2,429 research outputs found
Origin and Evolution of Deep Brain Stimulation
This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the eighteenth century and was subsequently used by the early twentieth century, even for therapeutic purposes. In mid-twentieth century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, deep brain stimulation (DBS) was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinsonâs disease, essential tremor, and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Touretteâs syndrome, psychiatric diseases (depression, obsessiveâcompulsive disorder), some kinds of headache, eating disorders, and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results
Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds
By means of two- and three-dimensional particle-in-cell simulations, we
investigate the process of driven magnetic reconnection at the termination
shock of relativistic striped flows. In pulsar winds and in magnetar-powered
relativistic jets, the flow consists of stripes of alternating magnetic field
polarity, separated by current sheets of hot plasma. At the wind termination
shock, the flow compresses and the alternating fields annihilate by driven
magnetic reconnection. Irrespective of the stripe wavelength "lambda" or the
wind magnetization "sigma" (in the regime sigma>>1 of magnetically-dominated
flows), shock-driven reconnection transfers all the magnetic energy of
alternating fields to the particles, whose average Lorentz factor increases by
a factor of sigma with respect to the pre-shock value. In the limit
lambda/(r_L*sigma)>>1, where r_L is the relativistic Larmor radius in the wind,
the post-shock particle spectrum approaches a flat power-law tail with slope
around -1.5, populated by particles accelerated by the reconnection electric
field. The presence of a current-aligned "guide" magnetic field suppresses the
acceleration of particles only when the guide field is stronger than the
alternating component. Our findings place important constraints on the models
of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets.Comment: 25 pages, 14 figures, movies available at
https://www.cfa.harvard.edu/~lsironi/sironi_movies.tar ; in press, special
issue of Computational Science and Discovery on selected research from the
22nd International Conference on Numerical Simulation of Plasma
Do couples who use fertility treatments divorce more? Evidence from the US National Survey of Family Growth
BACKGROUND Undertaking fertility treatment is a stressful process and may lead to couple instability, but high levels of couple satisfaction have usually been observed during or just after treatment. However, the evidence on divorce is scarce. OBJECTIVES We investigated the association between the use of a wide range of fertility treatments and marital dissolution in a representative sample of American women in their first marriage. METHODS We applied discrete-time event history analysis to data from the US National Survey of Family Growth (NSFG), collected from 2002 through 2013â2015, to compare divorce rates among women who experienced successful treatments or unsuccessful treatments and a natural birth or no birth within the marriage (N = 13,784). RESULTS Women who used fertility treatments had a lower risk of divorce up to 20 years after the marriage, compared to the other groups. The probability was especially low when the treatment was successful, but women who did not conceive after the treatment also showed a lower risk of divorce. CONCLUSION We found evidence that undertaking fertility treatment is associated with a lower risk of divorce, suggesting that it might strengthen couplesâ relationships. The sociodemographic characteristics of couples undertaking treatment partly explained the association, but we were not able to control for the quality of the relationship before the treatment, which is likely to play a role
Radio light curves during the passage of cloud G2 near Sgr A*
We calculate radio light curves produced by the bow shock that is likely to
form in front of the G2 cloud when it penetrates the accretion disk of Sgr A*.
The shock acceleration of the radio-emitting electrons is captured
self-consistently by means of first-principles particle-in-cell simulations. We
show that the radio luminosity is expected to reach maximum in early 2013,
roughly a month after the bow shock crosses the orbit pericenter. We estimate
the peak radio flux at 1.4 GHz to be 1.4 - 22 Jy depending on the assumed orbit
orientation and parameters. We show that the most promising frequencies for
radio observations are in the 0.1<nu<1 GHz range, for which the bow shock
emission will be much stronger than the intrinsic radio flux for all the models
considered.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons
We investigate the acceleration of light particles in perpendicular shocks
for plasmas consisting of a mixture of leptonic and hadronic particles.
Starting from the full set of conservation equations for the mixed plasma
constituents, we generalize the magneto-hydrodynamical jump conditions for a
multi-component plasma, including information about the specific adiabatic
constants for the different species. The impact of deviations from the standard
model of an ideal gas is compared in theory and particle-in-cell simulations,
showing that the standard-MHD model is a good approximation. The simulations of
shocks in electron-positron-ion plasmas are for the first time
multi-dimensional, transverse effects are small in this configuration and 1D
simulations are a good representation if the initial magnetization is chosen
high. 1D runs with a mass ratio of 1836 are performed, which identify the
Larmor frequency \omega_{ci} as the dominant frequency that determines the
shock physics in mixed component plasmas. The maximum energy in the non-thermal
tail of the particle spectra evolves in time according to a power-law
proportional to t^\alpha with \alpha in the range 1/3 < \alpha < 1, depending
on the initial parameters. A connection is made with transport theoretical
models by Drury (1983) and Gargate & Spitkovsky (2011), which predict an
acceleration time proportional to \gamma and the theory for small wavelength
scattering by Kirk & Reville (2010), which predicts a behavior rather as
proportional to \gamma^2. Furthermore, we compare different magnetic field
orientations with B_0 inside and out of the plane, observing qualitatively
different particle spectra than in pure electron-ion shocks
A dual output polarimeter devoted to the study of the Cosmic Microwave Background
We have developed a correlation radiometer at 33 GHz devoted to the search
for residual polarization of the Cosmic Microwave Background (CMB). The two
instruments`s outputs are linear combination of two Stokes Parameters (Q and U
or U and V). The instrument is therefore directly sensitive to the polarized
component of the radiation (respectively linear and circular). The radiometer
has a beam-width oif 7 or 14 deg, but it can be coupled to a telescope
increasing the resolution. The expected CMB polarization is at most a part per
milion. The polarimeter has been designed to be sensitive to this faint signal,
and it has been optimized to improve its long term stability, observing from
the ground. In this contribution the performances of the instrument are
presented, together with the preliminary test and observations.Comment: 12 pages, 6 figures, in print on the Proc. SPIE Conf. - August 200
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
TRIS II: search for CMB spectral distortions at 0.60, 0.82 and 2.5 GHz
With the TRIS experiment we have performed absolute measurements of the sky
brightness in a sky circle at at the frequencies
0.60, 0.82 and 2.5 GHz. In this paper we discuss the techniques used to
separate the different contributions to the sky emission and give an evaluation
of the absolute temperature of the Cosmic Microwave Background. For the
black-body temperature of the CMB we get: at GHz; at GHz; at
GHz. The first error bar is statistic (1) while the second
one is systematic. These results represent a significant improvement with
respect to the previous measurements. We have also set new limits to the
free-free distortions, ,
and slightly improved the Bose-Einstein upper limit, , both at 95% confidence level.Comment: accepted for publication in The Astrophysical Journa
- âŠ