4,430 research outputs found
Applying black hole perturbation theory to numerically generated spacetimes
Nonspherical perturbation theory has been necessary to understand the meaning
of radiation in spacetimes generated through fully nonlinear numerical
relativity. Recently, perturbation techniques have been found to be successful
for the time evolution of initial data found by nonlinear methods. Anticipating
that such an approach will prove useful in a variety of problems, we give here
both the practical steps, and a discussion of the underlying theory, for taking
numerically generated data on an initial hypersurface as initial value data and
extracting data that can be considered to be nonspherical perturbations.Comment: 14 pages, revtex3.0, 5 figure
Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory
The Misner initial value solution for two momentarily stationary black holes
has been the focus of much numerical study. We report here analytic results for
an astrophysically similar initial solution, that of Brill and Lindquist (BL).
Results are given from perturbation theory for initially close holes and are
compared with available numerical results. A comparison is made of the
radiation generated from the BL and the Misner initial values, and the physical
meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure
Cauchy-perturbative matching and outer boundary conditions: computational studies
We present results from a new technique which allows extraction of
gravitational radiation information from a generic three-dimensional numerical
relativity code and provides stable outer boundary conditions. In our approach
we match the solution of a Cauchy evolution of the nonlinear Einstein field
equations to a set of one-dimensional linear equations obtained through
perturbation techniques over a curved background. We discuss the validity of
this approach in the case of linear and mildly nonlinear gravitational waves
and show how a numerical module developed for this purpose is able to provide
an accurate and numerically convergent description of the gravitational wave
propagation and a stable numerical evolution.Comment: 20 pages, RevTe
Cauchy-perturbative matching and outer boundary conditions I: Methods and tests
We present a new method of extracting gravitational radiation from
three-dimensional numerical relativity codes and providing outer boundary
conditions. Our approach matches the solution of a Cauchy evolution of
Einstein's equations to a set of one-dimensional linear wave equations on a
curved background. We illustrate the mathematical properties of our approach
and discuss a numerical module we have constructed for this purpose. This
module implements the perturbative matching approach in connection with a
generic three-dimensional numerical relativity simulation. Tests of its
accuracy and second-order convergence are presented with analytic linear wave
data.Comment: 13 pages, 6 figures, RevTe
Waveform propagation in black hole spacetimes: evaluating the quality of numerical solutions
We compute the propagation and scattering of linear gravitational waves off a
Schwarzschild black hole using a numerical code which solves a generalization
of the Zerilli equation to a three dimensional cartesian coordinate system.
Since the solution to this problem is well understood it represents a very good
testbed for evaluating our ability to perform three dimensional computations of
gravitational waves in spacetimes in which a black hole event horizon is
present.Comment: 13 pages, RevTeX, to appear in Phys. Rev.
Calculation of gravitational wave forms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes
Many simulations of gravitational collapse to black holes become inaccurate
before the total emitted gravitational radiation can be determined. The main
difficulty is that a significant component of the radiation is still in the
near-zone, strong field region at the time the simulation breaks down. We show
how to calculate the emitted waveform by matching the numerical simulation to a
perturbation solution when the final state of the system approaches a
Schwarzschild black hole. We apply the technique to two scenarios: the head-on
collision of two black holes, and the collapse of a disk to a black hole. This
is the first reasonably accurate calculation of the radiation generated from
colliding black holes that form from matter collapse.Comment: 8 pages (RevTex 3.0 with 7 uuencoded figures
S-Duality at the Black Hole Threshold in Gravitational Collapse
We study gravitational collapse of the axion/dilaton field in classical low
energy string theory, at the threshold for black hole formation. A new critical
solution is derived that is spherically symmetric and continuously
self-similar. The universal scaling and echoing behavior discovered by Choptuik
in gravitational collapse appear in a somewhat different form. In particular,
echoing takes the form of SL(2,R) rotations (cf. S-duality). The collapse
leaves behind an outgoing pulse of axion/dilaton radiation, with nearly but not
exactly flat spacetime within it.Comment: 8 pages of LaTeX, uses style "revtex"; 1 figure, available in
archive, or at ftp://ftp.itp.ucsb.edu/figures/nsf-itp-95-15.ep
The two-phase approximation for black hole collisions: Is it robust?
Recently Abrahams and Cook devised a method of estimating the total radiated
energy resulting from collisions of distant black holes by applying Newtonian
evolution to the holes up to the point where a common apparent horizon forms
around the two black holes and subsequently applying Schwarzschild perturbation
techniques . Despite the crudeness of their method, their results for the case
of head-on collisions were surprisingly accurate. Here we take advantage of the
simple radiated energy formula devised in the close-slow approximation for
black hole collisions to test how strongly the Abrahams-Cook result depends on
the choice of moment when the method of evolution switches over from Newtonian
to general relativistic evolution. We find that their result is robust, not
depending strongly on this choice.Comment: 4 pages, 3 figures, submitted to Classical and Quantum Gravit
The collision of boosted black holes
We study the radiation from a collision of black holes with equal and
opposite linear momenta. Results are presented from a full numerical relativity
treatment and are compared with the results from a ``close-slow''
approximation. The agreement is remarkable, and suggests several insights about
the generation of gravitational radiation in black hole collisions.Comment: 8 pages, RevTeX, 3 figures included with eps
- …