
SO F TWAR E N EWS UPDA T E S

eQE: An open-source density functional embedding
theory code for the condensed phase

Alessandro Genova1 | Davide Ceresoli1,2 | Alisa Krishtal1 | Oliviero Andreussi3 |

Robert A. DiStasio Jr4 | Michele Pavanello1

1Department of Chemistry, Rutgers

University, Newark, New Jersey 07102

2Istituto di Scienze e Tecnologie Molecolari

CNR c/o Dipartimento di Chimica,

Universit�a degli studi di Milano, via Golgi 19,

20133 Milano, Italy

3Theory and Simulations of Materials

(THEOS) and National Centre for

Computational Design and Discovery of

Novel Materials (MARVEL), Institute of

Computational Studies, �Ecole Polytechnique

F�ed�erale de Lausanne, Station 12, Lausanne

CH-1015, Switzerland

4Department of Chemistry and Chemical

Biology, Cornell University, Ithaca, New York

14853

Correspondence

Michele Pavanello, Department of

Chemistry, Rutgers University, Newark, NJ

07102.

Email: m.pavanello@rutgers.edu

Funding information

R.D. is grateful for financial support

through a startup grant from Cornell

University. M.P. gratefully acknowledges

the donors of the American Chemical

Society Petroleum Research Fund (grant

number 54063-DNI6) for partial support of

this research and Rutgers University-

Newark for startup funds and the contin-

ued support of Hackathon workshops. This

material is based on work supported by the

National Science Foundation under Grant

No. CHE-1553993 (M.P.). This research

used resources of the Argonne Leadership

Computing Facility at Argonne National

Laboratory, which is supported by the

Office of Science of the U.S. Department

of Energy under Contract No. DE-AC02-

06CH11357.

Abstract
In this work, we present the main features and algorithmic details of a novel implementation of

the frozen density embedding (FDE) formulation of subsystem density functional theory (DFT)

that is specifically designed to enable ab initio molecular dynamics (AIMD) simulations of large-

scale condensed-phase systems containing 1000s of atoms. This code (available at http://eqe.

rutgers.edu) has been given the moniker of embedded Quantum ESPRESSO (eQE) as it is a gener-

alization of the open-source Quantum ESPRESSO (QE) suite of programs. The strengths of eQE

reside in a hierarchical parallelization scheme that allows for an efficient and fully self-consistent

treatment of the electronic structure (via the addition of an additional DIIS extrapolation layer)

while simultaneously exploiting the inherent symmetries and periodicities in the system (via sam-

pling of subsystem-specific first Brillouin zones and utilization of subsystem-specific basis sets).

While bulk liquids and molecular crystals are two classes of systems that exemplify the utility of

the FDE approach (as these systems can be partitioned into weakly interacting subunits), we show

that eQE has significantly extended this regime of applicability by outperforming standard semilo-

cal Kohn–Sham DFT (KS-DFT) for large-scale heterogeneous catalysts with quite different layer-

specific electronic structure and intrinsic periodicities. eQE features very favorable strong parallel

scaling for a model system of bulk liquid water composed of 256 water molecules, which allows

for a significant decrease in the overall time to solution when compared to KS-DFT. We show that

eQE achieves speedups greater than one order of magnitude (>103) when performing AIMD sim-

ulations of such large-scale condensed-phase systems as: (1) molecular liquids via bulk liquid water

represented by 1024 independent water molecules (3072 atoms with a 25.33 speedup over

KS-DFT), (2) polypeptide/biomolecule solvation via (GLY)6 solvated in (H2O)395 (1230 atoms with a

38.63 speedup over KS-DFT), and (3) molecular crystals via a 3 3 3 3 3 periodic supercell of pen-

tacene (1940 atoms with a 12.03 speedup over KS-DFT). These results represent a significant

improvement over the current state-of-the-art and now enable subsystem DFT-based AIMD simu-

lations of realistically sized condensed-phase systems of interest throughout chemistry, physics,

and materials science.
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1 | INTRODUCTION

The Kohn–Sham (KS) formulation of density functional theory (DFT)[1] is currently the most widely employed electronic structure method in the

fields of chemistry, physics, and materials science. This is largely due to the fact that KS-DFT employing semilocal exchange-correlation (xc) func-

tionals produces models of remarkable accuracy and predictive capability[2] with a relatively low associated computational cost (that in general
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scales as OðN3Þ, with N representing the size of the electronic system). Although the computational complexity associated with KS-DFT is signifi-

cantly lower than the quantum chemical hierarchy of wavefunction-based methodologies, substantial complications arise when performing KS-DFT

calculations on realistically sized systems (e.g., containing 1000s of atoms), and such issues are only compounded when one seeks to perform KS-

DFT-based molecular dynamics.

Efforts to reduce the computational scaling of KS-DFT are currently underway in many research groups and in many different directions,[3–10]

most of which are combining algorithmic advances with the efficient utilization of modern (super)-computer architectures to attain efficient linear-

scaling or OðNÞ implementations of KS-DFT. To do so, such linear-scaling KS-DFT codes exploit nearsightedness in the electronic structure, that is,

the computational savings are achieved by screening some of the one- and two-electron integrals (or equivalently, if such integrals are not employed

in the formalism, an effective cutoff distance is applied to the off-diagonal elements of the one-body reduced density matrix), coupled with multipo-

lar expansions of the interactions between far-field charge densities.

In this work, we present our contribution to these efforts, which focuses on the divide-and-conquer strategy provided by the frozen density

embedding (FDE) formulation of subsystem DFT.[11] In general, we find the FDE approach to be particularly flexible, as the nearsightedness in the

electronic structure (which is often globally imposed on the entire system in linear-scaling approaches) can be naturally tailored on a subsystem

basis. In essence, this intrinsic feature of the FDE approach can be simultaneously exploited to capture potential long-range coherences in the elec-

tronic structure of a given subsystem (e.g., as found in metals and semiconductors) and reduce the associated computational cost when treating rela-

tively localized fragments or subsystems. As such, subsystem DFT is particularly suited to tackle systems for which it is possible to take advantage

FIGURE 1 A realistic model system for the catalytic hydrodesulfurization process in which thiophene interacts with a monolayer of
molybdenum disulfide (MoS2) deposited on a hydroxylated alumina support. The different nature of the electronic structure of each region
induces a layer-specific intrinsic periodicity as exemplified by the band structures plotted on the left. Reproduced with permission from Ref. [12]
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of certain inherent symmetries. For example, consider the hydrodesulfurization model catalyst depicted in Figure 1, in which thiophene molecules

interact with a molybdenum disulfide (MoS2) monolayer deposited on an alumina support. As discussed below (see “Applicability and performance

of eQE” section and Table 1 below), the FDE approach is able to treat each layer of this heterogeneous catalyst as a single subsystem. In this way,

not only can the first Brillouin zones (FBZ) in the x and y directions be sampled on a subsystem basis, but also the nearsightedness of the electronic

structure can be appropriately exploited along the z direction only.

We note in passing here that the theoretical and algorithmic developments in the FDE and linear-scaling DFT communities can be quite com-

plementary, a fact exemplified by the recent work of Andermatt et al.,[13] in which the combination of linear-scaling DFT with FDE enabled a first-

principles-based geometry optimization of the satellite tobacco mosaic virus in solution (a system which contains 10 000s of atoms). Quite simply

put, this calculation would have remained intractable for the foreseeable future without the efficient utilization of the advances in both of these

approaches.

The FDE approach is achieved by partitioning the total supersystem electron density, qðrÞ, as follows:

qðrÞ5
XNS

I

qIðrÞ; (1)

where NS is the number of subsystems chosen. If the partitioning above can be achieved, information regarding the interactions (both static and

dynamic) between the subsystems becomes available in a highly distributed fashion (both in terms of computational FLOPs as well as data input/

output), thereby opening the door to new prospectives for interpreting any physicochemical phenomenon.[14]

The density partitioning in Equation 1 is achieved by FDE via the solution to the following subsystem-specific KS equations,
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with the embedding potential given by
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In this expression, the Coulomb (Hartree) interaction is accounted for exactly while the nonadditive kinetic (Tnadd
s ) and exchange-correlation (Enaddxc )

functionals, defined as F½fqJg� � F½q�2
XNS

J
F½qJ�, are evaluated in terms of approximate density functionals.[11,15–17] Finally, the total energy of the

supersystem is evaluated as:
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where EKeN½qI� is the Coulomb interaction energy between the nuclei of fragment K and the electron density of fragment I and VNN is the nuclear-

nuclear repulsion term. While Equation 4 is probably one of the most common and informative ways to write the total FDE energy expression, cal-

culating the nonadditive Hartree energy, EnaddH , is certainly not efficient and is never done so in practice (as the full Hartree potential and energy are

computed). More details on the calculation of the total FDE energy can be found in appendix 2 of Ref. [18].

FDE and other similar embedding methods have found many advocates in recent years. On the FDE side, the Amsterdam Density Functional (ADF)

code[19] holds perhaps the most celebrated implementation.[20–25] Another notable implementation[26,27] resides in the CP2K code.[28] CASTEP[29]

also has an implementation of FDE[30] which was employed in simulations involving two subsystems, one of which was treated at the correlated

wavefunction level.[31–33] In addition, Turbomole[34] has its own implementation by the Della Sala group.[35–39] We also mention here that other

embedding methods, which can be categorized as exact density embedding, exact orbital embedding, or electrostatic embedding, are now found in

ADF,[40] MOLPRO,[41–45] Q-Chem,[46,47] CP2K,[48] NWChem,[49] and GAMESS.[50]

In this work, we present a novel implementation of the FDE approach that aims at filling the following gap that has persisted over the years,

namely, the absence of a code that: (1) has a proven strong parallel efficiency that consistently outperforms semilocal KS-DFT, (2) has the ability to

TABLE 1 Computational timings and speedups of eQE compared to a KS-DFT reference for the C4H4S on MoS2 on hydroxylated Al2O3 sys-
tem depicted in Figure 1[12]

eQE1 eQE2 eQE3 eQE4 KS-DFT

Speedup 6:23 1:73 1:83 0:93 1:03

Time/SCF cycle (s) 31 113 108 220 195

eQE1: The k-point grids and simulation cells (basis sets) are subsystem-specific, achieving the best performance. eQE2: Fragment-specific simulation
cells (basis sets) but fine k-point grid for all subsystems. eQE3: Supersystem (large) simulation cell (basis set) for all subsystems but subsystem-specific
k-point grids. eQE4: Supersystem (large) simulation cell (basis set) and fine k-point grid for all subsystems, achieving the slowest performance.
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run Ab-Initio Molecular Dynamics (AIMD), and (3) is applicable to periodic systems such as conductors and semiconductors. Since we have incorpo-

rated our implementation into the open-source Quantum ESPRESSO (QE) suite of programs,[51] we dub our code embedded QE or eQE.

In the sections that follow, we present the implementation details of the eQE algorithm and provide the reader with theoretical and algorithmic

strategies employed in its design and construction. This is followed by several illustrative applications which showcase the performance of eQE in

treating large-scale condensed-phase systems of interest which contain 1000s of atoms. We conclude the manuscript with an outline of several

potential research directions which we believe will further increase the range of applicability of subsystem DFT within the eQE framework.

2 | DETAILS OF THE eQE IMPLEMENTATION

In this section, we describe the key details of the eQE implementation. Specifically, we discuss the following five important developments that make

eQE unique and extremely efficient: (1) self-consistency of the electronic structure, (2) guiding the SCF to convergence via the introduction of an

additional DIIS layer, (3) the employed hierarchical parallelization scheme, (4) sampling of the FBZ, and (5) subsystem-specific basis sets.

2.1 | Self-consistency of the electronic structure

One key element of the eQE implementation is that we seek a fully self-consistent field (SCF) coherent with the choice of the underlying electronic

structure theory. This implies that each subsystem density, qI, needs to be self-consistent as well as converged with respect to variation of the other

subsystem densities, fqJg, for J 6¼ I. To achieve this goal, we have adopted a strategy similar to the one employed in the CP2K implementation of

FDE, which prescribes that each subsystem gains knowledge of the other subsystem densities at every SCF cycle.[26] Thus, the KS-like problem in

Equation 2 is run simultaneously for each subsystem.

The SCF is considered converged once all subsystem density errors from one SCF cycle to the next, rFDE, are smaller than a user-defined

threshold. In our experience, a threshold of r<1029 Ry is sufficient for running AIMD simulations that achieve a satisfactory energy conservation in

the NVE ensemble.

2.2 | Guiding the SCF to convergence: An additional DIIS layer

Straightforward implementation of the algorithm described above results in computations that are slower than standard KS-DFT. To achieve a fast

and scalable FDE implementation, our efforts began with taking a closer look at the electron density mixing during the SCF procedure. Specifically,

we have introduced a new and additional DIIS[52] layer that has substantially decreased the time to solution. Depending on the system, we can

achieve a reduction in the number of SCF cycles by up to 50%. This new DIIS layer deals with density mixing at different rates for each of the differ-

ent subsystems and is applied before the subsystem densities are summed through Equation 1 to yield the supersystem density (needed for com-

puting the new potentials for the next SCF cycle).

With qoutI ðnSCFÞ we indicate the electron density of subsystem I available in output after SCF cycle nSCF has completed. qoutI ðnSCFÞ is mixed with

subsystem electron densities of previous SCF cycles employing Broyden density mixing.[53] The density resulting from the Broyden mixing,

qBroydenI ðnSCFÞ, is then mixed with the previous SCF density to generate a new density, qinI ðnSCF11Þ, that will be used to evaluate the KS-DFT poten-

tials of the next SCF cycle as follows

qinI ðnSCF11Þ5bIq
Broyden
I ðnSCFÞ1ð12bIÞqinI ðnSCFÞ: (5)

bI is the Broyden mixing parameter which takes values between 0 and 1. It is typically dependent on the system’s gap (i.e., large/small gaps afford

large/small bI).

In the new DIIS method, bI is made SCF cycle dependent, namely, bIðnSCFÞ, and it is evaluated in the following way for large values of rFDE,

bIðnSCFÞ5bI �max

�
rFDEðnSCFÞ2rIðnSCFÞ

rFDEðnSCFÞ ;0:2

�
; (6)

where rI is the density difference (or error) with the previous cycle for the subsystem density, and rFDEðnSCFÞ5maxIfrIðnSCFÞg. While for low values

of rFDE the original bI is employed.

The effect of this new DIIS layer is such that if one subsystem features large density oscillations from one SCF cycle to the next, its new density

will be mixed with the previous ones using a lower mixing parameter (as compared to the other subsystems).

For the layered system described in Figure 1 and Tables 1 and 2, the number of SCF cycles required for convergence was reduced by up to

50% by the new DIIS procedure depending on the specific FDE implementation (vide infra). For other systems we found a smaller but significant

reduction (e.g., 2 SCF steps are saved on average out of 10 for (H2O)64).
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2.3 | Hierarchical parallelization scheme

The simultaneous solution of Equation 2 provides us with the opportunity to task-parallelize eQE at the subsystem level. The subsystem KS equa-

tions compute new subsystem densities (e.g., qI) at every SCF cycle, which are then summed to yield the supersystem density (q). Given that the

density is an array of low dimensionality, its transfer between subsystems involves relatively low data communication traffic.

The first MPI communicator that we define is the inter_fragment communicator. This communicator links one selected process for each

subsystem (ionode, hereafter) and is mostly used for sharing information about the electron density. The inter_fragment communicator was

inspired by the already existing image parallelization level in QE originally developed for nudged elastic band simulations.[51]

Each subsystem can take advantage of further parallelization. For this we have repurposed the existing intra_image communicator (originally

developed for NEB calculations) to collect all processes that are assigned to a subsystem. These processes are further split into pools, in a way that

is analogous to the standard QE parallelization architecture.

TABLE 2 Number of SCF cycles required to reach convergence for the C4H4S on MoS2 on hydroxylated Al2O3 system. We highlight the
best performance of each eQE flavor in bold.

eQE1 eQE2 eQE3 eQE4

Mixing b50:7

QE-DIIS 38 34 74 87

eQE-DIIS 25 41 33 30

Mixing b50:2

QE-DIIS 31 32 44 60

eQE-DIIS 61 89 85 105

We compare two values of the b mixing parameter as well as the use of the additional DIIS layer in eQE (eQE-DIIS). The eQEx methods are described
in the caption of Table 1.

FIGURE 2 Comparison of QE and eQE MPI stacks. Each square represents a single MPI process. Blue dotted segments represent

intra_image communicators and run along the columns (each representative of a subsystem). The red dashed segments represent
communication across subsystems. Inset (A): The original QE MPI stack. All subsystems are restricted to have the same number of
processes, and each process is part of a communicator with the corresponding process in the other subsystems (with corresponding
topology defined in the inter_image MPI communicator). Inset (B): The new eQE MPI stack. The inter_fragment MPI communicator
links only the first process belonging to each subsystem. As these are important processes, we call them ionode. All subsystems are given
an arbitrary number of processes (as defined by the repurposed intra_image communicator) and the communication between subsystems
is managed exclusively by the ionode set. Distributed quantities, such as densities and potentials, are transmitted across subsystems by
first collecting the quantity on each ionode (through the intra_image communicator corresponding to a given subsystem), broadcasting it
across the ionode set, and then redistributing it across the intra_image communicators. The role of the large_comm communicator is
to compute potentials corresponding to the supersystem density (i.e., the sum of the subsystem densities) using all available processes
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Figure 2 highlights the flexible and hierarchical parallelization strategy employed in eQE. Inset (A) of the figure depicts the parallelization

strategy in the native QE code for nudged elastic band simulations. This preexisting strategy is problematic for subsystem DFT approaches, as each

subsystem (denoted by the columns in the diagram) is forced to use the same number of processes. This of course is not ideal in those cases in

which one subsystem is much larger than the others in terms of the number of valence electrons.

Inset (B) of Figure 2 depicts the parallelization strategy in eQE. The clear advantage over the strategy in inset (A) is the fact that the new MPI

stack provides us with enough flexibility to assign a subsystem-specific number of MPI processes.

The new eQE MPI stack was designed to maximize speed while retaining as much flexibility as possible. For this reason, we also created the

MPI communicator large_comm, which collects up to all available MPI processes to calculate potentials associated with the supersystem density,

q. For some architectures (e.g., those with relatively slow internode connectivity) the large_comm communicator can be disabled by running eQE

with the -nfp flag, which stands for “no fancy parallelization.” Experts can redefine large_comm depending on the specific computer architecture

and only include the portion of available MPI processes that best exploits the available network architecture.

The number of MPI processes assigned to a given subsystem can be specified in the fragments_procs.in file, which needs to be

copied into the execution folder before runtime. More specifically, line n of fragment_procs.in contains the desired number of MPI processes

for subsystem n.

2.4 | Sampling of the FBZ

Figure 1 suggests that the FBZ of molecular systems and insulators can be sampled with fewer k-points than the FBZ of semiconductors and

insulators. That is, molecular systems can be treated as nonperiodic embedded systems.[27] In a recent work,[13] we showed that it is possible to

assign a set of k-points to each subsystem to sample the corresponding FBZ, and this number can be chosen according to the nature of the

electronic structure of the subsystem. This finding allows us to represent each subsystem band with the smallest number of k-points needed to

reach a target accuracy.

The k-point sampling in eQE is read from input via the K_POINT card. As each subsystem has its own input file, the individual K_POINT cards

can be specified accordingly.

2.5 | Subsystem-specific basis sets

Another aspect where the true potential of eQE is revealed resides in the definition of subsystem-specific basis sets. Due to the locality of the elec-

tronic structure of each subsystem, there is no need to use the entire plane wave set associated with the native simulation cell. Using subsystem-

based basis sets (also called monomer basis sets in the literature) is an important step for practical implementations of methods that exploit locality,

such as subsystem DFT. In the literature, subsystem-based basis set implementations of FDE are indicated by the acronym FDE(m), while FDE(s)

indicates that the supersystem basis set is used for all subsystems.[20] While achieving this goal is (at least on paper) relatively straightforward when

atom-centered basis sets are employed, the fact that QE includes periodic boundary conditions and employs an originless plane-wave (PW) basis

set, presents us with a challenge. If all of the NS subsystems are represented on the same supersystem simulation cell and share the same kinetic

energy cutoff in the PW expansion, the code would thus need to solve NS coupled KS-like problems in the large (supersystem) basis set. This would

significantly slow down the procedure even when compared to semilocal KS-DFT for the supersystem and defeat the purpose of using the subsys-

tem approach. Hence, one way to employ subsystem-specific basis sets is to define smaller simulation cells whose PWs (the number of which is

significantly reduced compared to the set associated with the native supersystem cell) are employed in the expansion of the subsystem orbitals or

bands (see Figure 3). To achieve this goal, in eQE, smaller and subsystem-centered cells are “carved out” of the native cell and used only to expand

the subsystem molecular orbitals (i.e., bands or waves). The cells are allowed to overlap so that the nonadditive potentials can be computed with no

loss of accuracy.

In eQE, each subsystem lattice vector can be scaled independently from the others by assigning a value less than 1.0 to the keyword

fde_cell_split(n), with n51, 2, 3. The subsystem cells are then generated by scaling the three lattice vectors of the supersystem cell by the

values of fde_cell_split(n) in such a way that the grid points of each subsystem cell are imposed to match exactly with corresponding points

in the supersystem cell. This allows us to efficiently (and exactly) transfer density and potentials in real space back and forth between the subsystem

and supersystem cells rather than performing more expensive (and less accurate) interpolation schemes. As an illustrative example of how the

subsystem cell approach is employed in eQE, consider the computation of the total electron density. This fundamental task in subsystem DFT is

computed through Equation 1 and a snippet of the corresponding algorithm in eQE is provided in the Supporting Information (see Figure S1).

Iterative schemes to diagonalize the Hamiltonian for a few selected roots only (i.e., Lanczos-based approaches) are commonly employed in

condensed-phase SCF algorithms and their complexity is proportional to the square of the simulation cell volume. As such, it is immediately clear

that the subsystem-specific simulation cell (or subsystem-specific basis set) approach described above allows for a significant reduction in the com-

putational cost and scaling of the diagonalization routine (see Section “Applicability and performance of eQE” for timings that compare the supersys-

tem versus subsystem-specific basis set).
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There are many types of condensed-phase systems for which such a subsystem-specific cell approach is useful. For example, simulations of

molecular liquids, such as water, have been carried out (vide infra and Figure 3). Generally speaking, the subsystem-specific cell approach is useful in

cases where the periodicity of a subsystem is less than or equal to two dimensions. The case of slabs (see e.g., the system depicted in Figure 1) is

important as the simulation cell can be reduced in the vertical direction, effectively reducing the amount of vacuum that needs to be considered in

the molecular orbital expansion and therefore speeding up the calculation considerably (see Figure 3 and Table 1).

2.6 | Subsystem-specific spin

One of the aims of an embedding code is to be able to treat radical species in general environments that can be either open- or closed-shell. Thus,

eQE has been designed to provide this flexibility and allows one to treat closed-shell subsystems embedded in open-shell environments and vice

versa.[54] This is achieved using two keywords: fde_nspin and nspin. The general case has an open-shell supersystem density, achieved with

fde_nspin52, while the spin of the individual subsystems can be set as either closed- or open-shell by setting nspin to 1 or 2, respectively.

Noncollinear spin options are not yet supported in eQE.

3 | APPLICABILITY AND PERFORMANCE OF THE eQE IMPLEMENTATION

3.1 | Periodic systems

We have tested the applicability of eQE employing standard GGA nonadditive kinetic energy functionals in the definition of the FDE energy func-

tional and the embedding potential. We have considered an array of periodic systems and first assessed the performance of the FDE method in

eQE as compared to standard (supersystem-based) semilocal KS-DFT in QE. In agreement with previous studies employing semilocal nonadditive

functionals, we found that the discrepancies between FDE and KS-DFT increase as the overlap in the inter-subsystem densities increases.[18] For

example, when two perylene diimide molecules are stacked on top of a Au(111) surface, the interaction is well characterized by FDE. Conversely,

when molecular systems are placed on top of reactive metal surfaces (e.g., water on Pt and methane on Pd) FDE reproduces the electronic structure

of only those conformations that do not require substantial hybridization of the molecular orbitals with the bands on the respective metal.[18]

Arguably, employing local nonadditive energy functionals is not an ideal practice. The local density approximation leads to incorrect long-range

behavior of the functionals (both the kinetic energy and the exchange–correlation). Regarding the nonadditive correlation functional, several groups

have proposed solutions. Kevorkyants et al.[55] and Sinha etal.[56] have developed a fluctuation-dissipation theorem adiabatic connection formalism

based on subsystem TDDFT that replaces the semilocal nonadditive correlation with a fully nonlocal (and in principle exact) RPA-like nonadditive

FIGURE 3 Graphical depiction of the scheme utilized for handling the PW expansion of subsystem molecular orbitals. Small, subsystem-
centered cells are “carved out” of the supersystem cell and used to expand the subsystem molecular orbitals only. The subsystem cells are
allowed to overlap so that the nonadditive potentials can be computed accurately. To ensure grid point matching in the subsystem and
supersystem cells, there are some constraints in the choice of the scaling factors, fde_cell_split(n). Inset (A) depicts liquid water, a
system made of nonperiodic subsystems, while inset (B) depicts the same system as in Figure 1 but with a gold substrate. For (B) the cells
of the periodic subsystems (Au and MoS2) can be reduced along the z-direction. The arrows in (B) depict the relative lengths of the various
cells with the longest being associated with the supersystem cell
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correlation functional. This led to as accurate binding energies of weakly bonded molecular dyads as supersystem RPA [e.g., mean unsigned errors

of<0.5 kcal/mol against CCSD(T) on the S22 set[57,58]]. Beyhan[59] also proposed a Grimme-like long-range correction to the nonadditive correla-

tion energy which led to much improved interaction energies. To account for dispersion interactions between subsystems, eQE can include London

dispersion forces as implemented in the main QE code base. Although this has not yet been benchmarked for accuracy, it is a functionality available

to the user.

In terms of timings, we summarize the computational speedups found from an eQE calculation of the complex catalyst system depicted in Fig-

ure 1 against standard supersystem-based KS-DFT in Table 1. All timings calculations were carried out on 80 CPUs distributed across nodes of dual

10-core E5-2680v2 Ivy Bridge 2.80 GHz processors. Comparison with KS-DFT shows that after eQE is optimized by the concurrent use of

subsystem-specific k-point sampling and basis sets, the timing for one SCF cycle drops from 195s to 31s. As expected, a naïve implementation of

FDE (i.e., employing a fine k-point grid for all subsystems and not including subsystem-based basis sets) leads to poor timings even in comparison to

KS-DFT.

In Table 2, we see that including the additional DIIS layer in eQE, that is, eQE-DIIS, for subsystem-specific mixing of the electron densities helps

reduce the number of SCF cycles required to reach self-consistency in all cases but one (eQE2, i.e., fragment-specific simulation cells and fine k-point

grid for every subsystem). The additional eQE-DIIS layer performs best when the density mixing parameter is large (e.g., bI50:7).

3.2 | Molecular periodic systems (liquids and crystals)

To assess the ability of eQE to model molecular periodic systems, we have considered AIMD simulations of liquid water represented by a periodic

box containing 64 and 256 water molecules in the NVT ensemble in a previous study.[54] For these systems, we have demonstrated that eQE repro-

duces the main features of the structure and dynamics of liquid water at room temperature, provided that an accurate nonadditive kinetic energy

functional such as revAPBEK[37] is employed. In general, we obtained good agreement with experiment for the OAO and OAH radial distribution

functions, as well as the OAOAO angular distribution function within the first solvation shell. In Ref. [54], we also showed that eQE correctly repro-

duces the cuts of the potential energy surface of the water dimer. In Ref. [54], we further determined the ability of eQE to reproduce forces from

finite differences calculations. In this work, we further analyze the ability of eQE to conserve energy in NVE dynamics. In the production run of the

water (H2O)256 dynamics carried out in Ref. [54] only one velocity rescaling event took place. This provided us with the opportunity to estimate

energy drift and fluctuations. Linear fitting of the energy between velocity rescaling events yields an energy drift of 131024 kcal/mol/ps per water

molecule, which corresponds to 531023 K/dof/ps, and a standard deviation (fluctuations) of 831022 K/dof. Drifts reported by Marx and Hutter on

table 2.6 of Ref. [28] for BO dynamics of water are 3:331022 K/dof/ps with a standard deviation (fluctuations) of 1:1331021 K/dof. Thus, the

energy drift of eQE is very low and should be considered satisfactory. The fluctuations are expected to be reduced in eQE compared to Ref. [28]

due to the larger number of water molecules considered in the eQE simulation (256 molecules) compared to the benchmark data (32 molecules).

We have also demonstrated that it is possible to carry out AIMD simulations using eQE on systems with constrained spin on selected subsys-

tems (diabatic dynamics). As an example, we studied the OH· radical system solvated in (H2O)63. The spin was constrained to be localized on the

radical throughout 20ps of dynamics.[54] Although more extensive testing is required to fully assess the eQE approach in radical systems, our inter-

nal tests and this OH· dynamics study point to the ability of eQE to carry out diabatic dynamics with localized spins and charges on a single

FIGURE 4 (A) KS-DFT spin-density. (B) eQE spin-density. AIMD snapshot of OH· in (H2O)63 carried out with QE and eQE. The spin-
density isosurface plots (cutoff of 1023) obtained from eQE and standard supersystem-based KS-DFT in QE are compared. Note that eQE
produces a (correctly) localized spin-density on the OH· radical. PBE was used for both QE and eQE, and additionally, the LC94[60] nonaddi-
tive kinetic energy functional was employed in eQE
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subsystem. In Figure 4, we compare the spin-density obtained from a semilocal KS-DFT calculation with one obtained from eQE, in which the spin-

density was constrained to remain localized on the OH· subsystem.

In terms of time to solution, we present newly obtained computational timings and parallel scaling in Table 3 and Figure 5, respectively, for

a system composed of 256 water molecules. The main conclusion here is that eQE performs about four times faster than semilocal KS-DFT for

this system when 256 MPI processes are employed and the parallelization scheme is optimized (all calculations are carried out on 256 CPUs

distributed across nodes of dual 10-core E5-2680v2 Ivy Bridge 2.80 GHz processors). Figure 5 further shows that eQE is better able to utilize a

larger number of employed processes than QE (i.e., a more favorable strong scaling performance), widening the gap with KS-DFT in the large

process limit.

The additional DIIS layer, which was useful in bringing down the number of SCF cycles to solution in the periodic system of Figure 1, did not

provide an equivalently appreciable speedups for bulk water. For (H2O)64, we have assessed the DIIS on 10 AIMD steps and found that DIIS on

FIGURE 5 Strong parallel scaling of eQE for a system composed of 256 water molecules as a function of the number of MPI processes
employed. The dashed lines represent the ideal speedups for eQE (red) and supersystem KS-DFT (blue). The 1.03 reference corresponds to
the supersystem KS-DFT baseline on 64 MPI processes

TABLE 3 Computational timings for an eQE calculation on (H2O)256 as compared to supersystem-based semilocal KS-DFT in QE

eQE1 eQE2 eQE3 eQE4 KS-DFT

Speedup 4:13 2:93 1:93 0:13 1:03

Time/SCF cycle (s) 115 161 242 45001 469

All 256 subsystems were computed at the C-point. eQE1: Fully optimized eQE employing subsystem specific basis sets, and calculating the GGA xc
and kinetic potentials of the total density only once on the supersystem cell utilizing the large_comm communicator (i.e., “fancy parallelization”).
eQE2: GGA xc and kinetic potentials of the supersystem density are computed independently by each subsystem on the small, subsystem-specific cells
with the intra_image communicator. eQE3: In addition to eQE2, the “no fancy parallelization” flag, -nfp, is invoked (i.e., no use of large_comm). eQE4:
In addition to eQE3 the supersystem PW basis is employed to expand the KS orbitals of each subsystem, predictably further slowing down the calculation.

FIGURE 6 Graphical depictions (to scale) of three large-scale condensed-phase systems employed to investigate the efficiency of eQE. (A):
Bulk liquid water represented by 1024 independent water molecules. (B): (GLY)6 solvated in (H2O)395 (C): A 3 3 3 3 3 periodic supercell of
pentacene
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average improves (2 SCF steps per MD step, or 20% of the average number of SCF cycles, are saved with DIIS). Instead, for water 256 at the geom-

etry we considered, we found no improvement (11 SCF steps were recorded with or without the new DIIS layer).

In this work, we have also investigated the efficiency of eQE compared to standard KS-DFT in QE for three large-scale condensed-phase sys-

tems of interest, each containing over 1000 atoms: (1) MOLECULAR LIQUIDS via bulk liquid water represented by 1024 independent water molecules

(containing 3072 atoms, see Figure 6A), (2) POLYPEPTIDE/BIOMOLECULE SOLVATION via (GLY)6 solvated in (H2O)395 (containing 1230 atoms, see Figure 6B),

and (3) MOLECULAR CRYSTALS via a 3 3 3 3 3 periodic supercell of pentacene (containing 1940 atoms, see Figure 6C).

In Table 4, we report the computational timings for these three large-scale condensed-phase systems. The most important aspect of this data is

that eQE surpasses KS-DFT by more than one-order-of-magnitude for all of these realistic condensed-phase systems. In addition, we note that differ-

ent systems feature different levels of speedup. This is because the subsystems have different sizes in these three cases (e.g., pentacene is a large mol-

ecule compared to water). Generally speaking, eQE will be less efficient if any of the subsystems approach the size of the supersystem simulation cell.

4 | CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have introduced a new density embedding code called eQE, which is based on the open-source QE software package. This code is the

result of four years of collaborative work, and can now be utilized by the wider chemistry and condensed matter physics communities to perform sub-

system DFT-based calculations and AIMD simulations on large-scale condensed-phase systems of interest (available at http://eqe.rutgers.edu).

During this time, we have tested eQE for a wide variety of different condensed-phase systems of varying sizes and compositions and shown

that eQE can be efficiently utilized to treat any system composed of weakly interacting subsystems. Furthermore, eQE can do so as accurately as

standard supersystem-based KS-DFT as long as the subsystem electron densities do not strongly overlap.

One of the aims of this work was to introduce code developers to eQE. We have therefore provided them with a description of the salient

ideas behind the eQE code, from parallelization strategies to the details of the generation of subsystem-specific basis sets. In addition, we have pro-

vided the potential eQE user with compelling computational timings and benchmarks, which undeniably show the superior performance of the hier-

archical parallelization framework of eQE when compared to mainstream parallel KS-DFT.

There are many exciting future directions for eQE. On a technical note, we would like eQE to be as general as possible, and thus it should be

able to employ any available pseudopotential type. Unfortunately, the current implementation is only general for ultrasoft pseudopotentials (US-PP).

Norm-conserving pseudopotentials (NC-PP) can be used, with the stipulation that they include the core density in the pseudopotential file. As a

result, we have seldom used NC-PP in the applications presented above. PAW-PP are also not supported yet.

Two limitations of eQE need to be addressed. One is related to the computation of exact exchange, and the other is related to the Hartree

potential. As of now, eQE does not support the use of hybrid functionals. However, efficient real-space Poisson solvers are now available[61,62] and

can be included in eQE to efficiently compute the Hartree–Fock exchange potential. In addition, the Hartree potential is computed exactly from the

total density (i.e., with the v_h routine of QE). However, methods based on the Fast Multipole Method (FMM)[63] can be implemented to further

decrease computational complexity and improve timings, specifically for simulations of molecular liquids and crystals.

Other, more methodological avenues of improvement are related to the nonadditive exchange–correlation and kinetic energy functionals. For

the nonadditive correlation, several avenues have already been explored based on Grimme-like corrections[58] or on RPA-like formalisms[55,56] which

will be soon included in eQE. For the kinetic energy, the problem is much more complex and has no straightforward solution. The current eQE

release only features LDA and GGA nonadditive kinetic energy functionals. However, several nonlocal kinetic energy functionals have been pro-

posed and are considered to be much more accurate than currently available GGA functionals.[64–68] In the next release of eQE, we will include the

possibility of using nonlocal nonadditive kinetic energy functionals for improved accuracy.

Another potential application of eQE is in the description of excited states. Recently, we have made progress in this direction[14,69,70] and

expect to release the real-time time-dependent DFT version of eQE in the not too distant future.

In conclusion, the simulations that we have carried out in this work illustrate eQE’s improvement over the current state-of-the-art, thereby pav-

ing the way to subsystem DFT-based AIMD simulations of realistically sized condensed-phase systems containing 1000s of atoms. As such, we

TABLE 4 Computational timings for eQE calculations on the three large-scale condensed-phase systems in Figure 6

System # of Atoms Time eQE1 (s) Time KS-DFT (s) Speedup

(H2O)1024 3072 115 2917 25.33

(GLY)6 in (H2O)395 1230 1462 56 405 38.63

Pentacene 33333 1940 7156 85 718 12.03

Timings are compared against semilocal KS-DFT of the supersystem and refer to the total CPU time needed to perform 10 steps of AIMD (except for
the liquid water system). For (H2O)1024, the speedup was evaluated for the first 10 SCF cycles only (as we were unable to converge the SCF with
KS-DFT in this system despite a tremendous amount of effort).
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hope that the eQE community of users and developers will continue to grow, enabling us to treat future systems of importance throughout chemis-

try, physics, and materials science.
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