546 research outputs found

    Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals

    Full text link
    We derive a multi-band formulation of the orbital magnetization in a normal periodic insulator (i.e., one in which the Chern invariant, or in 2d the Chern number, vanishes). Following the approach used recently to develop the single-band formalism [T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Phys. Rev. Lett. {\bf 95}, 137205 (2005)], we work in the Wannier representation and find that the magnetization is comprised of two contributions, an obvious one associated with the internal circulation of bulk-like Wannier functions in the interior and an unexpected one arising from net currents carried by Wannier functions near the surface. Unlike the single-band case, where each of these contributions is separately gauge-invariant, in the multi-band formulation only the \emph{sum} of both terms is gauge-invariant. Our final expression for the orbital magnetization can be rewritten as a bulk property in terms of Bloch functions, making it simple to implement in modern code packages. The reciprocal-space expression is evaluated for 2d model systems and the results are verified by comparing to the magnetization computed for finite samples cut from the bulk. Finally, while our formal proof is limited to normal insulators, we also present a heuristic extension to Chern insulators (having nonzero Chern invariant) and to metals. The validity of this extension is again tested by comparing to the magnetization of finite samples cut from the bulk for 2d model systems. We find excellent agreement, thus providing strong empirical evidence in favor of the validity of the heuristic formula.Comment: 14 pages, 8 figures. Fixed a typo in appendix

    eQE: An open‐source density functional embedding theory code for the condensed phase

    Get PDF
    AbstractIn this work, we present the main features and algorithmic details of a novel implementation of the frozen density embedding (FDE) formulation of subsystem density functional theory (DFT) that is specifically designed to enable ab initio molecular dynamics (AIMD) simulations of large‐scale condensed‐phase systems containing 1000s of atoms. This code (available at http://eqe.rutgers.edu) has been given the moniker of embedded Quantum ESPRESSO (eQE) as it is a generalization of the open‐source Quantum ESPRESSO (QE) suite of programs. The strengths of eQE reside in a hierarchical parallelization scheme that allows for an efficient and fully self‐consistent treatment of the electronic structure (via the addition of an additional DIIS extrapolation layer) while simultaneously exploiting the inherent symmetries and periodicities in the system (via sampling of subsystem‐specific first Brillouin zones and utilization of subsystem‐specific basis sets). While bulk liquids and molecular crystals are two classes of systems that exemplify the utility of the FDE approach (as these systems can be partitioned into weakly interacting subunits), we show that eQE has significantly extended this regime of applicability by outperforming standard semilocal Kohn–Sham DFT (KS‐DFT) for large‐scale heterogeneous catalysts with quite different layer‐specific electronic structure and intrinsic periodicities. eQE features very favorable strong parallel scaling for a model system of bulk liquid water composed of 256 water molecules, which allows for a significant decrease in the overall time to solution when compared to KS‐DFT. We show that eQE achieves speedups greater than one order of magnitude ( ) when performing AIMD simulations of such large‐scale condensed‐phase systems as: (1) molecular liquids via bulk liquid water represented by 1024 independent water molecules (3072 atoms with a 25.3× speedup over KS‐DFT), (2) polypeptide/biomolecule solvation via (gly)6 solvated in (H2O)395 (1230 atoms with a 38.6× speedup over KS‐DFT), and (3) molecular crystals via a 3 × 3 × 3 periodic supercell of pentacene (1940 atoms with a 12.0× speedup over KS‐DFT). These results represent a significant improvement over the current state‐of‐the‐art and now enable subsystem DFT‐based AIMD simulations of realistically sized condensed‐phase systems of interest throughout chemistry, physics, and materials science

    Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?

    Full text link
    Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface. The latter is pursued in detail, and it is shown that surface short-range charge order acts to raise the surface tension because incipient NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl much below that of solid NaCl(100).Comment: 4 pages, 3 figure

    Erlotinib in patients with previously irradiated, recurrent brain metastases from non-small cell lung cancer: Two case reports

    Get PDF
    Background: With the current improvements in primary lung care, the long-term control of brain metastases becomes a clinical challenge. No established therapeutic approaches exist for cranial relapse after response to previous radiotherapy and systemic therapy. Tyrosine kinase inhibitors like erlotinib with its proven activity in non-small cell lung cancer may provide clinical benefits in such patients. Patients and Methods: Two case reports are presented illustrating the efficacy of erlotinib in patients with recurrent brain metastases and parallel thoracic progression. Results: Both patients showed lasting partial remissions in the brain and lung, and clinical symptom improvement. Conclusion: The observed survival times of above 18 and 15 months, respectively, since occurrence of cranial disease manifestation in line with the achieved progression-free survival times of 9 and 6 months by the erlotinib third-line therapy are remarkable. The use of targeted therapies after whole-brain irradiation should be investigated more systematically in prospective clinical trials

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure

    WSES classification and guidelines for liver trauma

    Get PDF
    The severity of liver injuries has been universally classified according to the American Association for the Surgery of Trauma (AAST) grading scale. In determining the optimal treatment strategy, however, the haemodynamic status and associated injuries should be considered. Thus the management of liver trauma is ultimately based on the anatomy of the injury and the physiology of the patient. This paper presents the World Society of Emergency Surgery (WSES) classification of liver trauma and the management Guidelines

    Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays To Enhance Photocatalytic Hydrogen Production

    Get PDF
    Two series of self-assembled TiO2 nanotube (NT) arrays were grown by electrochemical anodization on a metallic titanium substrate with different anodization times and applied potentials in HF-containing ethylene glycol electrolyte solutions and postcalcined at 450 \ub0C. The obtained thin films were characterized by FESEM, XRD, UV-vis-NIR DRS analyses and tested as photoanodes in incident photon to current efficiency (IPCE) measurements and in a two-compartment photoelectrochemical cell (PEC) for separate H2 and O2 production. The photocatalytic performance of the NT arrays significantly increased with an increase in the potential applied during anodization (i.e., with increasing the NT inner diameter) and the incident angle of the light. IPCE measurements revealed that such unexpected behavior is due to a red shift of the activity threshold that allows harvesting and converting a larger portion of the solar spectrum. This phenomenon is ascribed to the parallel shift of the photonic band gap position originated by the intrinsic photonic crystal properties and demonstrates the important role played by ordered hierarchical structures in improving the photocatalytic performance of NT arrays by confining and manipulating light

    Cisplatin and vinorelbine first-line chemotherapy in non-resectable malignant pleural mesothelioma

    Get PDF
    The aim was to evaluate the activity of cisplatin and vinorelbine in previously untreated, inoperable patients having histologically verified malignant pleural mesothelioma (MPM), normal organ function, and performance status 0–2. Treatment was vinorelbine 25 mg m−2 i.v. weekly and cisplatin 100 mg m−2 i.v. every 4 weeks with hydration and standard prophylactic antiemetic treatment. Patients gave written informed consent. Characteristics of 54 consecutive patients were: males 85%, epithelial subtype 74%, IMIG stages III and IV 35 and 46%, performance status 0, 1, and 2, 26, 69, and 6%, and median age 63 years (31–78 years). CTC grade 3 or 4 toxicity occurred with respect to leukocytopenia (48% of patients, grade 4 in 13%), nausea (13%), neurotoxicity (11%), nephrotoxicity (4%), and other toxicities (9%). There were no toxic deaths. The median number of cycles was four. The fraction of patients alive at 1-, 2-, and 3-years were 61, 31, and 4%, respectively, and median survival and median time to progression were 16.8 months (0.5 to 46.4 +months) and 7.2 months (1.6 to 40.6 + months). There were two CRs and 14 PRs (response rate 29.6%). Cisplatin and intravenous vinorelbine is a highly active regimen in MPM with a response rate and survival comparable to the most active regimens so far reported

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte
    • 

    corecore