ftp from hplaa02.cern.ch (/pub/lopez) as either 33 ps files
(Easpects*.ps, 8.1MB) or one uuencoded file (AllFigures.uu, 3.7MB
Constructing Dirac linear fermions in terms of non-linear Heisenberg spinors
We show that the massive (or massless) neutrinos can be described as special
states of Heisenberg nonlinear spinors. As a by-product of this decomposition a
particularly attractive consequence appears: the possibility of relating the
existence of only three species of mass-less neutrinos to such internal
non-linear structure. At the same time it allows the possibility that neutrino
oscillation can occurs even for massless neutrinos
Combining filter method and dynamically dimensioned search for constrained global optimization
In this work we present an algorithm that combines the filter technique and the dynamically dimensioned search (DDS) for solving nonlinear and nonconvex constrained global optimization problems. The DDS is a stochastic global algorithm for solving bound constrained problems that in each iteration generates a randomly trial point perturbing some coordinates of the current best point. The filter technique controls the progress related to optimality and feasibility defining a forbidden region of points refused by the algorithm. This region can be given by the flat or slanting filter rule. The proposed algorithm does not compute or approximate any derivatives of the objective and constraint functions. Preliminary experiments show that the proposed algorithm gives competitive results when compared with other methods.The first author thanks a scholarship supported by the International
Cooperation Program CAPES/ COFECUB at the University of Minho.
The second and third authors thanks the support given by FCT (FundažcËao para
CiËencia e Tecnologia, Portugal) in the scope of the projects: UID/MAT/00013/2013
and UID/CEC/00319/2013. The fourth author was partially supported by CNPq-Brazil
grants 308957/2014-8 and 401288/2014-5.info:eu-repo/semantics/publishedVersio
Searches for Long Lived Neutral Particles
An intriguing possibility for TeV scale physics is the existence of neutral
long lived particles (LOLIPs) that subsequently decay into SM states. Such
particles are many cases indistinguishable from missing transverse energy (MET)
at colliders. We propose new methods to search for these particles using
neutrino telescopes. We study their detection prospects, assuming production
either at the LHC or through dark matter (DM) annihilations in the Sun and the
Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited
by luminosity and detection energy thresholds. On the other hand, in the case
of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is
promising and may extend beyond the reach of upcoming direct detection
experiments. In the context of low scale hidden sectors weakly coupled to the
SM, such indirect searches allow to probe couplings as small as 10^-15.Comment: 22 pages, 6 figure
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
- âŠ