245 research outputs found

    Specific wheat fractions influence hepatic fat metabolism in diet-induced obese mice

    Get PDF
    Low whole grain consumption is a risk factor for the development of non-communicable diseases such as type 2 diabetes. Dietary fiber and phytochemicals are bioactive grain compounds, which could be involved in mediating these beneficial effects. These compounds are not equally distributed in the wheat grain, but are enriched in the bran and aleurone fractions. As little is known on physiological effects of different wheat fractions, the aim of this study was to investigate this aspect in an obesity model. For twelve weeks, C57BL/6J mice were fed high-fat diets (HFD), supplemented with one of four wheat fractions: whole grain flour, refined white flour, bran, or aleurone. The different diets did not affect body weight, however bran and aleurone decreased liver triglyceride content, and increased hepatic n-3 polyunsaturated fatty acid (PUFA) concentrations. Furthermore, lipidomics analysis revealed increased PUFA concentration in the lipid classes of phosphatidylcholine (PC), PC-ether, and phosphatidylinositol in the plasma of mice fed whole grain, bran, and aleurone supplemented diets, compared to refined white flour. Furthermore, bran, aleurone, and whole grain supplemented diets increased microbial alpha-diversity, but only bran and aleurone increased the cecal concentrations of short-chain fatty acids. The effects on hepatic lipid metabolism might thus at least partially be mediated by microbiota-dependent mechanisms

    Future Food: Sustainable Diets for Healthy People and a Healthy Planet

    Get PDF
    The current food system is associated with poor health outcomes, food insecurity, and significant environmental damage. While, globally, more than enough food calories are produced than theoretically needed, this does not guaranty a good quality diet for all. At the same time, the environmental pressures of the current food system threaten several planetary boundaries, which define the environmental limits within which humans can safely operate. This narrative review gives a brief overview of the shortcomings of the current food system regarding its impact on nutrition, health, and the environment. It outlines recent advancements in the development of guidelines for a healthy and sustainable diet and discusses options on how to realize such a dietary transformation, involving all stakeholders in the food value chain

    Specific Wheat Fractions Influence Hepatic Fat Metabolism in Diet-Induced Obese Mice

    Get PDF
    Low whole grain consumption is a risk factor for the development of non-communicable diseases such as type 2 diabetes. Dietary fiber and phytochemicals are bioactive grain compounds, which could be involved in mediating these beneficial effects. These compounds are not equally distributed in the wheat grain, but are enriched in the bran and aleurone fractions. As little is known on physiological effects of different wheat fractions, the aim of this study was to investigate this aspect in an obesity model. For twelve weeks, C57BL/6J mice were fed high-fat diets (HFD), supplemented with one of four wheat fractions: whole grain flour, refined white flour, bran, or aleurone. The different diets did not affect body weight, however bran and aleurone decreased liver triglyceride content, and increased hepatic n-3 polyunsaturated fatty acid (PUFA) concentrations. Furthermore, lipidomics analysis revealed increased PUFA concentration in the lipid classes of phosphatidylcholine (PC), PC-ether, and phosphatidylinositol in the plasma of mice fed whole grain, bran, and aleurone supplemented diets, compared to refined white flour. Furthermore, bran, aleurone, and whole grain supplemented diets increased microbial α-diversity, but only bran and aleurone increased the cecal concentrations of short-chain fatty acids. The effects on hepatic lipid metabolism might thus at least partially be mediated by microbiota-dependent mechanism

    Crystal Structure of a PCP/Sfp Complex Reveals the Structural Basis for Carrier Protein Posttranslational Modification

    Get PDF
    SummaryPhosphopantetheine transferases represent a class of enzymes found throughout all forms of life. From a structural point of view, they are subdivided into three groups, with transferases from group II being the most widespread. They are required for the posttranslational modification of carrier proteins involved in diverse metabolic pathways. We determined the crystal structure of the group II phosphopantetheine transferase Sfp from Bacillus in complex with a substrate carrier protein in the presence of coenzyme A and magnesium, and observed two protein-protein interaction sites. Mutational analysis showed that only the hydrophobic contacts between the carrier protein’s second helix and the C-terminal domain of Sfp are essential for their productive interaction. Comparison with a similar structure of a complex of human proteins suggests that the mode of interaction is highly conserved in all domains of life

    Potential contribution of HIV during first-line tuberculosis treatment to subsequent rifampicin-monoresistant tuberculosis and acquired tuberculosis drug resistance in South Africa: a retrospective molecular epidemiology study

    Get PDF
    Background: South Africa has a high burden of rifampicin-resistant tuberculosis (including multidrug-resistant [MDR] tuberculosis), with increasing rifampicin-monoresistant (RMR) tuberculosis over time. Resistance acquisition during first-line tuberculosis treatment could be a key contributor to this burden, and HIV might increase the risk of acquiring rifampicin resistance. We assessed whether HIV during previous treatment was associated with RMR tuberculosis and resistance acquisition among a retrospective cohort of patients with MDR or rifampicin-resistant tuberculosis. Methods: In this retrospective cohort study, we included all patients routinely diagnosed with MDR or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa, between Jan 1, 2008, and Dec 31, 2017. Patient-level data were obtained from a prospective database, complemented by data on previous tuberculosis treatment and HIV from a provincial health data exchange. Stored MDR or rifampicin-resistant tuberculosis isolates from patients underwent whole-genome sequencing (WGS). WGS data were used to infer resistance acquisition versus transmission, by identifying genomically unique isolates (single nucleotide polymorphism threshold of five). Logistic regression analyses were used to assess factors associated with RMR tuberculosis and genomic uniqueness. Findings: The cohort included 2041 patients diagnosed with MDR or rifampicin-resistant tuberculosis between Jan 1, 2008, and Dec 31, 2017; of those, 463 (22.7%) with RMR tuberculosis and 1354 (66.3%) with previous tuberculosis treatment. In previously treated patients, HIV positivity during previous tuberculosis treatment versus HIV negativity (adjusted odds ratio [OR] 2.07, 95% CI 1.35-3.18), and three or more previous tuberculosis treatment episodes versus one (1.96, 1.21-3.17) were associated with RMR tuberculosis. WGS data showing MDR or rifampicin-resistant tuberculosis were available for 1169 patients; 360 (30.8%) isolates were identified as unique. In previously treated patients, RMR tuberculosis versus MDR tuberculosis (adjusted OR 4.96, 3.40-7.23), HIV positivity during previous tuberculosis treatment (1.71, 1.03-2.84), and diagnosis in 2013-17 (1.42, 1.02-1.99) versus 2008-12, were associated with uniqueness. In previously treated patients with RMR tuberculosis, HIV positivity during previous treatment (adjusted OR 5.13, 1.61-16.32) was associated with uniqueness as was female sex (2.50 [1.18-5.26]). Interpretation: These data suggest that HIV contributes to rifampicin-resistance acquisition during first-line tuberculosis treatment and that this might be driving increasing RMR tuberculosis over time. Large-scale prospective cohort studies are required to further quantify this risk. Funding: Swiss National Science Foundation, South African National Research Foundation, and Wellcome Trust

    Capsule depolymerase activity of phages infecting the Acinetobacter baumannii-calcoaceticus complex

    Get PDF
    To be able to enter and replicate in exopolysaccharide (EPS) slime or capsule surrounded bacteria, bacteriophages (phages) have evolved the ability to overcome the EPS structure by producing virion-associated proteins with polysaccharide depolymerization activities. We have studied phages infecting the Acinetobacter baumannii-Acinetobacter calcoaceticus (ACB) complex, which groups A. baumannii, A. calcoaceticus, A. pittii, A. nosocomialis and A. seifertii species. It is known that about 100 different capsule polysaccharide (CPS) synthetic loci are found in A. baumannii genomes alone. This situation is even more complex, with some strains of A. baumannii having nearly identical CPS synthetic loci to strains of A. nosocomialis or A. pittii, and supposedly producing identical CPS. We have isolated and characterized 21 phages infecting the ACB complex and demonstrate that they have specialized depolymerases that degrade polymers (e.g. capsular and structural polysaccharides) to facilitate their access to the hosts. To further characterize the phage-host interactions, we have sequenced bacterial genomes and mutated the CPS synthetic loci to create CPS-deficient mutants, to prove that the ACB phages recognize the CPS as the primary receptor. We further demonstrate that recombinantly expressed depolymerases are active and key components in the tail specificity apparatus of Podoviridae viruses. We could conclude that phages infecting the ACB complex represent a source of enzymes that degrade a complex variety of polymeric substances that can be further exploited as a serotyping scheme currently inexistent for Acinetobacter species

    Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data

    Get PDF
    Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data

    The Pseudomonas aeruginosa Transcriptional Landscape Is Shaped by Environmental Heterogeneity and Genetic Variation

    Get PDF
    Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseudomonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 different environmental conditions. Our approach allowed dissection of the impact of the genetic background versus environmental cues on P. aeruginosa gene expression profiles and revealed that phenotypic variation was larger in response to changing environments than between genomically different isolates. We demonstrate that mutations within the global regulator LasR affect more than one trait (pleiotropy) and that the interaction between mutations (epistasis) shapes the P. aeruginosa phenotypic plasticity landscape. Because of pleiotropic and epistatic effects, average genotype and phenotype measures appeared to be uncorrelated in P. aeruginosa
    • …
    corecore