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Abstract. In this work we present an algorithm that combines the fil-
ter technique and the dynamically dimensioned search (DDS) for solving
nonlinear and nonconvex constrained global optimization problems. The
DDS is a stochastic global algorithm for solving bound constrained prob-
lems that in each iteration generates a randomly trial point perturbing
some coordinates of the current best point. The filter technique controls
the progress related to optimality and feasibility defining a forbidden re-
gion of points refused by the algorithm. This region can be given by the
flat or slanting filter rule. The proposed algorithm does not compute or
approximate any derivatives of the objective and constraint functions.
Preliminary experiments show that the proposed algorithm gives com-
petitive results when compared with other methods.

Keywords: Global optimization. Dynamically dimensioned search al-
gorithm. Filter methods

1 Introduction

Many engineering optimization problems are complex, nonconvex and nons-
mooth. Additionally some of them are defined as black-box problems that involve
computational expensive computer simulations for which one cannot accurately
approximate derivatives. To solve this type of problems, traditional gradient-
based methods might not be suitable. In this context, stochastic methods are
attractive because they are computationally simple and derivative-free.
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Most stochastic methods were primary developed for unconstrained prob-
lems and then extended to constrained ones. An important class of methods
for constrained optimization are the penalty methods, which seek the solution
by replacing the original constrained problem by a sequence of unconstrained
subproblems, where the constraint functions are combined with the objective
function to define a penalty function.

An alternative to penalty methods to handle constrained optimization prob-
lems is the filter method introduced by Fletcher and Leyffer in [1]. This method
is based on the concept of dominance, borrowed from multicriteria optimization,
to build a filter that accepts iterates if they improve the objective function or
improve a constrained violation function, based on Pareto domination rule. One
of the advantages of this method when compared to the penalty method is that it
avoids the initialization and updating of the penalty parameters that are associ-
ated with the penalization of the constraints. Filter methods have been combined
with trust-region approaches [2,3], SQP techniques [4,5], inexact restoration al-
gorithms [6,7], interior point strategies [8] and line-search algorithms [9,10,11].
They also have been extended to other areas of optimization such as nonlinear
equations and inequalities [12,13,14,15], nonsmooth optimization [16,17], uncon-
strained optimization [18,19], complementarity problems [20,21] and derivative-
free optimization [22,23,24,25].

The Dynamically Dimensioned Search (DDS) algorithm was introduced in
[26] for automatic calibration of watershed simulation models (WDS). Since
the calibration problems have many parameters/variables, DDS proved to be
a simple and robust tool for computationally expensive models. In [27], a new
global optimization algorithm for WDS optimization, called hybrid discrete dy-
namically dimensioned search, combines two local search heuristics with a dis-
crete DDS search strategy adapted from the continuous DDS algorithm. Another
derivative-free heuristic based on DDS algorithm for optimization of expensive
black-box objective functions subject to inequality constraints using surrogate
model-based methods was developed in [28,29].

Our contribution is to extend the DDS Algorithm for nonlinear nonconvex
and nonsmooth constrained global optimization problems by incorporating a
filter technique to handle the constraints.

The problem to be addressed is of the following form:

minimize f(x)
subject to g(x) ≤ 0

x ∈ Ω,
(1)

where f : Rn → R, g : Rn → Rm are nonlinear functions and Ω = {x ∈ Rn :
−∞ < ` ≤ x ≤ u <∞}. Since we do not assume that the functions f and g are
differentiable and convex, many local minima may exist in the feasible region
ΩF = {x ∈ Ω : g(x) ≤ 0}.

The paper is organized as follows. Section 2 briefly describes the DDS al-
gorithm and Section 3 presents the filter technique to handle the constrained
optimization problem. Section 4 presents the proposed algorithm that combines



the DDS algorithm with the filter technique. In Section 5, numerical experiments
for two sets of test problems are reported. The paper is concluded in Section 6.

2 Dynamically Dimensioned Search Algorithm

In this section, we briefly describe the DDS algorithm developed by Tolson and
Shoemaker [26] for calibration problems that arise in the context of watershed
simulation models. These type of problems involve many parameters to estimate
(that correspond to decision variables), and are modeled as bound constrained
optimization problems. Thus, the DDS Algorithm aims to solve a bound con-
strained global optimization problem in the following form

minimize
x∈Ω

f(x),

where f : Rn → R is a nonlinear function in the compact set Ω.

The DDS algorithm is a point-to-point stochastic based heuristic global
search algorithm. The main features of the DDS are no parameter tuning and the
search strategy of finding good global solutions is scaled within a user-specified
maximum number of function evaluations (kmax). At the beginning, the algo-
rithm searches globally, and becomes a more local search as the number of iter-
ations approaches the maximum allowable number of function evaluations. The
transition from global to local search is achieved by dynamically and probabilis-
tically reducing the number of dimensions to be perturbed in the neighborhood
of the current best solution. Thus, at each iteration k, a trial candidate solu-
tion/point xktrial is obtained by perturbing the current best xkbest only in the ran-
domly selected dimensions. These perturbation magnitudes are randomly sam-
pled from a normal distribution with a mean of zero and a standard deviation σ.
Therefore, having selected a subset Iperturb of dimensions to be perturbed, the
trial xktrial is componentwised computed by:

xktrial,i =


xkbest,i +N(0, σ2

i ) if i ∈ Iperturb

xkbest,i otherwise
(2)

with a standard deviation σi = r(ui − `i) being r a scalar neighborhood size
perturbation parameter. Here xktrial,i, x

k
best,i and σi denote the ith coordinate of

the respective vector. If xktrial /∈ Ω then the trial point is projected onto Ω.

To choose the new best point for the next iteration a greedy procedure be-
tween the current best xkbest and the trial candidate xktrial is performed. The
current best xkbest and the trial xktrial are compared with each other and if the
trial decreases the objective function value (f(xktrial) < f(xkbest)), then the trial
candidate is moved to the next iteration as the current best point; otherwise,
the current best is preserved to the next iteration. A formal description of the
DDS algorithm is presented in Algorithm 1.



Algorithm 1 DDS Algorithm

Require: r = 0.2, kmax

1: Initialization
Generate x1 ∈ Ω
Set k = 1, xkbest = xk, fk

best = f(xk), Iperturb = ∅
2: while k ≤ kmax do
3: Compute the probability of perturbing the decision variables:

Pk = 1− ln(k)

ln(kmax)
4: Select coordinates to perturb:

Generate uniform random numbers ωi ∈ [0, 1], for i = 1, . . . , n
Set Iperturb = {i : ωi < Pk}
if Iperturb = ∅ then

Select a random number i ∈ {1, · · · , n}
Set Iperturb = {i}

endif
5: Generate xktrial using (2)
6: Project xktrial onto Ω, if necessary
7: Evaluate f(xktrial)
8: Select the best point:

if f(xktrial) < fk
best then

Set xk+1
best = xktrial, f

k+1
best = f(xktrial)

endif
9: Set k = k + 1

10: end while

3 Filter Methods

In this section we give a brief description of filter methods originally introduced
by Fletcher and Leyffer in [1] as an alternative way for globalizing nonlinear
programming methods without using any penalty or merit function. The filter
methods avoid the problematic issues related to the initial value of the penalty
parameter and the tuning of their values throughout the iterative process, which
greatly affects the performance of the algorithms.

Filter methods regard (1) as a bi-objective optimization problem that min-
imizes both the objective function f and a non-negative constraint violation
function h : Rn → R+ defined by

h(x) = ‖g+(x)‖ (3)

where ‖g+(x)‖ = ‖max{0, g(x)}‖ for some norm. The filter methods use the
concept of dominance from multiobjective optimization, attempting to minimize
both functions, but a certain emphasis is put on h, since convergence to a feasible
point must be ensured. According to [1], a point xj (or the corresponding pair
(f(xj), h(xj)) dominates a point x` (or the corresponding pair (f(x`), h(x`)) if

f(x`) ≤ f(xj) and h(x`) ≤ h(xj).



A filter F is a set of pairs {(f j , hj)} such that no pair is dominated by any
of the others, where (f j , hj) = (f(xj), h(xj)). As proposed in [1], to avoid the
acceptance of filter entries close to the boundary formed by the set of all pairs
dominated by the filter, the acceptability of the pair (f(x), h(x)) to the filter
must satisfy a sufficient reduction condition in the form of an envelope over all
(f j , hj) ∈ F :

f(x) < f j − αhj or h(x) < (1− α)hj , ∀(f j , hj) ∈ F (4)

where α ∈ (0, 1) is a given constant. A filter based on this acceptance rule
is designated by flat filter. In [30] a slightly different acceptance condition for
defining this filter envelope is proposed:

f(x) < f j − αh(x) or h(x) < (1− α)hj , ∀(f j , hj) ∈ F . (5)

A filter based on this acceptance rule is called by slanting filter. A typical filter
entry is illustrated in Fig. 3, where the shaded area shows the region dominated
by the entry (f j , hj) and the envelope, in a flat filter (on the left) and in a
slanting filter (on the right).

h

f

(f j , hj)

h

f

(f j , hj)

Fig. 1. A typical flat and slanting filter on one entry

Usually, the filter is initialized to be empty F1 = ∅ or with one filter entry
that imposes an upper bound for acceptable values on h, F1 = {(−∞, hmax)} for
some hmax ≥ h1. In each iteration k, a point xk+1 is computed in a such way that
the pair (fk+1, hk+1) satisfies the condition (4) (or (5)) for F = Fk ∪{(fk, hk)}.
If the constraint violation is small and a predicted reduction on f holds, then
instead of the filter acceptance criterion, a sufficient reduction on f is required.
In case of success, this type of iteration is called a f -type iteration and all the
others as h-type iteration (see [1] for more details). On the other hand, in [2,6],
an iteration is considered an h-type whenever the function f increases along of
the iteration, and all the others as f -type iteration. Such classification of the
iterations is used for updating the filter. Throughout the optimization, the filter
is updated only at h-type iterations, i.e., in such iterations the pair (fk, hk)
is added to filter Fk. If the filter is not updated, it remains unchanged, i.e,



Fk+1 = Fk and the entry {(fk, hk)} is discarded. Thus, the filter is updated as
follows:

Fk+1 =

{
Fk ∪ {(fk, hk)} if k is an h-type iteration
Fk otherwise.

(6)

Whenever a new entry (fk, hk) is added to the filter, all entries that are dom-
inated by (fk, hk) are removed from the filter. Furthermore, the updating (6)
prevents the addition of feasible iterates to the filter. In fact, whenever xk is a fea-
sible point then xk+1 must decrease f to be accepted by the filter Fk∪{(fk, 0)}.
So, the iteration is a f -type, and consequently the entry (fk, 0) is discarded.

4 The Proposed Algorithm

In the previous sections we presented the DDS algorithm for bound constrained
optimization, and the filter technique for handling constraints. We now present a
global algorithm that combines the filter methodology and the DDS, for solving
nonlinear constrained problems. The proposed algorithm uses the filter method-
ology that is able to guarantee sufficient progress towards feasible and optimal
solutions of (1), by exploring both feasible and infeasible regions. Furthermore,
the filter method allows to select the best non-dominated points, being the least
infeasible ones. To promote the exploration of other promising areas of the search
region, the algorithm is enriched with a poll-search. Whenever the current best
point is a non-dominated feasible point and the algorithm fails in finding a
new non-dominated feasible one, then the poll-search is invoked. This procedure
searches in a vicinity of the least infeasible point found up to the current itera-
tion k, with the hope to approach a different part of the feasible region. The least
infeasible point will be denoted by xkI , and the corresponding objective function
value and the constraint violation value by fkI and hkI , respectively. Moreover, at
each iteration k, the proposed algorithm uses a set of random trial points xktrialj
(j = 1, ..., nt) and uses a new scheme for adjusting the step size.

4.1 Initialization

At iteration k = 1, an initial point is randomly generated in the search space Ω
as follows

x1 = `+ ξ(u− `), (7)

where each component of the vector ξ is a uniformly distributed random number
in [0, 1]. The initial filter is an empty set, F1 = ∅, the current best point is
x1best = x1, (f1best, h

1
best) = (f(x1), h(x1)) and (f1I , h

1
I) = (−∞,+∞).

4.2 Probability Computation

As in [26], at iteration k, the algorithm computes the probability of perturbing
the coordinates of the current best point as follows:

Pk = 1− ln(k)

ln(kmax)
(8)



where kmax is the maximum number of iterations.

4.3 Set of Trial Points

At iteration k, the algorithm computes a set of nt trial points. First, for each
j ∈ {1, · · · , nt} are generated n uniform random numbers ωj,1, · · · , ωj,n in [0, 1].
These random numbers are used to define the coordinate index set of the current
best point xkbest to be perturbed in the following way:

Iperturbj = {i : ωj,i < Pk},

where the probability Pk is given in (8). If Iperturbj is an empty set, then a
coordinate index i is randomly selected from {1, ..., n}, and Iperturbj = {i}.
Then, the trial point xktrialj , for j ∈ {1, ..., nt}, is obtained by:

xktrialj ,i =


xkbest,i + γkN(0, σ2

i ) if i ∈ Iperturbj

xkbest,i otherwise,
(9)

where γk ∈ (0, 1] is a randomization parameter. Note that (9) differs from (2)
by this parameter that adjusts the step-size. If xktrialj /∈ Ω, then the trial point

is projected onto Ω. Let T k = {xktrial1 , ..., x
k
trialnt

} be the set of the trial points

generated.

4.4 Selection of the Non-Dominated Trial Best Points

Given the set of trial points T k = {xktrial1 , ..., x
k
trialnt

}, identify the set of non-

dominated trial points T kND ⊆ T k, i.e., the points xktrialj ∈ T
k that verify the

condition (4) (or (5)) for F = Fk ∪ {(fkbest, hkbest)}.
If T kND 6= ∅, then two trial best points, denoted by xkbt, and xkIt, are selected

using the following definition:

Definition 1. (trial best points)

1. If there exist feasible points in T kND, then xkbt is the feasible trial point with
the smallest objective function value.

2. If there exist no feasible points in T kND, then xkbt is the trial point with the
least constraint violation value.

3. If T kND\{xkbt} 6= ∅, then xkIt is the trial point with the least constraint violation
value in this set.

If T kND = ∅, then the poll-search will be invoked.

4.5 Updating the Best Point

Given xkbt, the new best point is updated when h(xkbt) ≤ h(xkbest), which means
that xk+1

best = xkbt. If a new best point is obtained, then the iteration k is declared
successful. Otherwise, the poll-search will be invoked with xkI , the least infeasible
point found up to the iteration k. This point is updated as xkI = xkIt when
0 < h(xkIt) < h(xkI ).



4.6 Poll-Search

In the poll-search we set T k = T kND = ∅ and the vicinity of xkI is explored.
Here, new nt trial points are randomly generated using (9) but considering xkI
instead of xkbest. Then, a new set of non-dominated trial points T kND is identified.
If T kND 6= ∅, new points xkbt and xkI are selected using Definition 1. If the poll-
search also fails in finding a new non-dominated point, the iteration k is declared
unsuccessful and the step size γk will be reduced.

4.7 Updating the Step Size

The parameter γk is updated using the following formula:

γk+1 =

{
µγk if k is an unsuccessful iteration
γk otherwise,

(10)

where 0 < µ < 1. This parameter controls the randomness, or equivalently,
the diversity of the generated points. At the beginning of the iterative process,
the parameter must take large values to increase the diversity of the points.
Throughout the optimization process its value must decrease in order to fine
tuning the points since the effort is focused on exploitation.

4.8 Updating the Filter

Whenever the iteration k is successful, the filter Fk is updated using formula (6).
More precisely, xk+1

best verifies the condition (4) (or (5)) for Fk ∪ {(fkbest, hkbest)}
and the filter is updated as follows:

Fk+1 = Fk ∪ {(fkbest, hkbest)} if fk+1
best ≥ f

k
best (h-type iteration). (11)

Otherwise, the filter remains unchanged Fk+1 = Fk and (fkbest, h
k
best) is dis-

carded. Whenever a new entry (fkbest, h
k
best) is added to the filter, all entries

dominated by (fkbest, h
k
best) are removed from the filter.

4.9 Stopping Criteria

The stopping criterion of the algorithm is based on the constraint violation and
objective function values. Thus, the algorithm stops when the best point xkbest,
at iteration k, satisfies

f(xkbest) ≤ f∗ + εf and h(xkbest) ≤ εh (12)

where εf > 0 is the accuracy error bound on the function value, εh > 0 is a small
tolerance on the constraint violation and f∗ is the best-known solution. For other
problems where f∗ is not known, the absolute difference between the objective
function values of consecutive iterations can be compared with εf to decide
termination. Besides, if (12) does not hold, the algorithm has an alternative
stopping rule based on the maximum number of iterations (kmax).

4.10 The Algorithm

A formal description of the proposed algorithm is presented in Algorithm 2.



Algorithm 2

Require: r = 0.2, σmin > 0, µ ∈ (0, 1), γ1 ∈ (0, 1), εf > 0, εh > 0, nt, kmax

1: Set k = 1, F1 = ∅, exist = 0
2: Initial point:

Compute a random initial point xk by (7). Evaluate (fk, hk) = (f(xk), h(xk))
Set xkbest = xk, (fk

best, h
k
best) = (fk, hk), (fk

I , h
k
I ) = (−∞,∞)

3: while the stopping criterion is not satisfied do
4: Set success = 0
5: Compute the probability Pk by (8)
6: Generate nt trial points using (9): T k = {xktrialj | j = 1, . . . , nt}
7: Evaluate f and h at the trial points: (f(xktrialj ), h(xktrialj )) for j = 1, . . . , nt

8: Select the non-dominated trial points:
T k
ND = {xktrialj ∈ T

k | (f(xktrialj ), h(xktrialj )) satisfies (4) (or (5)) for Fk ∪
{(fk

best, h
k
best)}}

9: if T k
ND 6= ∅ then

10: Select xkbt and xkIt in T k
ND by Definition 1

11: if h(xkbt) ≤ hk
best then

12: Set xk+1
best = xkbt, (fk+1

best , h
k+1
best) = (f(xkbt), h(xkbt)), success = 1

13: end if
14: if h(xkIt) < hk

I then
15: Set xkI = xkIt, exist = 1
16: end if
17: end if
18: if (success = 0) and (exist = 1) and (hk

best = 0) then
19: Repeat steps 6-8 with xkI instead of xkbest. Repeat steps 9-17
20: end if
21: if (success = 1) then
22: Set γk+1 = γk
23: if fk+1

best > fk
best then

24: Fk+1 = Fk ∪ {(fk
best, h

k
best)}

25: else
26: Fk+1 = Fk

27: end if
28: else
29: Set xk+1

best = xkbest, (fk+1
best , h

k+1
best) = (fk

best, h
k
best), γk+1 = µγk, Fk+1 = Fk

30: end if
31: Set (fk+1

I , hk+1
I ) = (fk

I , h
k
I )

32: Set k = k + 1
33: end while

5 Numerical Experiments

In this section we report the numerical experiments to illustrate the practical
performance of Algorithm 2 with the flat or the slanting filter. First, a set of
20 small constrained global optimization problems are tested, where the number
of variables ranges from 2 to 10 and the number of constraints ranges from 1
to 12, described in [31]. Second, nine well-known engineering design problems



presented in [32] are used, where the number of design variables ranges from 2
to 8 and the number of inequality constraints ranges from 1 to 11. The tests
were performed in a notebook ASUSTek Intel Core i7-6700HQ, CPU 2.60GHz,
with 16GB RAM, 64-bit, using Matlab R2015a.

We considered the Algorithm 2 with the two different filters discussed in Sec-
tion 3: the flat filter based on the rule (4), denoted as A2-FF, and the slanting
filter based on the rule (5), denoted as A2-SF. The following parameters were
fixed: kmax = 300, the maximum number of iterations; nt = 5n, number of trial
points (where n is the dimension of the problem); γ1 = 1, the initial randomiza-
tion parameter related to the step size; and µ = 0.8, the constant used in (10).
We adopted the stopping criterion (12) with εf = 10−4 and εh = 10−8, as con-
sidered in [25]. Problems with equality constraints ψ(x) = 0 were reformulated
into inequalities using ψ(x)− δ ≤ 0 and −ψ(x)− δ ≤ 0, where δ = 10−4.

To put our approach in perspective, the first set of problems were addressed
by two distinct solvers: the Filter-based Artificial Fish Swarm algorithm (P-BF
AFS) proposed in [25] and the Exact Penalty Global Optimization algorithm
(EPGO) proposed in [33].

Table 1 lists the results for solving the problems from [31] obtained after
30 independent runs. The first columns display the data of the problem: the
identification (P); the dimension (n); the known global optimum (f∗). The next
columns display for each solver the obtained results among the 30 runs: the best
solution obtained (fbest), the median (fmed), the infeasibility measure at the
best point (hbest), the median of infeasibility measure (hmed) and the average of
number of function evaluations (nf avg) to reach the value fbest.

Table 1: Numerical results for the problems described in [31]

P n f∗ Solver fbest fmed hbest hmed nf avg

1 5 2.9313e-02 A2-FF 0.3051 115.1234 8.25e-04 2.22e-04 8355
A2-SF 0.1978 237.3387 1.43e-04 6.49e-05 9479

P-BF AFS 0.0956 1.4665 7.84e-07 * 6945
EPGO 0.0625 2.35e-07 39575

2a 9 -4.0000e02 A2-FF -398.300 -84.0701 0.00e00 0.00e00 15476
A2-SF -395.875 -312.4870 0.00e00 0.00e00 14994

P-BF AFS -358.650 -308.664 0.00e00 * 7068
EPGO -134.113 8.43e-04 115107

2b 9 -6.0000e02 A2-FF -386.276 -298.406 0.00e00 0.00e00 14127
A2-SF -384.423 -301.721 0.00e00 0.00e00 14743

P-BF AFS -378.317 -274.472 0.00e00 * 6963
EPGO -768.457 5.30e-04 120057

2c 9 -7.5000e02 A2-FF -738.748 -703.827 0.00e00 0.00e00 14532
A2-SF -747.021 -702.915 0.00e00 0.00e00 14630

P-BF AFS -697.452 -657.349 0.00e00 * 7189
Continued on next page



Table 1 (Continued from previous page)

P n f∗ Solver fbest fmed hbest hmed nf avg

EPGO -82.977 8.43e-04 102015
2d 10 -4.0000e02 A2-FF -399.234 -381.142 0.00e00 0.00e00 13682

A2-SF -399.900 -347.957 0.00e00 0.00e00 14286
P-BF AFS -399.118 -394.563 0.00e00 * 6526
EPGO -385.170 0.00e00 229773

3a 6 -3.8880e-01 A2-FF -0.3886 -0.3746 0.00e00 0.00e00 16545
A2-SF -0.3878 -0.3747 0.00e00 0.00e00 15858

P-BF AFS -0.3888 -0.3842 5.22e-04 * 7495
EPGO -0.3861 1.02e-06 48647

3b 2 -3.8881e-01 A2-FF -0.3888 -0.3881 0.00e00 0.00e00 6499
A2-SF -0.3888 -0.3883 0.00e00 0.00e00 6512

P-BF AFS -0.3888 -0.3888 0.00e00 * 1041
EPGO -0.3888 0.00e00 3449

4 2 -6.6666e00 A2-FF -6.6666 -5.8325 0.00e00 0.00e00 5726
A2-SF -6.6666 -6.6662 0.00e00 0.00e00 5483

P-BF AFS -6.6667 -6.6665 0.00e00 * 493
EPGO -6.6666 0.00e00 3547

5 3 2.0116e02 A2-FF 201.159 201.159 1.26e-06 4.43e-02 3074
A2-SF 201.159 201.157 0.00e00 3.57e-02 2930

P-BF AFS 201.159 201.159 8.11e-07 * 2999
EPGO 201.159 1.66e-04 14087

6 2 3.7629e02 A2-FF 376.302 376.905 0.00e00 0.00e00 5872
A2-SF 376.305 376.986 0.00e00 0.00e00 6079

P-BF AFS 376.293 376.304 0.00e00 * 1335
EPGO 0.4701 2.05e-05 1523

7 2 -2.8284e00 A2-FF -2.8283 -2.8219 0.00e00 0.00e00 5114
A2-SF -2.8284 -2.8230 0.00e00 0.00e00 4829

P-BF AFS -2.8284 -2.8283 0.00e00 * 920
EPGO -2.8058 0.00e00 13187

8 2 -1.1870e02 A2-FF -118.704 -86.402 0.00e00 0.00e00 5854
A2-SF -118.703 -115.138 0.00e00 0.00e00 5904

P-BF AFS -118.704 -118.698 0.00e00 * 1521
EPGO -118.704 0.00e00 7621

9 6 -1.3402e01 A2-FF -13.4018 -13.3906 0.00e00 0.00e00 8466
A2-SF -13.4019 -13.3916 0.00e00 0.00e00 8187

P-BF AFS -13.4018 -13.4007 0.00e00 * 1839
EPGO -13.4026 1.35e-04 68177

10 2 7.4178e-01 A2-FF 0.7418 0.7431 0.00e00 0.00e00 5708
A2-SF 0.7419 0.7436 0.00e00 0.00e00 5733

P-BF AFS 0.7418 0.7418 0.00e00 * 2126
EPGO 0.7420 0.00e00 6739

Continued on next page



Table 1 (Continued from previous page)

P n f∗ Solver fbest fmed hbest hmed nf avg

11 2 -5.0000e-01 A2-FF -0.5000 -0.4995 0.00e00 0.00e00 5533
A2-SF -0.5000 -0.4982 0.00e00 0.00e00 6135

P-BF AFS -0.5000 -0.5000 0.00e00 * 782
EPGO -0.5000 0.00e00 3579

12 2 -1.6739e01 A2-FF -16.7255 -15.3324 0.00e00 8.83e-06 4231
A2-FF -16.6486 -15.5805 0.00e00 3.02e-05 4159

P-BF AFS -16.7389 -16.7389 0.00e00 * 35
EPGO -16.7389 5.36e-06 3499

13 3 1.8935e02 A2-FF 267.923 282.729 0.00e00 4.38e-01 4717
A2-SF 278.942 280.580 1.45e-05 3.30e-01 4601

P-BF AFS 189.345 253.937 0.00e00 * 4031
EPGO 195.955 9.21e-04 8085

14 4 -4.5142e00 A2-FF -4.5133 -4.4766 0.00e00 0.00e00 8717
A2-SF -4.5142 -4.4808 0.00e00 0.00e00 8520

P-BF AFS -4.5142 -4.5139 0.00e00 * 2028
EPGO -4.3460 9.22e-05 19685

15 3 0.0000e00 A2-FF 0.0000 0.0000 6.90e-05 1.21e-02 4501
A2-SF 0.0000 0.0000 2.03e-05 1.91e-02 4729

P-BF AFS 0.0000 0.0000 9.11e-07 * 3593
EPGO 0.0000 4.94e-05 1645

16 5 7.0492e-01 A2-FF 0.7049 0.7050 0.00e00 0.00e00 138
A2-SF 0.7049 0.7050 0.00e00 0.00e00 121

P-BF AFS 0.7049 0.7049 0.00e00 * 447
EPGO 0.7181 2.00e-04 22593

*not available

From the results, we may conclude that the proposed algorithm performs rea-
sonably well. It is able to reach the target solution with good accuracy, except
for Problems 1, 2b and 13. Therefore, the Algorithm 2 reached the f∗ solution
in 17 out of the 20 problems, while the P-BF AFS and the EPGO reached the
best known solution in 16 and 13 problems, respectively. When we compare our
results with those in P-BF AFS, we conclude that the quality of the obtained solu-
tions is comparable although our algorithm required a larger number of function
evaluations. On the other hand, EPGO is the most computationally expensive.
When comparing the two solvers based on the Algorithm 2, for six problems the
solvers obtained the same fbest, whereas the A2-FF finds the best solutions for
eight problems while A2-SF for six problems. In terms of nf avg, there are no
significant differences between the solvers.

Finally, the next experiment aims to show the effectiveness of the proposed
algorithm when solving more complex and real application problems. Thus, the



second set of test problems comprises nine problems that arise from well-known
engineering design problems described in [32]. Table 2 lists the results obtained
after 30 independent runs for the developed solvers A2-FF and A2-SF. All the
parameter settings are the same as for the previous experiment.

Table 2. Numerical results for the problems described in [32]

P n f∗ Solver fbest fmed hbest hmed nf avg

Cylindrical Vessel 5 5868.7650 A2-FF 5978.6504 6384.3347 0.00e00 0.00e00 11151
A2-SF 5898.3626 6327.0383 0.00e00 0.00e00 10966

Disc Brake 4 0.1274 A2-FF 0.1274 0.1355 0.00e00 0.00e00 8916
A2-SF 0.1274 0.1283 0.00e00 0.00e00 6770

Four Bar Truss 4 1400.0000 A2-FF 1400.0000 1400.0000 0.00e00 0.00e00 276
A2-SF 1400.0000 1400.0000 0.00e00 0.00e00 336

Heat Exchanger 8 7049.2480 A2-FF 7144.4819 9383.1025 0.00e00 0.00e00 16781
A2-SF 7075.0293 8340.3915 0.00e00 0.00e00 17826

Speed Reducer 7 2994.4991 A2-FF 2994.4840 2994.4971 0.00e00 0.00e00 14771
A2-SF 2994.4840 2994.5185 0.00e00 0.00e00 15146

Tubular Column 2 26.5313 A2-FF 26.5386 26.6533 0.00e00 0.00e00 5883
A2-SF 26.5342 26.6429 0.00e00 0.00e00 5884

Tension Spring 3 0.0127 A2-FF 0.0127 0.0144 0.00e00 0.00e00 6976
A2-SF 0.0127 0.0140 0.00e00 0.00e00 7598

Three Bar Truss 2 263.8958 A2-FF 263.9017 263.9764 0.00e00 0.00e00 6514
A2-SF 263.9086 264.0120 0.00e00 0.00e00 6649

Welded Beam 4 2.3809 A2-FF 2.5380 4.2294 0.00e00 0.00e00 10966
A2-SF 2.5942 5.2176 0.00e00 0.00e00 11016

From the results for this set of problems, we may conclude that our algorithm
is able to reach the target solution with good accuracy, except for Cylindrical
Vessel, Heat Exchanger and Welded Beam problems. Furthermore, the perfor-
mance of the solvers A2-FF and A2-SF is similar.

6 Conclusions

This paper presents the DDS algorithm combined with the filter method to
solve nonlinear and nonconvex constrained global optimization problems. The
DDS algorithm was developed for calibration problems that arise in the context
of WSM, modeled as bound constrained optimization problems. The proposed
algorithm is an extension of the DDS algorithm incorporating a filter method
that reformulates the optimization problem as a bi-objective optimization one,
aiming to minimize the objective and the constraint violation functions. The
reported numerical results show the effectiveness of the proposed algorithm and
its competitive practical performance when compared with a penalty framework
and with a filter-based stochastic global AFS algorithm from the literature.



Future developments will focus on the decrease of the computational cost
and the solution of larger dimensional problems. A study of the convergence of
the algorithm will be carried out in the future.
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