54 research outputs found

    Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease

    Get PDF
    Cysteinyl-leukotrienes (cys-LT) are powerful spasmogenic and immune modulating lipid mediators involved in inflammatory diseases, in particular asthma. Here, we investigated whether cys-LT signaling, in the context of atherosclerotic heart disease, compromises the myocardial microcirculation and its response to hypoxic stress. To this end, we examined Apoe(-/-) mice fed a hypercholesterolemic diet and analysed the expression of key enzymes of the cys-LT pathway and their receptors (CysLT1/CysLT2) in normal and hypoxic myocardium as well as the potential contribution of cys-LT signaling to the acute myocardial response to hypoxia. METHODS AND PRINCIPAL FINDINGS: Myocardial biopsies from Apoe(-/-) mice demonstrated signs of chronic inflammation with fibrosis, increased apoptosis and expression of IL-6, as compared to biopsies from C57BL/6J control mice. In addition, we found increased leukotriene C(4) synthase (LTC(4)S) and CysLT1 expression in the myocardium of Apoe(-/-) mice. Acute bouts of hypoxia further induced LTC(4)S expression, increased LTC(4)S enzyme activity and CysLT1 expression, and were associated with increased extension of hypoxic areas within the myocardium. Inhibition of cys-LT signaling by treatment with montelukast, a selective CysLT1 receptor antagonist, during acute bouts of hypoxic stress reduced myocardial hypoxic areas in Apoe(-/-) mice to levels equal to those observed under normoxic conditions. In human heart biopsies from 14 patients with chronic coronary artery disease mRNA expression levels of LTC(4)S and CysLT1 were increased in chronic ischemic compared to non-ischemic myocardium, constituting a molecular basis for increased cys-LT signaling. CONCLUSION: Our results suggest that CysLT1 antagonists may have protective effects on the hypoxic heart, and improve the oxygen supply to areas of myocardial ischemia, for instance during episodes of sleep apnea

    Toxic effects of phenothiazines on the eye

    Get PDF
    Publications about the retinotoxic action of phenothiazine derivatives led the author to undertake an ophthalmological investigation in two psychiatric hospitals in The Netherlands. The pharmacological actions of phenothiazine preparations are listed and a survey of the phenothiazine derivatives which are at present in use is given. Some retinotoxic substances are discussed and a survey is given of the literature on the ocular complications of phenothiazine therapy. The eyes of 561 patients were examined. of whom 541 are included in this study. 343 of these patients(63.4 %) were found to have retinopathy. The correlation between the retinopathy and the total dose of phenothiazine preparations taken. and between the retinopathy and the duration of treatment. was highly significant. The correlation between the retinopathy and the average daily dose taken was significant. The retinopathy was associated with a reduced standing potential of the eye. as determined by electro-oculography. It was possibly responsible for diminished visual acuity in some cases, and for an abnormally large proportion of protans in the group of patients with colour defects. It was not possible to ascribe a more severe retinotoxic action to one or more specific phenothiazine derivatives than to others. In the author's opinion regular examination of the eyes of patients who are being treated with phenothiazine preparations in high dosage and for for a long period of time is indicated

    Leukotriene A4 hydrolase: A critical role of glutamic acid-296 for the binding of bestatin

    No full text
    Leukotriene A4 hydrolase is a bifunctional Zn2+-containing enzyme catalysing the formation of the potent chemotaxin leukotriene B4. From an analysis of three mutants of Glu-296 we have found that this catalytic residue is critical for the binding of bestatin, a classical aminopeptidase inhibitor. For bestatin, but not for three other tight-binding inhibitors, the IC50 values for inhibition of the epoxide hydrolase activity decreased in the mutants to 0.7-0.003% of the control. Hence Glu-296 is an important structural determinant for binding of bestatin to leukotriene A4 hydrolase; this conclusion might also apply to other members of the M1 family of metallopeptidases

    Fluorescent leukotriene B-4: potential applications

    No full text
    Leukotriene B-4 (LTB4) is a potent lipid mediator of inflammation that acts primarily via a seven-transmembrane-spanning, G-protein-coupled receptor denoted BLT1. Here, we describe the synthesis and characterization of fluorescent analogs of LTB4 that are easy to produce, inexpensive, and without the disadvantages of a radioligand. Fluorescent LTB4 is useful for labeling LTB4 receptors for which no antibodies are available and for performing one-step fluorescence polarization assays conducive to high-throughput screening. We found that orange and green fluorescent LTB4 were full agonists that activated the LTB4 receptor BLT1 with EC50 values of 68 and 40 nM, respectively (4.5 nM for unmodified LTB4). Flow cytometric measurements and confocal imaging showed that fluorescent LTB4 colocalized with BLT1. Fluorescence polarization measurements showed that orange fluorescent LTB4 bound to BLT1 with a K-d of 66 nM and that this binding could be displaced by unlabeled LTB4 and other BLT1-specific ligands. Fluorescent LTB4 analogs were also able to displace tritiated LTB4. Orange fluorescent LTB4 binding to enhanced green fluorescent protein-tagged BLT1 could be observed using fluorescence resonance energy transfer. In addition to being a useful alternative to radiolabeled LTB4, the unique properties of fluorescently labeled LTB4 allow a variety of detection technologies to be used
    • …
    corecore