913 research outputs found

    Editorial note to "The beginning of the world from the point of view of quantum theory"

    Full text link
    This is an editorial note to accompany reprinting as a Golden Oldie in the Journal of General Relativity and Gravitation of the famous note by Georges Lemaitre on the quantum birth of the universe, published in Nature in 1931. We explain why this short (457 words) article can be considered to be the true "Charter" of the modern Big Bang theory.Comment: This is an editorial comment to accompany reprinting of a classical paper in the Journal of General Relativity and Gravitation. 16 pages, 2 figure

    Is nonrelativistic gravity possible?

    Full text link
    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.Comment: 4 pages, v2, typos corrected, published in Physical Review

    Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators

    Get PDF
    Resonant photoelastic coupling in semiconductor nanostructures opens new perspectives for strongly enhanced light-sound interaction in optomechanical resonators. One potential problem, however, is the reduction of the cavity Q-factor induced by dissipation when the resonance is approached. We show in this letter that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in the strongly-coupled regime. Huge optomechanical coupling factors in the PetaHz/nm range are envisaged, three orders of magnitude larger than the backaction produced by the mechanical displacement of the cavity mirrors.Comment: 6 pages, 4 figure

    Velocity dominated singularities in the cheese slice universe

    Full text link
    We investigate the properties of spacetimes resulting from matching together exact solutions using the Darmois matching conditions. In particular we focus on the asymptotically velocity term dominated property (AVTD). We propose a criterion that can be used to test if a spacetime constructed from a matching can be considered AVTD. Using the Cheese Slice universe as an example, we show that a spacetime constructed from a such a matching can inherit the AVTD property from the original spacetimes. Furthermore the singularity resulting from this particular matching is an AVTD singularity.Comment: 11 pages, 3 figures, accepted for publication in the International Journal of Modern Physics

    Can a charged dust ball be sent through the Reissner--Nordstr\"{o}m wormhole?

    Full text link
    In a previous paper we formulated a set of necessary conditions for the spherically symmetric weakly charged dust to avoid Big Bang/Big Crunch, shell crossing and permanent central singularities. However, we did not discuss the properties of the energy density, some of which are surprising and seem not to have been known up to now. A singularity of infinite energy density does exist -- it is a point singularity situated on the world line of the center of symmetry. The condition that no mass shell collapses to R=0R = 0 if it had R>0R > 0 initially thus turns out to be still insufficient for avoiding a singularity. Moreover, at the singularity the energy density ϵ\epsilon is direction-dependent: ϵ\epsilon \to - \infty when we approach the singular point along a t=t = const hypersurface and ϵ+\epsilon \to + \infty when we approach that point along the center of symmetry. The appearance of negative-energy-density regions turns out to be inevitable. We discuss various aspects of this property of our configuration. We also show that a permanently pulsating configuration, with the period of pulsation independent of mass, is possible only if there exists a permanent central singularity.Comment: 30 pages, 21 figures; several corrections after referee's comments, 4 figures modifie

    Macroscopic Discontinuous Shear Thickening vs Local Shear Jamming in Cornstarch

    Full text link
    We study the emergence of discontinuous shear-thickening (DST) in cornstarch, by combining macroscopic rheometry with local Magnetic Resonance Imaging (MRI) measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local rheology in the flowing region, is not DST but, strikingly, is often shear-thinning. Our data thus show that the stress jump measured during DST, in cornstach, does not capture a secondary, high-viscosity branch of the local steady rheology, but results from the existence of a shear jamming limit at volume fractions quite significantly below random close packing.Comment: To be published in PR

    Direct probing of band-structure Berry phase in diluted magnetic semiconductors

    Get PDF
    We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.Comment: 7 pages, 6 figure

    CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe

    Get PDF
    The current authors have previously shown that inhomogeneous, but spherically symmetric universe models containing only matter can yield a very good fit to the SNIa data and the position of the first CMB peak. In this work we examine how far away from the center of inhomogeneity the observer can be located in these models and still fit the data well. Furthermore, we investigate whether such an off-center location can explain the observed alignment of the lowest multipoles of the CMB map. We find that the observer has to be located within a radius of 15 Mpc from the center for the induced dipole to be less than that observed by the COBE satellite. But for such small displacements from the center, the induced quadru- and octopoles turn out to be insufficiently large to explain the alignment.Comment: 8 pages (REVTeX4), 7 figures; v2: minor changes, matches published versio

    Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions

    Full text link
    In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.Comment: 8 pages, Latex. To appear in Phys. Rev.D. Typos correcte
    corecore