397 research outputs found

    <i>Schizosaccharomyces pombe</i> Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex

    Get PDF
    ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEClike complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation

    RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells

    Get PDF
    H2B ubiquitylation has been implicated in active transcription but is not well understood in mammalian cells. Beyond earlier identification of hBRE1 as the E3 ligase for H2B ubiquitylation in human cells, we now show (1) that hRAD6 serves as the cognate E2-conjugating enzyme; (2) that hRAD6, through direct interaction with hPAF-bound hBRE1, is recruited to transcribed genes and ubiquitylates chromatinized H2B at lysine 120; (3) that hPAF-mediated transcription is required for efficient H2B ubiquitylation as a result of hPAF-dependent recruitment of hBRE1-hRAD6 to the Pol II transcription machinery; (4) that H2B ubiquitylation per se does not affect the level of hPAF-, SII-, and p300-dependent transcription and likely functions downstream; and (5) that H2B ubiquitylation directly stimulates hSET1-dependent H3K4 di- and trimethylation. These studies establish the natural H2B ubiquitylation factors in human cells and also detail the mechanistic basis for H2B ubiquitylation and function during transcription

    New Insights into the Control of HIV-1 Transcription: When Tat Meets the 7SK snRNP and Super Elongation Complex (SEC)

    Get PDF
    Recent studies aimed at elucidating the mechanism controlling HIV-1 transcription have led to the identification and characterization of two multi-subunit complexes that both contain P-TEFb, a human transcription elongation factor and co-factor for activation of HIV-1 gene expression by the viral Tat protein. The first complex, termed the 7SK snRNP, acts as a reservoir where active P-TEFb can be withdrawn by Tat to stimulate HIV-1 transcription. The second complex, termed the super elongation complex (SEC), represents the form of P-TEFb delivered by Tat to the paused RNA polymerase II at the viral long terminal repeat during Tat transactivation. Besides P-TEFb, SEC also contains other elongation factors/co-activators, and they cooperatively stimulate HIV-1 transcription. Recent data also indicate SEC as a target for the mixed lineage leukemia (MLL) protein to promote the expression of MLL target genes and leukemogenesis. Given their roles in HIV-1/AIDS and cancer, further characterization of 7SK snRNP and SEC will help develop strategies to suppress aberrant transcriptional elongation caused by uncontrolled P-TEFb activation. As both complexes are also important for normal cellular gene expression, studying their structures and functions will elucidate the mechanisms that control metazoan transcriptional elongation in general

    Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer

    Get PDF
    Change in gene expression associated with pancreatic cancer could be attributed to the variation in histone posttranslational modifications leading to subsequent remodeling of the chromatin template during transcription. However, the interconnected network of molecules involved in regulating such processes remains elusive. hPaf1/PD2, a subunit of the human PAF-complex, involved in the regulation of transcriptional elongation has oncogenic potential. Our study explores the possibility that regulation of histone methylation by hPaf1 can contribute towards alteration in gene expression by nucleosomal rearrangement. Here, we show that knockdown of hPaf1/PD2 leads to decreased di- and tri-methylation at histone H3 lysine 4 residues in pancreatic cancer cells. Interestingly, hPaf1/PD2 colocalizes with MLL1 (Mixed Lineage Leukemia 1), a histone methyltransferase that methylates H3K4 residues. Also, a reduction in hPaf1 level resulted in reduced MLL1 expression and a corresponding decrease in the level of CHD1 (Chromohelicase DNA-binding protein 1), an ATPase dependent chromatin remodeling enzyme that specifically binds to H3K4 di and trimethyl marks. hPaf1/PD2 was also found to interact and colocalize with CHD1 in both cytoplasmic and nuclear extracts of pancreatic cancer cells. Further, reduced level of CHD1 localization in the nucleus in hPaf1/PD2 Knockdown cells could be rescued by ectopic expression of hPaf1/PD2. Micrococcal nuclease digestion showed an altered chromatin structure in hPaf1/PD2-KD cells. Overall, our results suggest that hPaf1/PD2 in association with MLL1 regulates methylation of H3K4 residues, as well as interacts and regulates nuclear shuttling of chromatin remodeling protein CHD1, facilitating its function in pancreatic cancer cells

    The Msx1 Homeoprotein Recruits G9a Methyltransferase to Repressed Target Genes in Myoblast Cells

    Get PDF
    Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development

    Cell-Cycle Dependence of Transcription Dominates Noise in Gene Expression

    Get PDF
    The large variability in mRNA and protein levels found from both static and dynamic measurements in single cells has been largely attributed to random periods of transcription, often occurring in bursts. The cell cycle has a pronounced global role in affecting transcriptional and translational output, but how this influences transcriptional statistics from noisy promoters is unknown and generally ignored by current stochastic models. Here we show that variable transcription from the synthetic tetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle. Real-time measurements of fluorescent protein at high expression levels indicate tetO promoters increase transcription rate ~2-fold in S/G2/M similar to constitutive genes. At low expression levels, where tetO promoters are thought to generate infrequent bursts of transcription, we observe random pulses of expression restricted to S/G2/M, which are correlated between homologous promoters present in the same cell. The analysis of static, single-cell mRNA measurements at different points along the cell cycle corroborates these findings. Our results demonstrate that highly variable mRNA distributions in yeast are not solely the result of randomly switching between periods of active and inactive gene expression, but instead largely driven by differences in transcriptional activity between G1 and S/G2/M.GM095733BBBE 103316MIT Startup Fun

    Ell3 Enhances Differentiation of Mouse Embryonic Stem Cells by Regulating Epithelial-Mesenchymal Transition and Apoptosis

    Get PDF
    Ell3 is a testis-specific RNA polymerase II elongation factor whose cellular function is not clear. The present study shows that Ell3 is activated during the differentiation of mouse embryonic stem cells (mESCs). Furthermore, Ell3 plays a critical role in stimulating lineage differentiation of mESCs by promoting epithelial-mesenchymal transition (EMT) and suppressing apoptosis. Mouse ESCs engineered to stably express Ell3 were rapidly differentiated compared with control cells either under spontaneous differentiation or neural lineage-specific differentiation conditions. Gene expression profile and quantitative RT-PCR analysis showed that the expression of EMT markers, such as Zeb1 and Zeb2, two major genes that regulate EMT, was upregulated in Ell3-overexpressing mESCs. Remarkably, knockdown of Zeb1 attenuated the enhanced differentiation capacity of Ell3-overexpressing mESCs, which indicates that Ell3 plays a role in the induction of mESC differentiation by inducing EMT. In contrast to Ell3-overexpressing mESCs, Ell3-knock down mESCs could not differentiate under differentiation conditions and, instead, underwent caspase-dependent apoptosis. In addition, apoptosis of differentiating Ell3-knock out mESCs was associated with enhanced expression of p53. The present results suggest that Ell3 promotes the differentiation of mESCs by activating the expression of EMT-related genes and by suppressing p53 expression

    Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)

    Get PDF
    Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor ΞΊB (NF-ΞΊB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer
    • …
    corecore