1,029 research outputs found

    Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts

    Get PDF
    There is considerable interest in understanding the interaction and activity of single entities, such as (electro)catalytic nanoparticles (NPs), with (electrode) surfaces. Through the use of a high bandwidth, high signal/noise measurement system, NP impacts on an electrode surface are detected and analyzed in unprecedented detail, revealing considerable new mechanistic information on the process. Taking the electrocatalytic oxidation of H2O2 at ruthenium oxide (RuOx) NPs as an example, the rise time of current–time transients for NP impacts is consistent with a hydrodynamic trapping model for the arrival of a NP with a distance-dependent NP diffusion-coefficient. NP release from the electrode appears to be aided by propulsion from the electrocatalytic reaction at the NP. High-frequency NP impacts, orders of magnitude larger than can be accounted for by a single pass diffusive flux of NPs, are observed that indicate the repetitive trapping and release of an individual NP that has not been previously recognized. The experiments and models described could readily be applied to other systems and serve as a powerful platform for detailed analysis of NP impacts

    Severe combined hyperlipidaemia and retinal lipid infiltration in a patient with Type 2 diabetes mellitus

    Get PDF
    Severe combined hyperlipidaemia has occasionally been associated with infiltration of tissues in addition to arteries and the skin. We report a woman with Type 2 diabetes mellitus (DM) and severe combined hyperlipidaemia who developed retinal lipid infiltration, resulting in blindness. A 61-year-old woman with a 15-year history of Type 2 DM was admitted following a two-week history of progressive visual loss. Examination identified lipid infiltration into the retina. Phenotypically she had severe combined hyperlipidaemia with elevated IDL cholesterol and a broad beta band on lipoprotein electrophoresis, raising the possibility of familial dysbetalipoproteinaemia. However, gene sequencing analysis indicated that the patient was homozygous for the E3/E3 allele of the ApoE gene with no mutations detected in either the coding region or intron-exon boundaries. Her lipid profile improved following dietary therapy and gemfibrozil treatment, but this had little effect on either her fundal appearances or her visual acuity. Type 2 DM plays a vital role both in allowing expression of severe combined hyperlipoproteinaemia, in addition to serving as a risk factor for complications such as tissue infiltration

    Childhood sleep health and epigenetic age acceleration in late adolescence: Cross-sectional and longitudinal analyses

    Get PDF
    Aim: Investigate if childhood measures of sleep health are associated with epigenetic age acceleration in late adolescence. Methods: Parent-reported sleep trajectories from age 5 to 17, self-reported sleep problems at age 17, and six measures of epigenetic age acceleration at age 17 were studied in 1192 young Australians from the Raine Study Gen2. Results: There was no evidence for a relationship between the parent-reported sleep trajectories and epigenetic age acceleration (p ≥ 0.17). There was a positive cross-sectional relationship between self-reported sleep problem score and intrinsic epigenetic age acceleration at age 17 (b = 0.14, p = 0.04), which was attenuated after controlling for depressive symptom score at the same age (b = 0.08, p = 0.34). Follow-up analyses suggested this finding may represent greater overtiredness and intrinsic epigenetic age acceleration in adolescents with higher depressive symptoms. Conclusion: There was no evidence for a relationship between self- or parent-reported sleep health and epigenetic age acceleration in late adolescence after adjusting for depressive symptoms. Mental health should be considered as a potential confounding variable in future research on sleep and epigenetic age acceleration, particularly if subjective measures of sleep are used

    An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin

    Get PDF
    Baculovirus occlusion bodies, large proteinaceous structures which contain virions, have recently been engineered to incorporate foreign proteins. The major constituent protein of occlusion bodies from the baculovirus Autographa californica nucleopolyhedrovirus is polyhedrin, and assembly of recombinant occlusion bodies which incorporate a foreign protein depends on an interaction between native polyhedrin and a polyhedrin–foreign protein fusion. This technology has now been applied to the generation of a recombinant baculovirus (ColorBtrus) that produces occlusion bodies incorporating the Bacillus thuringiensis (Bt) insecticidal Cry1Ac toxin protein. ColorBtrus coexpresses native polyhedrin and a fusion protein in which polyhedrin is fused to the Bt toxin, which is in turn fused to green fluorescent protein (GFP). Analysis of ColorBtrus occlusion bodies confirmed that they include both Bt toxin and GFP, yet still incorporate virions. Bioassay of ColorBtrus demonstrated that its speed of action and pathogenicity are strikingly enhanced compared to wild-type virus. ColorBtrus represents a novel, powerful biological insecticide that combines positive attributes of both Bt toxin and baculovirus based systems

    ULF wave derived radiation belt radial diffusion coefficients

    Get PDF
    Waves in the ultra-low-frequency (ULF) band have frequencies which can be drift resonant with electrons in the outer radiation belt, suggesting the potential for strong interactions and enhanced radial diffusion. Previous radial diffusion coefficient models such as those presented by Brautigam and Albert (2000) have typically used semiempirical representations for both the ULF wave’s electric and magnetic field power spectral densities (PSD) in space in the magnetic equatorial plane. In contrast, here we use ground- and space-based observations of ULF wave power to characterize the electric and magnetic diffusion coefficients. Expressions for the electric field power spectral densities are derived from ground-based magnetometer measurements of the magnetic field PSD, and in situ AMPTE and GOES spacecraft measurements are used to derive expressions for the compressional magnetic field PSD as functions of Kp, solar wind speed, and L-shell. Magnetic PSD results measured on the ground are mapped along the field line to give the electric field PSD in the equatorial plane assuming a guided Alfvén wave solution and a thin sheet ionosphere. The ULF wave PSDs are then used to derive a set of new ULF-wave driven diffusion coefficients. These new diffusion coefficients are compared to estimates of the electric and magnetic field diffusion coefficients made by Brautigam and Albert (2000) and Brautigam et al. (2005). Significantly, our results, derived explicitly from ULF wave observations, indicate that electric field diffusion is much more important than magnetic field diffusion in the transport and energization of the radiation belt electrons
    • …
    corecore