1,143 research outputs found

    The Other Natural Two Higgs Doublet Model

    Full text link
    We characterize models where electroweak symmetry breaking is driven by two light Higgs doublets arising as pseudo-Nambu-Goldstone bosons of new dynamics above the weak scale. They represent the simplest natural two Higgs doublet alternative to supersymmetry. We construct their low-energy effective Lagrangian making only few specific assumptions about the strong sector. These concern their global symmetries, their patterns of spontaneous breaking and the sources of explicit breaking. In particular we assume that all the explicit breaking is associated with the couplings of the strong sector to the Standard Model fields, that is gauge and (proto)-Yukawa interactions. Under those assumptions the scalar potential is determined at lowest order by very few free parameters associated to the top sector. Another crucial property of our scenarios is the presence of a discrete symmetry, in addition to custodial SO(4), that controls the TT-parameter. That can either be simple CP or a Z2Z_2 that distinguishes the two Higgs doublets. Among various possibilities we study in detail models based on SO(6)/SO(4)Ă—\times SO(2), focussing on their predictions for the structure of the scalar spectrum and the deviations of their couplings from those of a generic renormalizable two Higgs doublet model.Comment: 54 page

    Noninvasive Neuroprosthetic Control of Grasping by Amputees

    Get PDF
    Smooth coordination and fine temporal control of muscles by the brain allows us to effortlessly pre-shape our hand to grasp different objects. Correlates of motor control for grasping have been found across wide-spread cortical areas, with diverse signal features. These signals have been harnessed by implanting intracortical electrodes and used to control the motion of robotic hands by tetraplegics, using algorithms called brain-machine interfaces (BMIs). Signatures of motor control signal encoding mechanisms of the brain in macro-scale signals such as electroencephalography (EEG) are unknown, and could potentially be used to develop noninvasive brain-machine interfaces. Here we show that a) low frequency (0.1 – 1 Hz) time domain EEG contains information about grasp pre-shaping in able-bodies individuals, and b) This information can be used to control pre-shaping motion of a robotic hand by amputees. In the first study, we recorded simultaneous EEG and hand kinematics as 5 able-bodies individuals grasped various objects. Linear decoders using low delta band EEG amplitudes accurately predicted hand pre-shaping kinematics during grasping. Correlation coefficient between predicted and actual kinematics was r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05 for the first 3 synergies. In the second study, two transradial amputees (A1 and A2) controlled a prosthetic hand to grasp two objects using a closed-loop BMI with low delta band EEG. This study was conducted longitudinally in 12 sessions spread over 38 days. A1 achieved a 63% success rate, with 11 sessions significantly above chance. A2 achieved a 32% success rate, with 2 sessions significantly above chance. Previous methods of EEG-based BMIs used frequency domain features, and were thought to have a low signal-to-noise ratio making them unsuitable for control of dexterous tasks like grasping. Our results demonstrate that time-domain EEG contains information about grasp pre-shaping, which can be harnessed for neuroprosthetic control.Electrical and Computer Engineering, Department o

    Effect of mobility models on infrastructure based wireless networks

    Get PDF
    The tremendous demand is pushing the development of wireless mobile communications faster than ever before. Handoff management has widely been recognized as one of the most important and challenging problems for a seamless access to wireless network and mobile services. Mobility Models plays an important role in handoff management. In this paper, the effect of handoff procedure on the performance of random mobile nodes in wireless networks was investigated. Mobility of node is defined by various mobility models. Evaluating mobility models within an infrastructured network gives solution to performance measures like blocking probability, dropping probability to evaluate the performance of handoff algorithm. Handoff algorithm based on Absolute and Relative Measurement was used to examine the effect of Random Walk and Gauss Markov mobility models on performance of Infrastructure based Wireless Network. Keywords - Call blocking probability, Call dropping probability, Mobility model

    Probing RS scenarios of flavour at LHC via leptonic channels

    Full text link
    We study a purely leptonic signature of the Randall-Sundrum scenario with Standard Model fields in the bulk at LHC: the contribution from the exchange of Kaluza-Klein (KK) excitations of gauge bosons to the clear Drell-Yan reaction. We show that this contribution is detectable (even with the low luminosities of the LHC initial regime) for KK masses around the TeV scale and for sufficiently large lepton couplings to KK gauge bosons. Such large couplings can be compatible with ElectroWeak precision data on the Zff coupling in the framework of the custodial O(3) symmetry recently proposed, for specific configurations of lepton localizations (along the extra dimension). These configurations can simultaneously reproduce the correct lepton masses, while generating acceptably small Flavour Changing Neutral Current (FCNC) effects. This LHC phenomenological analysis is realistic in the sense that it is based on fermion localizations which reproduce all the quark/lepton masses plus mixing angles and respect FCNC constraints in both the hadron and lepton sectors.Comment: 15 pages, 6 Figures, Latex fil

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    Radius-dependent gauge unification in AdS5

    Get PDF
    We examine the relation of the 4-dimensional low energy coupling of bulk gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a function of the orbifold radius R. This allows us to address the gauge coupling unification in AdS5 by means of the radius running as well as the conventional momentum running. We then compute the radius dependence of 1-loop low energy couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss the low energy predictions when the 5-dimensional couplings are assumed to be unified.Comment: 11 pages, 2 figures, revtex, v3: analysis was generalized to S^1/Z_2*Z_2 orbifoldin

    Matter-gravity interaction in a multiply warped braneworld,

    Full text link
    The role of a bulk graviton in predicting the signature of extra dimensions through collider-based experiments is explored in the context of a multiply warped spacetime. In particular it is shown that in a doubly warped braneworld model, the presence of the sixth dimension, results in enhanced concentration of graviton Kaluza Klein (KK) modes compared to that obtained in the usual 5-dimensional Randall-Sundrum model. Also, the couplings of these massive graviton KK modes with the matter fields on the visible brane turn out to be appreciably larger than that in the corresponding 5- dimensional model. The significance of these results are discussed in the context of KK graviton search at the Large Hadron Collider (LHC).Comment: 13 pages, 2 table

    Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach

    Full text link
    We study flavor violation in the quark sector in a purely 4D, two-site effective field theory description of the Standard Model and just their first Kaluza-Klein excitations from a warped extra dimension. The warped 5D framework can provide solutions to both the Planck-weak and flavor hierarchies of the SM. It is also related (via the AdS/CFT correspondence) to partial compositeness of the SM. We focus on the dominant contributions in the two-site model to two observables which we argue provide the strongest flavor constraints, namely, epsilon_K and BR(b -> s gamma), where contributions in the two-site model occur at tree and loop-level, respectively. In particular, we demonstrate that a "tension" exists between these two observables in the sense that they have opposite dependence on composite site Yukawa couplings, making it difficult to decouple flavor-violating effects using this parameter. We choose the size of the composite site QCD coupling based on the relation of the two-site model to the 5D model (addressing the Planck-weak hierarchy), where we match the 5D QCD coupling to the 4D coupling at the loop-level and assuming negligible tree-level brane-localized kinetic terms. We estimate that a larger size of the 5D gauge coupling is constrained by the requirement of 5D perturbativity. We find that \sim O(5) TeV mass scale for the new particles in the two-site model can then be consistent with both observables. We also compare our analysis of epsilon_K in the two-site model to that in 5D models, including both the cases of a brane-localized and bulk Higgs.Comment: 46 pages with 10 figure

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE
    • …
    corecore