2,048 research outputs found

    Taxi Planner Optimization: A Management Tool

    Get PDF
    This work introduces taxi planning optimization (TPO) as a methodology to guide airport surface management operations. The optimization model represents competing aircraft using limited ground resources. TPO improves aircraft taxiing routes and their schedule in situations of congestion, minimizing overall taxiing time (TT), and helping taxi planners to meet prespecified goals such as compliance with take-off windows, TT limits, and trajectory conflicts. By considering all simultaneous trajectories during a given planning horizon, TPO's estimation of TT from the stand to the runways improves over current planning methods. The operational optimization model is a large-scale space-time multi-commodity network with capacity constraints. In addition to its natural use as a real-time taxi planning tool, a number of TPO variants can be used for design purposes, such as expansion of new infrastructure. TPO is demonstrated using Madrid-Barajas as test airport

    Aerosol number-to-volume-relationship and relative humidity in the eastern Atlantic

    Get PDF
    J. Geophys. Res ., 105, 1987-1995.Measurementsa cquiredf rom the Office of Naval Research( ONR) Pelican research aircraftd uringt he secondA erosolC haracterizationE xperiment( ACE 2) are analyzedt o derive valuesf or the dry (RH = 40%) aerosonl umber-to-volumrea tio in the submicrons izer ange. This ratioi s foundto ber elativelyc onstanwt,i tha meanv alueo f 168_ +2 1 gm- 3,i n agreemenwti th previouss tudiese lsewhere.T he impacto f ambientr elativeh umidity (RH) on the dry number-to-volumies alsoq uantifieda nd a procedurefo r estimatingth e dry from the ambientr atio established.F inally, the feasibilityo f a remoter etrievalo f the aerosoln umberc oncentrationin the submicrons izer ange,e ssentiallyth e cloudc ondensation ucleusc oncentrationa ctive at a nominal0 .2% supersaturationis, partially assessed

    The Design of Secure and Efficient P2PSIP Communication Systems

    Full text link

    A Probabilistic Analysis of Kademlia Networks

    Full text link
    Kademlia is currently the most widely used searching algorithm in P2P (peer-to-peer) networks. This work studies an essential question about Kademlia from a mathematical perspective: how long does it take to locate a node in the network? To answer it, we introduce a random graph K and study how many steps are needed to locate a given vertex in K using Kademlia's algorithm, which we call the routing time. Two slightly different versions of K are studied. In the first one, vertices of K are labelled with fixed IDs. In the second one, vertices are assumed to have randomly selected IDs. In both cases, we show that the routing time is about c*log(n), where n is the number of nodes in the network and c is an explicitly described constant.Comment: ISAAC 201

    Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion

    Get PDF
    Background Traumatic spinal cord injury (SCI) induces secondary tissue damage that is associated with astrogliosis and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell cycle activation continues more chronically and contributes to more delayed glial change. Here we examined expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-dependent kinase (CDKs) inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model. Methods Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury. Results Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related proteins − including cyclin D1 and E, CDK4, E2F5 and PCNA − for 4 months post-injury that were highly expressed by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and immunoreactivity of GFAP, Iba-1 and p22PHOX − a key component of NADPH oxidase − up to 4 months after SCI. CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and 4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2 through week 16. Conclusions These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may contribute to astroglial scar formation, chronic inflammation and further tissue loss

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance

    Morphological and Rheological properties of new quaternized polysulfone with triphenylphosphonium pendant groups

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.A new quaternized polysulfone with triphenylphosphonium pendant groups was synthesized by reacting chloromethylated polysulfone with triphenylphosphine. The molecular restructurations, generated by hydrogen bonding, electrostatic interactions and association phenomena in ternary quaternized polysulfone/N,N-dimethylformamide (solvent) / water (non- solvent) systems, were evaluated by rheological investigations. The results were correlated with the morphological properties of the films prepared from solutions in solvent/nonsolvent mixturesdc201

    The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research

    Full text link
    We describe the design and current performance of the high-flux backscattering spectrometer located at the NIST Center for Neutron Research. The design incorporates several state-of-the-art neutron optical devices to achieve the highest flux on sample possible while maintaining an energy resolution of less than 1mueV. Foremost among these is a novel phase-space transformation chopper that significantly reduces the mismatch between the beam divergences of the primary and secondary parts of the instrument. This resolves a long-standing problem of backscattering spectrometers, and produces a relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator system has been built that is capable of achieving energy transfers of up to +-50mueV, thereby extending the dynamic range of this type of spectrometer by more than a factor of two over that of other reactor-based backscattering instruments

    Denial-of-service resilience in peer-to-peer file sharing systems

    Get PDF
    Peer-to-peer (p2p) file sharing systems are characterized by highly replicated content distributed among nodes with enormous aggregate resources for storage and communication. These properties alone are not sufficient, however, to render p2p networks immune to denial-of-service (DoS) attack. In this paper, we study, by means of analytical modeling and simulation, the resilience of p2p file sharing systems against DoS attacks, in which malicious nodes respond to queries with erroneous responses. We consider the filetargeted attacks in current use in the Internet, and we introduce a new class of p2p-network-targeted attacks. In file-targeted attacks, the attacker puts a large number of corrupted versions of a single file on the network. We demonstrate that the effectiveness of these attacks is highly dependent on the clients’ behavior. For the attacks to succeed over the long term, clients must be unwilling to share files, slow in removing corrupted files from their machines, and quick to give up downloading when the system is under attack. In network-targeted attacks, attackers respond to queries for any file with erroneous information. Our results indicate that these attacks are highly scalable: increasing the number of malicious nodes yields a hyperexponential decrease in system goodput, and a moderate number of attackers suffices to cause a near-collapse of the entire system. The key factors inducing this vulnerability are (i) hierarchical topologies with misbehaving “supernodes,” (ii) high path-length networks in which attackers have increased opportunity to falsify control information, and (iii) power-law networks in which attackers insert themselves into high-degree points in the graph. Finally, we consider the effects of client counter-strategies such as randomized reply selection, redundant and parallel download, and reputation systems. Some counter-strategies (e.g., randomized reply selection) provide considerable immunity to attack (reducing the scaling from hyperexponential to linear), yet significantly hurt performance in the absence of an attack. Other counter-strategies yield little benefit (or penalty). In particular, reputation systems show little impact unless they operate with near perfection
    corecore