47 research outputs found
Thermally induced gluten modification observed with rheology and spectroscopies
The protein vital gluten is mainly used for food while interest for non-food applications, like biodegradable materials, increases. In general, the structure and functionality of proteins is highly dependent on thermal treatments during production or modification. This study presents conformational changes and corresponding rheological effects of vital wheat gluten depending on temperature. Dry samples analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermalgravimetric analysis coupled with mass spectrometry (TGA-MS) show surface compositions and conformational changes from 25 to 250 °C. Above 170 °C, XPS reveals a decreased N content at the surface while FTIR band characteristics for β-sheets prove structural changes. At 250 °C, protein denaturation accompanied by a significant mass loss due to dehydration and decarbonylation reactions is observed. Oscillatory measurements of optimally hydrated vital gluten describing network properties of the material show two structural changes along a temperature ramp from 25 to 90 °C: at 56–64 °C, the temperature necessary to trigger structural changes increases with the ratio of gliadin to total protein mass, determined by reversed-phase high performance liquid chromatography (RP-HPLC). At a temperature of 79–81 °C, complete protein denaturation occurs. FTIR confirms the denaturation process by showing band shifts with both temperature steps
The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir.
The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors
Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis
The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention
Actinomycin D induced apoptosis involves the potassium channel Kv1.3
Several cytostatic agents are known to induce apoptosis in T-leukemic cells. Although a variety of studies show the central role of
apoptosis in cytostatic drug-induced cell death, many molecular details require definition. Here, we demonstrate that cells genetically
deficient for the potassium channel Kv1.3 are resistant to apoptosis initiated by the cytostatic drug actinomycin D. Retransfection
of Kv1.3 restores sensitivity of the cells to actinomycin D. Cells lacking Kv1.3 fail to respond to actinomycin D with
DNA fragmentation, release of cytochrome c, and loss of mitochondrial membrane potential (DWm), while cells functionally expressing
Kv1.3 rapidly undergo those changes indicative for apoptosis. The data indicate a central role of the ion channel Kv1.3 in
actinomycin D-triggered apoptosis. 2002 Elsevier Science (USA). All rights reserved
Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis
BackgroundBacterial biofilms are a major obstacle in management of recalcitrant chronic rhinosinusitis. NVC-422 is a potent, fast-acting, broad-spectrum, nonantibiotic, antimicrobial with a new mechanism of action effective against biofilm bacteria in in vitro conditions. The aim of this study was to investigate the safety and efficacy of NVC-422 as local antibiofilm treatment in a sheep model of rhinosinusitis.MethodsAfter accessing and occluding frontal sinus ostia in 24 merino sheep via staged endoscopic procedures, S. aureus clinical isolate was instilled in frontal sinuses. Following biofilm formation, ostial obstruction was removed and sinuses irrigated with 0.1% and 0.5% NVC-422 in 5 mM acetate isotonic saline at pH 4.0. Sheep were monitored for adverse effects and euthanized 24 hours after treatment. Frontal sinuses were assessed for infection and changes in mucosa after the treatment. S. aureus biofilms were identified with Baclight-confocal scanning microscopy protocol and the biofilm biomass assayed by applying the COMSTAT2 program to recorded image stacks.ResultsAfter 2 irrigations with 0.1% NVC-422, S. aureus biofilm biomass was reduced when compared to control sinuses (p = 0.0001), though this effect was variable in samples. NVC-422 0.5% solution irrigations reduced biofilm even more significantly and consistently over all samples (p ConclusionNVC-422 is an effective topical agent against S. aureus biofilms, with dose-dependent efficacy in this animal model of biofilm-associated sinusitis.Deepti Singhal, Andreas Jekle, Dmitri Debabov, Lu Wang, Bez Khosrovi, Mark Anderson, Andrew Foreman, and Peter-John Wormal
In Vivo Evolution of Human Immunodeficiency Virus Type 1 toward Increased Pathogenicity through CXCR4-Mediated Killing of Uninfected CD4 T Cells
The destruction of the immune system by progressive loss of CD4 T cells is the hallmark of AIDS. CCR5-dependent (R5) human immunodeficiency virus type 1 (HIV-1) isolates predominate in the early, asymptomatic stages of HIV-1 infection, while CXCR4-dependent (X4) isolates typically emerge at later stages, frequently coinciding with a rapid decline in CD4 T cells. Lymphocyte killing in vivo primarily occurs through apoptosis, but the importance of apoptosis of HIV-1-infected cells relative to apoptosis of uninfected bystander cells is controversial. Here we show that in human lymphoid tissues ex vivo, apoptosis of uninfected bystander CD4 T cells is a major mechanism of lymphocyte depletion caused by X4 HIV-1 strains but is only a minor mechanism of depletion by R5 strains. Further, X4 HIV-1-induced bystander apoptosis requires the interaction of the viral envelope glycoprotein gp120 with the CXCR4 coreceptor on CD4 T cells. These results emphasize the contribution of bystander apoptosis to HIV-1 cytotoxicity and suggest that in association with a coreceptor switch in HIV disease, T-cell killing evolves from an infection-restricted stage to generalized toxicity that involves a high degree of bystander apoptosis
A novel potassium channel in lymphocyte mitochondria
The margatoxin-sensitive Kv1.3 is the major potassium channel in the plasma membrane of T lymphocytes. Electron microscopy, patch clamp, and immunological studies identified the potassium channel Kv1.3, thought to be localized exclusively in the cell membrane, in the inner mitochondrial membrane of T lymphocytes. Patch clamp of mitoplasts and mitochondrial membrane potential measurements disclose the functional expression of a mitochondrial margatoxin-sensitive potassium channel. To identify unambiguously the mitochondrial localization of Kv1.3, we employed a genetic model and stably transfected CTLL-2 cells, which are genetically deficient for this channel, with Kv1.3. Mitochondria isolated from Kv1.3-reconstituted CTLL-2 expressed the channel protein and displayed an activity, which was identical to that observed in Jurkat mitochondria, whereas mitochondria of mock-transfected cells lacked a channel with the characteristics of Kv1.3. Our data provide the first molecular identification of a mitochondrial potassium conductance
The tyrosine kinase Lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation
Induction of apoptosis is a hallmark of cytostatic drug and radiation-induced cell death in human lymphocytes and lymphoma cells. However, the mechanisms leading to apoptosis are not well understood. We provide evidence that ionizing radiation induces a rapid activation of caspase-8 (FLICE) followed by apoptosis independently of CD95 ligand/receptor interaction. The radiation induced cleavage pattern of procaspase-8 into mature caspase-8 resembled that following CD95 crosslinking and resulted in cleavage of the proapoptotic substrate BID. Overexpression of dominant-negative caspase-8 interfered with radiation-induced apoptosis, Caspase-8 activation by ionizing radiation was not observed in cells genetically defective for the Src-like tyrosine kinase Lck, Cells lacking Lck also displayed a marked resistance towards apoptosis induction upon ionizing radiation. After retransfection of Lck, caspase-8 activation and the capability to undergo apoptosis in response to ionizing radiation was restored. We conclude that radiation activates caspase-8 via an Lck-controlled pathway independently of CD95 ligand expression, This is a novel signaling event required for radiation induced apoptosis in T lymphoma cells
The tyrosine kinase Lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation
Induction of apoptosis is a hallmark of cytostatic drug and radiation-induced cell death in human lymphocytes and lymphoma cells. However, the mechanisms leading to apoptosis are not well understood. We provide evidence that ionizing radiation induces a rapid activation of caspase-8 (FLICE) followed by apoptosis independently of CD95 ligand/receptor interaction. The radiation induced cleavage pattern of procaspase-8 into mature caspase-8 resembled that following CD95 crosslinking and resulted in cleavage of the proapoptotic substrate BID. Overexpression of dominant-negative caspase-8 interfered with radiation-induced apoptosis, Caspase-8 activation by ionizing radiation was not observed in cells genetically defective for the Src-like tyrosine kinase Lck, Cells lacking Lck also displayed a marked resistance towards apoptosis induction upon ionizing radiation. After retransfection of Lck, caspase-8 activation and the capability to undergo apoptosis in response to ionizing radiation was restored. We conclude that radiation activates caspase-8 via an Lck-controlled pathway independently of CD95 ligand expression, This is a novel signaling event required for radiation induced apoptosis in T lymphoma cells