179 research outputs found
Boundary Effects in Local Inflation and Spectrum of Density Perturbations
We observe that when a local patch in a radiation filled Robertson-Walker
universe inflates by some reason, outside perturbations can enter into the
inflating region. Generally, the physical wavelengths of these perturbations
become larger than the Hubble radius as they cross into the inflating space and
their amplitudes freeze out immediately. It turns out that the corresponding
power spectrum is not scale invariant. Although these perturbations cannot
reach out to a distance inner observer shielded by a de Sitter horizon, they
still indicate a curious boundary effect in local inflationary scenarios.Comment: 11 pages, 8 figures, revtex4, v4: minor typos corrected, twocolumn
versio
Islands in the landscape
The string theory landscape consists of many metastable de Sitter vacua,
populated by eternal inflation. Tunneling between these vacua gives rise to a
dynamical system, which asymptotically settles down to an equilibrium state. We
investigate the effects of sinks to anti-de Sitter space, and show how their
existence can change probabilities in the landscape. Sinks can disturb the
thermal occupation numbers that would otherwise exist in the landscape and may
cause regions that were previously in thermal contact to be divided into
separate, thermally isolated islands.Comment: 31 pages, 8 figure
Health Assessment and Seroepidemiologic Survey of Potential Pathogens in Wild Antillean Manatees (Trichechus manatus manatus)
The Antillean manatee (Trichechus manatus manatus), a subspecies of the West Indian manatee, inhabits fresh, brackish, and warm coastal waters distributed along the eastern border of Central America, the northern coast of South America, and throughout the Wider Caribbean Region. Threatened primarily by human encroachment, poaching, and habitat degradation, Antillean manatees are listed as endangered by the International Union for the Conservation of Nature. The impact of disease on population viability remains unknown in spite of concerns surrounding the species' ability to rebound from a population crash should an epizootic occur. To gain insight on the baseline health of this subspecies, a total of 191 blood samples were collected opportunistically from wild Antillean manatees in Belize between 1997 and 2009. Hematologic and biochemical reference intervals were established, and antibody prevalence to eight pathogens with zoonotic potential was determined. Age was found to be a significant factor of variation in mean blood values, whereas sex, capture site, and season contributed less to overall differences in parameter values. Negative antibody titers were reported for all pathogens surveyed except for Leptospira bratislava, L. canicola, and L. icterohemorrhagiae, Toxoplasma gondii, and morbillivirus. As part of comprehensive health assessment in manatees from Belize, this study will serve as a benchmark aiding in early disease detection and in the discernment of important epidemiologic patterns in the manatees of this region. Additionally, it will provide some of the initial tools to explore the broader application of manatees as sentinel species of nearshore ecosystem health
Adjusting the Neel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Neel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of similar to 1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g(-1), when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes
Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory
We construct spherically symmetric thin-shell wormholes supported by a
generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein
gravity, and we analyze their stability under radial perturbations. For
different values of the Born-Infeld parameter and the charge, we compare the
results with those obtained in a previous work for Maxwell electrodynamics. The
stability region in the parameter space reduces and then disappears as the
value of the Born-Infeld parameter is modified in the sense of a larger
departure from Maxwell theory.Comment: 9 pages, 6 figures; v2: improved versio
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
When de Sitter first introduced his celebrated spacetime, he claimed,
following Schwarzschild, that its spatial sections have the topology of the
real projective space RP^3 (that is, the topology of the group manifold SO(3))
rather than, as is almost universally assumed today, that of the sphere S^3.
(In modern language, Schwarzschild was disturbed by the non-local correlations
enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not
have been accepted as such by de Sitter. There is no real basis within
classical cosmology for preferring S^3 to RP^3, but the general feeling appears
to be that the distinction is in any case of little importance. We wish to
argue that, in the light of current concerns about the nature of de Sitter
space, this is a mistake. In particular, we argue that the difference between
"dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of
understanding horizon entropies. In the approach to de Sitter entropy via
Schwarzschild-de Sitter spacetime, we find that the apparently trivial
difference between RP^3 and S^3 actually leads to very different perspectives
on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers
finally fixed, JHEP versio
Categorizing Different Approaches to the Cosmological Constant Problem
We have found that proposals addressing the old cosmological constant problem
come in various categories. The aim of this paper is to identify as many
different, credible mechanisms as possible and to provide them with a code for
future reference. We find that they all can be classified into five different
schemes of which we indicate the advantages and drawbacks.
Besides, we add a new approach based on a symmetry principle mapping real to
imaginary spacetime.Comment: updated version, accepted for publicatio
Non-parametric Dark Energy Degeneracies
We study the degeneracies between dark energy dynamics, dark matter and
curvature using a non-parametric and non-perturbative approach. This allows us
to examine the knock-on bias induced in the reconstructed dark energy equation
of state, w(z), when there is a bias in the cosmic curvature or dark matter
content, without relying on any specific parameterisation of w. Even assuming
perfect Hubble, distance and volume measurements, we show that for z > 1, the
bias in w(z) is up to two orders of magnitude larger than the corresponding
errors in Omega_k or Omega_m. This highlights the importance of obtaining
unbiased estimators of all cosmic parameters in the hunt for dark energy
dynamics.Comment: 10 pages, 8 figures. Invited Review for special issue of General
Relativity and Gravitation issue on Dark Energy, eds. G. F.R Ellis et a
The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium
Indexación: Scopus.Funding:Thisworkwassupportedby"Fondo NacionaldeCienciayTecnologia"FONDECYT Grants#1120384and#1160315(toCPS),Grant PFB-16(toRP)from"Comisio ´nNacionalde Investigacio ´ n Cientı ´ fica y Tecnolo ´ gica de Chile" (CONICYT)andUniversidadAndresBelloNucleo GrantDI-3-17/N(toCPS),andDoctoralSalmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium that overcomes host immune system barriers for successful infection. The bacterium colonizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macrophages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mechanisms of Salmonella resistance to intracellular oxidative stress is not completely understood. The ArcAB two-component system is a global regulatory system that responds to oxygen. In this work, we show that the ArcA response regulator participates in Salmonella adaptation to changing oxygen levels and is also involved in promoting intracellular survival in macrophages and neutrophils, enabling S. Typhimurium to successfully establish a systemic infection. © 2018 Pardo-Esté et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.020349
- …