470 research outputs found

    Events in the affective city: Affect, attention and alignment in two ordinary urban events

    Get PDF
    In a representational regime, planned urban events are used by urban planners to render urban projects visible and acceptable. As a corollary of the focus of urban studies on their representational dimension and in spite of a burgeoning literature on the notion of affective urbanism, the experiential character of events remains surprisingly unexplored. This paper argues that an ordinary regime of events is mobilised by city-makers to act on the embodied, affective experience of the city and on the ways urban dwellers know and act upon the city. By analysing planned urban events in their embodied, experiential dimension, we focus on the ways in which, through the design of ephemeral material dispositives, urbanists attempt to encourage citizens to incorporate ways of knowing and acting on space and on the modalities of knowing and acting that are at play. We stage an encounter between critical event studies and Ingoldian approaches to affect and attention, examining two urban events in a Swiss canton. We show how intense encounters with urban matter are staged in an attempt to modulate affects, guide attention, and produce alignment with a specific political project, asking urban dwellers either to embody a project still in the making or to cultivate expectations regarding an already-written future

    Ambipolar gate effect and low temperature magnetoresistance of ultrathin La0.8Ca0.2MnO3 Films

    Full text link
    Ultrathin La0.8Ca0.2MnO3 films have been measured in a field-effect geometry. The electric field due to the gate produces a large ambipolar decrease in resistance at low temperatures. This is attributed to the development of a pseudogap in the density of states and the couple of localized charge to strain. The gate effect and mangetoresistance are interpreted in a consistent framework. The implications for the low temperature behavior of a manganite film in the two dimensional limit are discussed.Comment: 4 pages, 3 figure

    Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    Get PDF
    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review

    The Density of States in High-Tc Superconductors Vortices

    Full text link
    We calculated the electronic structure of a vortex in a pseudogapped superconductor within a model featuring strong correlations. With increasing strength of the correlations, the BCS core states are suppressed and the spectra in and outside the core become similar. If the correlations are short-range, we find new core states in agreement with the observations in YBaCuO and BiSrCaCuO. Our results point to a common phenomenology for these two systems and indicate that normal-state correlations survive below Tc without taking part in the overall phase coherence.Comment: REVTeX 4, 5 pages, 2 EPS figures. Some changes to the text; new figures; references update

    Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC

    Get PDF
    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid Argon TPCs is now mature. The study of rare events, not contemplated in the Standard Model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the νμ\nu_\mu charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrate that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the Multiple Coulomb Scattering along the particle's path. Moreover, we show that momentum resolution can be improved by a factor two using an algorithm based on the Kalman Filtering technique

    KO-Homology and Type I String Theory

    Full text link
    We study the classification of D-branes and Ramond-Ramond fields in Type I string theory by developing a geometric description of KO-homology. We define an analytic version of KO-homology using KK-theory of real C*-algebras, and construct explicitly the isomorphism between geometric and analytic KO-homology. The construction involves recasting the Cl(n)-index theorem and a certain geometric invariant into a homological framework which is used, along with a definition of the real Chern character in KO-homology, to derive cohomological index formulas. We show that this invariant also naturally assigns torsion charges to non-BPS states in Type I string theory, in the construction of classes of D-branes in terms of topological KO-cycles. The formalism naturally captures the coupling of Ramond-Ramond fields to background D-branes which cancel global anomalies in the string theory path integral. We show that this is related to a physical interpretation of bivariant KK-theory in terms of decay processes on spacetime-filling branes. We also provide a construction of the holonomies of Ramond-Ramond fields in Type II string theory in terms of topological K-chains.Comment: 40 pages; v4: Clarifying comments added, more detailed proof of main isomorphism theorem given; Final version to be published in Reviews in Mathematical Physic

    Geometric K-Homology of Flat D-Branes

    Full text link
    We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We rigorously derive various stability criteria for states of D-branes and show how standard bound state constructions are naturally realized directly in terms of topological K-cycles. We formulate the mechanism of flux stabilization in terms of the K-homology of non-trivial fibre bundles. Along the way we derive a number of new mathematical results in topological K-homology of independent interest.Comment: 45 pages; v2: References added; v3: Some substantial revision and corrections, main results unchanged but presentation improved, references added; to be published in Communications in Mathematical Physic

    Measurement of the muon decay spectrum with the ICARUS liquid Argon TPC

    Full text link
    Examples are given which prove the ICARUS detector quality through relevant physics measurements. We study the muon decay energy spectrum from a sample of stopping muon events acquired during the test run of the ICARUS T600 detector. This detector allows the spatial reconstruction of the events with fine granularity, hence, the precise measurement of the range and dE/dx of the muon with high sampling rate. This information is used to compute the calibration factors needed for the full calorimetric reconstruction of the events. The Michel rho parameter is then measured by comparison of the experimental and Monte Carlo simulated muon decay spectra, obtaining rho = 0.72 +/- 0.06(stat.) +/- 0.08(syst.). The energy resolution for electrons below ~50 MeV is finally extracted from the simulated sample, obtaining (Emeas-Emc)/Emc = 11%/sqrt(E[MeV]) + 2%.Comment: 16 pages, 8 figures, LaTex, A4. Some text and 1 figure added. Final version as accepted for publication in The European Physical Journal
    corecore