113 research outputs found

    Compact jets as probes for sub-parsec scale regions in AGN

    Full text link
    Compact relativistic jets in active galactic nuclei offer an effective tool for investigating the physics of nuclear regions in galaxies. The emission properties, dynamics, and evolution of jets in AGN are closely connected to the characteristics of the central supermassive black hole, accretion disk and broad-line region in active galaxies. Recent results from studies of the nuclear regions in several active galaxies with prominent outflows are reviewed in this contribution.Comment: AASLaTeX, 5 pages, 4 figures. Accepted in Astrophysics and Space Scienc

    Evidence that the Bursting Component of the X-ray Radiation From 3C 111 Originates in the PC-Scale Jet

    Full text link
    Evidence is presented indicating that the bursting component of the X-ray radiation detected in the nuclear region of the active radio galaxy 3C 111 comes from the blobs ejected in the pc-scale jet and not from the accretion disc. After each new outburst the radio flux density associated with it increases to a peak in ~1 year and then subsides over a period of 1-2 years with the flux falling off exponentially as the blob moves outward and dissipates. Similar peaks (bursts) are seen in the X-ray light curve and a cross-correlation between the two shows a very high correlation with the X-ray peaks leading the radio peaks by ~100 days. A second cross-correlation, this time between the radio event start times and the X-ray light curve, also shows a significant correlation. When this is taken together with the long (~1 yr) delay between the start of each ejection event and its associated X-ray peak it indicates that this bursting component of the X-ray flux must be associated with the ejected blobs in the pc-scale jet and not with the accretion disc. Because X-ray telescopes do not have the resolution required to resolve the accretion disc area from the pc-scale jet, this paper is the first to present observational evidence that can pinpoint the point of origin of at least those long-timescale X-ray bursts with durations of 1-3 yrs.Comment: 11 pages, 8 Figures. Accepted for publication in Astrophysics and Space Scienc

    Extragalactic Relativistic Jets and Nuclear Regions in Galaxies

    Get PDF
    Past years have brought an increasingly wider recognition of the ubiquity of relativistic outflows (jets) in galactic nuclei, which has turned jets into an effective tool for investigating the physics of nuclear regions in galaxies. A brief summary is given here of recent results from studies of jets and nuclear regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B. Leibundgut (Springer: Heidelberg 2006

    Polarimetric Observations of 15 AGNs at High Frequencies

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

    Behaviour of the Blazar CTA 102 during two giant outbursts

    Get PDF
    Blazar CTA 102 underwent exceptional optical and high-energy outbursts in 2012 and 2016-2017. We analyze its behaviour during these events, focusing on polarimetry as a tool that allows us to trace changes in the physical conditions and geometric configuration of the emission source close to the central black hole. We also use Fermi gamma-ray data in conjunction with optical photometry in an effort to localize the origin of the outbursts.AST-1615796 - Boston Universit

    Probing the innermost regions of AGN jets and their magnetic fields with radioastron. I. Imaging BL LACERTAE at 21 μm as resolution

    Get PDF
    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.This research has been supported by the Spanish Ministry of Economy and Competitiveness grant AYA2013-40825-P, by the Russian Foundation for Basic Research (projects 13-02-12103, 14-02-31789, and 15-02-00949), and St. Petersburg University research grant 6.38.335.2015. The research at Boston University (BU) was funded in part by NASA Fermi Guest Investigator grant NNX14AQ58G. Y.M. acknowledges support from the ERC Synergy Grant >BlackHoleCam-Imaging the Event Horizon of Black Holes> (Grant 610058). Part of this work was supported by the COST Action MP1104 >Polarization as a tool to study the Solar System and beyond.> The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries.Peer Reviewe

    THE CONNECTION between the RADIO JET and the GAMMA-RAY EMISSION in the RADIO GALAXY 3C 120

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.his research has been supported by the Spanish Ministry of Science and Innovation grants AYA2010-14844, and AYA2013-40825 P, and by the Regional Government of Andalucia (Spain) grant P09-FQM-4784. This research was partly supported by the Russian Foundation for Basic Research grant 13-02-12103 and by the Academy of Finland project 274477.Peer Reviewe

    Changes in the trajectory of the radio jet in 0735+178?

    Get PDF
    We present multi-epoch 8.4 and 43 GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90^{\circ} within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90^{\circ} bends, possibly produced by differential Doppler boosting. Identification of components across epochs, since the earliest VLBI observations of this source in 1979.2, proves difficult due to the sometimes large time gaps between observations. One possible identification suggests the existence of superluminal components following non--ballistic trajectories with velocities up to 11.6±0.6h651c11.6\pm 0.6 h_{65}^{-1} c. However, in images obtained after mid-1995, components show a remarkable tendency to cluster near several jet positions, suggesting a different scenario in which components have remained nearly stationary in time at least since mid-1995. Comparison with the earlier published data, covering more than 19 years of observations, suggests a striking qualitative change in the jet trajectory sometime between mid-1992 and mid-1995, with the twisted jet structure with stationary components becoming apparent only at the later epochs. This would require a re-evaluation of the physical parameters estimated for 0735+178, such as the observing viewing angle, the plasma bulk Lorentz factor, and those deduced from these.Comment: 18 pages, 5 figures, accepted for publication in MNRA

    Large Kinetic Power in FRII Radio Jets

    Full text link
    We investigate the total kinetic powers (L_{j}) and ages (t_{age}) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L_{j} to the Eddington luminosity (L_{Edd}) resides in 0.02<Lj/LEdd<100.02 <L_{j}/L_{Edd} <10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon (E_{c}) exceed the energy derived from the minimum energy condition (E_{min}): 2<Ec/Emin<1602< E_{c}/E_{min} <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.Comment: 5 pages, accepted for publication in Astrophysics and Space Scienc

    The Point of Origin of the Radio Radiation from the Unresolved Cores of Radio-Loud Quasars

    Full text link
    Locating the exact point of origin of the core radiation in active galactic nuclei (AGN) would represent important progress in our understanding of physical processes in the central engine of these objects. However, due to our inability to resolve the region containing both the central compact object and the jet base, this has so far been difficult. Here, using an analysis in which the lack of resolution does not play a significant role, we demonstrate that it may be impossible even in most radio loud sources for more than a small percentage of the core radiation at radio wavelengths to come from the jet base. We find for 3C279 that 85\sim85 percent of the core flux at 15 GHz must come from a separate, reasonably stable, region that is not part of the jet base, and that then likely radiates at least quasi-isotropically and is centered on the black hole. The long-term stability of this component also suggests that it may originate in a region that extends over many Schwarzschild radii.Comment: 7 pages with 3 figures, accepted for publication in Astrophysics and Space Scienc
    corecore