181 research outputs found
The Persistence and Interaction of Multi-Ethnic Settlement Remnants in The Cultural Landscape
The paper deals with remnants of multi-ethnic settlement: their form, interaction and persistence. In the past, the Podlasie region, situated in northeastern Poland, was an area of multi-ethnic settlement. The interaction of cultures brought the emergence of a new, borderland culture. As the years have passed, the memory of the sources of regional and local traditions has disappeared. Elements of ethnic and religious traditions have spread and survived in the material structures of the rural landscape. The most significant traces of cultural interactions and at the same time the remnants of past landscape are high roadside wooden crosses with an additional small iron cross on their top, decorated with the crescent moon and sunbeams. The cross with half-moon has its beginnings in old Christian symbolism, regional history and tradition. The crescent was always accompanied by sunbeams and they meant sun and moon, day and night, Christ and Our Lady. Its material durability appears to be greater than the collective memory of the locals. The roadside wooden crosses embellished with iron crescent cross are an interesting part of regional heritage. The symbol of the crescent was common here for all Christian inhabitants and Tatars, unifying all Podlasie people. This uniting symbol is the most valuable remnant of the interaction of multi-ethnic settlement in the cultural landscape of the Podlasie. These days, the 300 years of tradition falls into oblivion, but regional cultural heritage can be saved through tourism-related product and marketing. In peripheral, economically neglected areas like the study case, the remnants may become an impetus to develop the local economy through recreation and tourism. Furthermore, making new tourism products based on natural and cultural values can be a good opportunity to restore precious elements of the historical landscape
A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer for which treatment options often result in incomplete therapeutic efficacy and long-term side-effects. Interleukin 7 (IL-7) and its receptor IL-7Rα promote T-ALL development and mutational activation of IL-7Rα associates with very high risk in relapsed disease. Using combinatorial phage-display libraries and antibody reformatting, we generated a fully human IgG1 monoclonal antibody (named B12) against both wild-type and mutant human IL-7Rα, predicted to form a stable complex with IL-7Rα at a different site from IL-7. B12 impairs IL-7/IL-7R-mediated signaling, sensitizes T-ALL cells to treatment with dexamethasone and can induce cell death per se. The antibody also promotes antibody-dependent natural killer-mediated leukemia cytotoxicity in vitro and delays T-cell leukemia development in vivo, reducing tumor burden and promoting mouse survival. B12 is rapidly internalized and traffics to the lysosome, rendering it an attractive vehicle for targeted intracellular delivery of cytotoxic cargo. Consequently, we engineered a B12-MMAE antibody-drug conjugate and provide proof-of-concept evidence that it has increased leukemia cell killing abilities as compared with the naked antibody. Our studies serve as a stepping stone for the development of novel targeted therapies in T-ALL and other diseases where IL-7Rα has a pathological role
Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study
Background
Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis.
Methods
We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used.
Results
In postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients.
Conclusions
Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value
The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study
Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors
Correction: The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study
[This corrects the article DOI: 10.1371/journal.pone.0211184.]
Conceptual comparison of constructs as first step in data harmonization: Parental sensitivity, child temperament, and social support as illustrations
This article presents a strategy for the initial step of data harmonization in Individual Participant Data syntheses, i.e., making decisions as to which measures operationalize the constructs of interest - and which do not. This step is vital in the process of data harmonization, because a study can only be as good as its measures. If the construct validity of the measures is in question, study results are questionable as well. Our proposed strategy for data harmonization consists of three steps. First, a unitary construct is defined based on the existing literature, preferably on the theoretical framework surrounding the construct. Second, the various instruments used to measure the construct are evaluated as operationalizations of this construct, and retained or excluded based on this evaluation. Third, the scores of the included measures are recoded on the same metric. We illustrate the use of this method with three example constructs focal to the Collaboration on Attachment Transmission Synthesis (CATS) study: parental sensitivity, child temperament, and social support. This process description may aid researchers in their data pooling studies, filling a gap in the literature on the first step of data harmonization.
•
Data harmonization in studies using combined datasets is of vital importance for the validity of the study results.
•
We have developed and illustrated a strategy on how to define a unitary construct and evaluate whether instruments are operationalizations of this construct as the initial step in the harmonization process.
•
This strategy is a transferable and reproducible method to apply to the data harmonization process
A survey on worries of pregnant women - testing the German version of the Cambridge Worry Scale
Background: Pregnancy is a transition period in a woman's life characterized by increased worries and anxiety. The Cambridge Worry Scale (CWS) was developed to assess the content and extent of maternal worries in pregnancy. It has been increasingly used in studies over recent years. However, a German version has not yet been developed and validated. The aim of this study was (1) to assess the extent and content of worries in pregnancy on a sample of women in Germany using a translated and adapted version of the Cambridge Worry Scale, and (2) to evaluate the psychometric properties of the German version. Methods: We conducted a cross-sectional study and enrolled 344 pregnant women in the federal state of Baden-Wurttemberg, Germany. Women filled out structured questionnaires that contained the CWS, the Spielberger-State-Trait-Anxiety Inventory (STAI), as well as questions on their obstetric history. Antenatal records were also analyzed. Results: The CWS was well understood and easy to fill in. The major worries referred to the process of giving birth (CWS mean value 2.26) and the possibility that something might be wrong with the baby (1.99), followed by coping with the new baby (1.57), going to hospital (1.29) and the possibility of going into labour too early (1.28). The internal consistency of the scale (0.80) was satisfactory, and we found a four-factor structure, similar to previous studies. Tests of convergent validity showed that the German CWS represents a different construct compared with state and trait anxiety but has the desired overlap. Conclusions: The German CWS has satisfactory psychometric properties. It represents a valuable tool for use in scientific studies and is likely to be useful also to clinicians
- …