242 research outputs found

    Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates

    Full text link
    Specific proteolysis plays an important role in the terminal differentiation of keratinocytes in the epidermis and several types of proteases have been implicated in this process. The proprotein convertases (PCs) are a family of Ca 2+ -dependent serine proteases involved in processing and activation of several types of substrates. In this study we examined the expression and some potential substrates of PCs in epidermis. Four PCs are expressed in epidermis: furin, PACE4, PC5/6 and PC7/8. Furin is detected in two forms, either with or without the transmembrane domain, suggesting occurrence of post-translational cleavage to produce a soluble enzyme. In addition the furin active site has differential accessibility in the granular layer of the epidermis relative to the basal layer, whereas antibodies to the transmembrane domain stain both layers. These findings suggest that furin has access to different types of substrates in granular cells as opposed to basal cells. PC7/8, in contrast, is detected throughout the epidermis with antibodies to both the transmembrane and active site and no soluble form observed. A peptide PC inhibitor (dec-RVKR-CMK) inhibits cleavage of Notch-1, a receptor important in cell fate determination that is found throughout the epidermis. Profilaggrin, found in the granular layer, is specifically cleaved by furin and PACE4 in vitro at a site between the amino terminus and the first filaggrin repeat. This work suggests that the PCs play multiple roles during epidermal differentiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75749/1/j.1600-0625.2001.010003193.x.pd

    Mice lacking NF-κB1 exhibit marked DNA damage responses and more severe gastric pathology in response to intraperitoneal tamoxifen administration

    Get PDF
    Tamoxifen (TAM) has recently been shown to cause acute gastric atrophy and metaplasia in mice. We have previously demonstrated that the outcome of Helicobacter felis infection, which induces similar gastric lesions in mice, is altered by deletion of specific NF-κB subunits. Nfkb1-/- mice developed more severe gastric atrophy than wild-type (WT) mice 6 weeks after H. felis infection. In contrast, Nfkb2-/- mice were protected from this pathology. We therefore hypothesized that gastric lesions induced by TAM may be similarly regulated by signaling via NF-κB subunits. Groups of five female C57BL/6 (WT), Nfkb1-/-, Nfkb2-/- and c-Rel-/- mice were administered 150 mg/kg TAM by IP injection. Seventy-two hours later, gastric corpus tissues were taken for quantitative histological assessment. In addition, groups of six female WT and Nfkb1-/- mice were exposed to 12 Gy γ-irradiation. Gastric epithelial apoptosis was quantified 6 and 48 h after irradiation. TAM induced gastric epithelial lesions in all strains of mice, but this was more severe in Nfkb1-/- mice than in WT mice. Nfkb1-/- mice exhibited more severe parietal cell loss than WT mice, had increased gastric epithelial expression of Ki67 and had an exaggerated gastric epithelial DNA damage response as quantified by γH2AX. To investigate whether the difference in gastric epithelial DNA damage response of Nfkb1-/- mice was unique to TAM-induced DNA damage or a generic consequence of DNA damage, we also assessed gastric epithelial apoptosis following γ-irradiation. Six hours after γ-irradiation, gastric epithelial apoptosis was increased in the gastric corpus and antrum of Nfkb1-/- mice. NF-κB1-mediated signaling regulates the development of gastric mucosal pathology following TAM administration. This is associated with an exaggerated gastric epithelial DNA damage response. This aberrant response appears to reflect a more generic sensitization of the gastric mucosa of Nfkb1-/- mice to DNA damage

    Carboxy-Terminal Conversion of Profibrillin to Fibrillin at a Basic Site by PACE/Furin-Like Activity Required for Incorporation in the Matrix

    Get PDF
    Fibrillin-1, the main component of 10-12 nm microfibrils of the extracellular matrix, is synthesized as profibrillin and proteolytically processed to fibrillin. The putative cleavage site has been mapped to the carboxy-terminal domain of profibrillin-1, between amino acids arginine 2731 and serine 2732, by a spontaneous mutation in this recognition site that prevents profibrillin conversion. This site contains a basic amino acid recognition sequence (R-G-R-K-R-R) for proprotein convertases of the furin/PACE family. In this study, we use a mini-profibrillin protein to confirm the cleavage in the carboxy-terminal domain by both fibroblasts and recombinantly expressed furin/PACE, PACE4, PC1/3 and PC2. Site-directed mutagenesis of amino acids in the consensus recognition motif prevented conversion, thereby identifying the scissile bond and characterizing the basic amino acids required for cleavage. Using a PACE/furin inhibitor, we show that wild-type profibrillin is not incorporated into the extracellular matrix until it is converted to fibrillin. Therefore, profibrillin-1 is the first extracellular matrix protein to be shown to be a substrate for subtilisin-like proteases, and the conversion of profibrillin to fibrillin controls microfibrillogenesis through exclusion of uncleaved profibrillin

    The Zwicky Transient Facility Bright Transient Survey. III. BTSbot\texttt{BTSbot}: Automated Identification and Follow-up of Bright Transients with Deep Learning

    Full text link
    The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak ≤ 18.5 m_\mathrm{peak}\,\leq\,18.5\,mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection ("scanning") to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ∼5\sim5 yr of ZTF operations. We present BTSbot\texttt{BTSbot}, a multi-modal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features. BTSbot\texttt{BTSbot} is able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates. BTSbot\texttt{BTSbot} recovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, ∼\sim1 hour quicker than scanners). We also find that BTSbot\texttt{BTSbot} is not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates. BTSbot\texttt{BTSbot} has been integrated into Fritz and Kowalski\texttt{Kowalski}, ZTF's first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. During the month of October 2023, BTSbot\texttt{BTSbot} selected 296 sources in real-time, 93% of which were real extragalactic transients. With BTSbot\texttt{BTSbot} and other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human-time needed to scan. Future development has tremendous potential for creating similar models to identify and request follow-up observations for specific types of transients.Comment: 26 pages, 12 figures; to be submitted to ApJ; comments welcom

    Parametric Response Mapping as an Indicator of Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation

    Get PDF
    AbstractThe management of bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation presents many challenges, both diagnostically and therapeutically. We developed a computed tomography (CT) voxel-wise methodology termed parametric response mapping (PRM) that quantifies normal parenchyma, functional small airway disease (PRMfSAD), emphysema, and parenchymal disease as relative lung volumes. We now investigate the use of PRM as an imaging biomarker in the diagnosis of BOS. PRM was applied to CT data from 4 patient cohorts: acute infection (n = 11), BOS at onset (n = 34), BOS plus infection (n = 9), and age-matched, nontransplant control subjects (n = 23). Pulmonary function tests and bronchoalveolar lavage were used for group classification. Mean values for PRMfSAD were significantly greater in patients with BOS (38% ± 2%) when compared with those with infection alone (17% ± 4%, P < .0001) and age-matched control subjects (8.4% ± 1%, P < .0001). Patients with BOS had similar PRMfSAD profiles, whether a concurrent infection was present or not. An optimal cut-point for PRMfSAD of 28% of the total lung volume was identified, with values >28% highly indicative of BOS occurrence. PRM may provide a major advance in our ability to identify the small airway obstruction that characterizes BOS, even in the presence of concurrent infection

    Image Registration for Quantitative Parametric Response Mapping of Cancer Treatment Response

    Get PDF
    AbstractImaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment-associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented. Application of PRM to breast tumor response detection is described, wherein robust registration solutions for tracking small changes in water diffusivity in breast tumors during therapy are required. Methodologies that employ simulations are presented for measuring expected statistical accuracy of PRM for response assessment. Test-retest clinical scans are used to yield estimates of system noise to indicate significant changes in voxel-based changes in water diffusivity. Overall, registration-based PRM image analysis provides significant opportunities for voxel-based image analysis to provide the required accuracy for early assessment of response to treatment in breast cancer patients receiving neoadjuvant chemotherapy

    In vivo bioluminescence imaging of locally disseminated colon carcinoma in rats

    Get PDF
    Animal tumour models using orthotopic tumours for the evaluation of cancer therapies are of greater clinical relevance than subcutaneous models, but they also pose greater difficulties for measuring tumour size and quantifying response to treatment. In this study, we used noninvasive bioluminescence imaging to monitor the intraperitoneal growth of luciferase-transfected CC531 colorectal cells in adult WAG/RIJ rats. The bioluminescence signal correlated well with post-mortem assessment of tumour load by visual inspection of the peritoneal cavity at specific follow-up times. Using bioluminescence imaging, we were able to monitor peritoneal tumour growth sequentially in time and to calculate a tumour growth rate for each animal; this is not possible with invasive methods of evaluating tumour load. Bioluminescence imaging of rats treated with a single dose of cisplatin (4 mg x kg(-1), i.p.) demonstrated a significant delay in peritoneal tumour growth relative to saline controls (mean 45.0+/-s.d. 13.0 vs 28.2+/-10.3 days; P=0.04). Similar protocols evaluated by visual scoring of tumour load at 40 days after inoculation supported these findings, although no quantitative assessment of treatment-induced growth delay could be made by this method. This study shows that in vivo imaging of luciferase-transfected tumour cells is a useful tool to investigate the dynamics of disseminated tumour growth and efficacy of anticancer treatment in orthotopic models of peritoneal cancer in rats. It offers an attractive alternative to invasive methods, and requires fewer animals for measuring tumour response to therapy

    Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    Get PDF
    INTRODUCTION: Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. METHOD: Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. RESULTS: The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at multiple sites simultaneously. Ex vivo imaging data from sampled tissues verified both skeletal and multiple soft tissue tumor metastasis. CONCLUSION: This study characterized two new bioluminescent MDA-MB-231-luc human breast carcinoma cell lines with enhanced tumor growth and widespread metastasis in mice. Their application to current xenograft models of breast cancer offers rapid and highly sensitive detection options for preclinical assessment of anticancer therapies in vivo
    • …
    corecore