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ABSTRACT 

Smooth coordination and fine temporal control of muscles by the brain allows us 

to effortlessly pre-shape our hand to grasp different objects. Correlates of motor control 

for grasping have been found across wide-spread cortical areas, with diverse signal 

features. These signals have been harnessed by implanting intracortical electrodes and 

used to control the motion of robotic hands by tetraplegics, using algorithms called brain-

machine interfaces (BMIs). Signatures of motor control signal encoding mechanisms of 

the brain in macro-scale signals such as electroencephalography (EEG) are unknown, 

and could potentially be used to develop noninvasive brain-machine interfaces. Here we 

show that a) low frequency (0.1 – 1 Hz) time domain EEG contains information about 

grasp pre-shaping in able-bodies individuals, and b) This information can be used to 

control pre-shaping motion of a robotic hand by amputees. In the first study, we recorded 

simultaneous EEG and hand kinematics as 5 able-bodies individuals grasped various 

objects. Linear decoders using low delta band EEG amplitudes accurately predicted 

hand pre-shaping kinematics during grasping. Correlation coefficient between predicted 

and actual kinematics was r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05 for the first 3 

synergies. In the second study, two transradial amputees (A1 and A2) controlled a 

prosthetic hand to grasp two objects using a closed-loop BMI with low delta band EEG. 

This study was conducted longitudinally in 12 sessions spread over 38 days. A1 

achieved a 63% success rate, with 11 sessions significantly above chance. A2 achieved 

a 32% success rate, with 2 sessions significantly above chance. Previous methods of 

EEG-based BMIs used frequency domain features, and were thought to have a low 

signal-to-noise ratio making them unsuitable for control of dexterous tasks like grasping. 

Our results demonstrate that time-domain EEG contains information about grasp pre-

shaping, which can be harnessed for neuroprosthetic control.  
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CHAPTER 1: INTRODUCTION 

Limb loss due to amputation results in a severe reduction in the quality of life of 

affected individuals. In upper limb amputees, grasping is one of the most important yet 

challenging functions a prosthetic hand is required to perform. Advances in robotics 

have made it possible to achieve dexterous control in an anthropomorphic robotic hand 

(Cipriani et al., 2011a, 2011b). Body-powered prosthetic control strategies are reliable 

and have essentially remained unchanged for the past 100 years, while recent advances 

in myoelectric control (Kuiken et al., 2009; Cipriani et al., 2011a) offer promise with 

improved ease of use.  

Brain machine interfaces (BMIs) which directly translate neural activity to control 

external devices can add intuitive and natural control to myoelectric devices (Contreras-

Vidal et al., 2012). Intracortical BMIs, in which cortical signals are obtained through 

implanted microelectrode arrays, have been demonstrated to control arm positioning 

with a high degree of accuracy in monkeys and tetraplegic humans, but have a single 

degree of freedom to control grasping (Hochberg et al., 2012; Collinger et al., 2012; 

Velliste et al., 2008). Implementing an intuitive and noninvasive BMI for grasping has 

remained a challenge, however. 

To successfully implement noninvasive BMIs for grasping prosthetic devices in 

amputees, the first step is to understand where and how motor commands associated 

with grasping are encoded in macro-scale cortical activity. Correlates of motor control for 

grasping have been found across wide-spread cortical areas, with diverse signal 

features. These signals have been harnessed by implanting intracortical electrodes and 

used to control the motion of robotic hands by tetraplegics, using BMI algorithms. 

Signatures of motor control signal encoding mechanisms of the brain in macro-scale 

signals such as electroencephalography (EEG) are unknown, and could potentially be 
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used to develop noninvasive brain-machine interfaces for use by amputees or other 

clinical populations with impaired hand function.  

Proximal and distal upper extremity movement information has been shown to be 

encoded as the power in specific frequency bands in cortical field potentials at different 

spatial scales: local field potentials (LFPs), electrocorticography (ECoG), 

electroencephalography (EEG) and magnetoencephalography (MEG) (Zhuang et al., 

2010; Kubánek et al., 2009; Pistohl et al., 2012; Ball et al., 2008; Waldert et al., 2009). 

More recently, researchers have shown that information is also encoded in the time-

domain amplitudes of these field potentials in the lowest frequency band (0-5 Hz) 

(Mollazadeh et al., 2011; Bansal et al., 2011; Acharya et al., 2010; Kubánek et al., 2009; 

Bradberry et al., 2010, 2009; Hall et al., 2014). In Chapter 2, we show that grasping 

movements in able-bodied individuals can be decoded from time-domain low delta-band 

(0.1 – 1 Hz) electroencephalographic (EEG) activity, a noninvasive modality to record 

cortical potentials at the scalp (Agashe and Contreras-Vidal, 2011, 2013a). Further, we 

showed that principal components (PCs) of finger kinematics are decoded with the same 

level of accuracy as finger joint angles during grasp pre-shaping. In a closed-loop BMI 

scenario, it is advantageous to control the kinematic PCs as they allow grasp pre-

shaping with fewer degrees of freedom. 

Chapter 3 is an application of the encoding mechanisms shown in Chapter 2 to 

control a closed-loop prosthetic device in real time. Signal to noise ratio and reliability 

across sessions in EEG have been concerns which may be inapplicable in the case of 

low frequency time-domain EEG. In chapter 3 we demonstrate dexterous 

neuroprosthetic control of grasping with EEG signals by amputees and address these 

concerns by investigating stability of EEG signals as well as changes in BMI 

performance over multiple sessions performed on different days. 
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CHAPTER 2: GLOBAL CORTICAL ACTIVITY PREDICTS SHAPE OF HAND DURING 

GRASPING 

2.1 Introduction 

Grasping is one of the most fundamental ways humans interact with the world, 

allowing us to manipulate and interact with objects around us. The kinematics of 

grasping and the neuroscience underlying the smooth and continuous control of the 

hand and fingers have been studied extensively (Jeannerod, 1984; Castiello, 2005; 

Santello et al., 2002), and experiments have shown modulation in neural spiking activity 

associated with various stages of grasping (Bansal et al., 2011; Rizzolatti et al., 1988; 

Murata et al., 1997). PET and fMRI experiments show the involvement of widely 

distributed brain areas during a self-initiated grasping movement (Castiello, 2005). 

Proximal and distal upper extremity movement information has been shown to be 

encoded as the power in various frequency bands in cortical field potentials at various 

spatial scales, such as local field potentials (LFPs), electrocorticography (ECoG), 

electroencephalography (EEG) and magnetoencephalography (MEG) (Zhuang et al., 

2010; Kubánek et al., 2009; Pistohl et al., 2012; Ball et al., 2008; Waldert et al., 2009). 

More recently, researchers have shown that information is also encoded in the time-

domain amplitudes of these fields in the lowest frequency band (0-5 Hz) (Mollazadeh et 

al., 2011; Bansal et al., 2011; Acharya et al., 2010; Kubánek et al., 2009; Bradberry et 

al., 2010, 2009; Hall et al., 2014). It remains unclear if these amplitude modulations 

contain enough information to be able to infer the dexterous movement of the fingers 

during grasping, at the macro scale of scalp EEG.  

LFP modulations have been shown to contain information about grasping 

movements not just in the primary motor cortex, but in a multitude of other brain areas 

as well (Bansal et al., 2011; Mollazadeh et al., 2011; Hall et al., 2014). While it is clear 

that a widely distributed network involving pre-frontal, sensori-motor as well as visuo-
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motor areas in both hemispheres is responsible for the control of self-initiated grasping 

actions (Matsumura et al., 1996; Rizzolatti et al., 1996), the characterization of scalp-

level neural representations of these areas remains unknown. Recent findings revealed 

cyclic activity in motor cortex LFP signals locked to ‘submovements’ (Hall et al., 2014). 

Understanding how these delta band (0-4 Hz) submovements combine to yield 

functional motion may provide clues to the origins of delta-band activity and why they 

encode upper limb movement information (Hall et al., 2014).   

Apart from the neuroscience community, being able to decode grasping 

kinematics is of great interest to the brain-machine interface (BMI) community. Upper 

limb amputation, stroke, or severe spinal cord injury result in loss or significant reduction 

in bimanual motor function and dexterous hand movements in the affected limb(s). 

Improved upper extremity function is the leading requirement among tetraplegics (Snoek 

et al., 2004) and other clinical populations with impaired hand function. Control of hand 

prosthetics with peripheral signals such as intramuscular/surface electromyography 

(sEMG) (Cipriani et al., 2011a, 2014) and targeted muscle re-innervation (Kuiken et al., 

2009) show promise. Brain-machine interfaces which extract movement intent from brain 

activity and control external devices are another possible strategy to regain hand 

function (Lebedev and Nicolelis, 2006; Birbaumer, 2006) while also tracking plasticity in 

the brain. Current upper limb neuroprosthetics restore some degree of functional ability, 

but fail to approach the ease of use and dexterity of the natural hand, particularly for 

grasping movements. Control of an anthropomorphic robotic arm with intracortically 

recorded neural activity was recently shown to be possible (Hochberg et al., 2012; 

Collinger et al., 2012). These invasive BMI systems are able to extract intended arm 

position and movement in space, along with a control over opening and closing a grasp. 

However, the multitude of grasp types required in activities of daily living require a 

detailed level of control over manual dexterity and grasp posture. Further, the inherent 
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risks associated with surgery required to implant electrodes, along with the long-term 

stability of recorded signals, is of concern (Schultz and Kuiken, 2011). Current 

approaches to noninvasive BMIs typically require the user to learn to control the power 

in their sensorimotor mu-rhythms (specific frequency bands usually centered around 10 

Hz and 22 Hz) (Wolpaw and McFarland, 2004; McFarland et al., 2010). Here we show 

that it is feasible to extract detailed information on intended grasping movements to 

various objects in a natural, intuitive manner, from a plurality of scalp EEG signals. 

Research shows that to manipulate the large number of joints available in the 

hand during grasping, the motor system controls an inherently low-dimensional manifold 

called the synergy space (Santello et al., 2002, 1998; Vinjamuri et al., 2010). A common 

approach to identifying these movement synergies is by decomposing joint angle 

velocities into their Principal Components (PCs) (Santello et al., 1998). The kinematic 

space (joint angle velocities vs. movement synergies) that is optimally encoded in 

cortical field potentials remains unknown. In this study, five human subjects performed 

self-initiated and natural reach-to-grasp movements to five common objects while EEG 

and hand kinematics were recorded simultaneously. We selected five objects requiring 

distinct types of grasps: a soda can (cylindrical power grasp), a CD (whole hand circular 

grasp), a credit card (lateral precision grasp), a small coin (precision pinch grasp) and a 

screwdriver (tool power grasp) (Santello et al., 1998). In an offline analysis, we 

reconstructed the trajectories of the hand in both joint angle velocity and synergy (PC) 

spaces during the grasping movement. The decoding was performed with a linear 

regression model with lags (i.e., time delay between EEG and decoded kinematics; see 

Methods). Notably, the time-domain feature space, coupled with the linear decoder, 

requires that the EEG signals share the same frequency bandwidth as the movement 

kinematics.  The majority of power in grasping movements performed by subjects in this 
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study was concentrated in the 0.1-1 Hz band (see Methods), requiring that EEG be low-

pass filtered at 1 Hz as well (see Methods).   

2.2 Methods 

Data acquisition and experiment design 

The Institutional Review Board (IRB) at the University of Houston approved this 

research. Five healthy right-handed volunteers (4 males, 1 female; ages 20-28 years) 

participated in this study after giving written informed consent. Whole head 64-channel 

EEG with a 10-20 system layout (Brain Vision LLC, USA) and hand kinematics were 

recorded simultaneously at 1000 Hz using BCI2000 software (Schalk et al., 2004), while 

participants performed an object grasping task. The trajectories of 18 hand joint angles 

were recorded with a data glove (CyberGlove Systems LLC, USA). The following 15 joint 

angles were recorded and used for further processing: metacarpo-phalangeal (MCP) 

and proximal inter-phalangeal (PIP) joints for the four fingers; carpo-metacarpal (CMC), 

metacarpo-phalangeal (MCP) and interphalangeal (IP) joint for the thumb; and 

abduction/adduction (ABD) between the fingers. In addition, 3 more joints were recorded 

but not used for further processing: flexion/extension and abduction/adduction of the 

wrist; and palm arch which measures the curvature across the palm. An accelerometer 

mounted on the wrist was used to record hand transport in three subjects (subjects S1, 

S2 and S3).   

During the behavioral task, subjects were seated behind a table with their hand 

resting on a push-button, which was used to detect movement onset and offset.  In front 

of the push-button, objects were presented on a visually marked area on the table’s 

surface.  The distance between the object and the push-button were determined such 

that subjects were able to reach the objects comfortably. One of five objects (soda can, 

credit card, CD, US penny, and a screwdriver) was placed on the marked area in a  

pseudorandom sequence. Subjects were instructed to start each trial with a relaxed 
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gesture on the switch, then self-initiate a reach and grasp movement to the object, 

followed by release and back to the resting position, at their preferred speed. The mean 

movement time was 1.9 ± 0.3 s across all subjects. Each subject performed 250 trials 

(50 trials per object), except subject S4 who performed 270 trials. 

EEG data preprocessing 

All following analyses were performed in MATLAB (The MathWorks Inc., USA). 

Raw EEG data were detrended and high-pass filtered at 0.3 Hz with a zero-phase 4th 

Figure 2.1 Data processing flowchart. The flowchart showing all data processing 

steps leading up to the decoding is shown. The left stream corresponds to EEG processing, and 

the right stream corresponds to kinematics processing. 
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order Butterworth filter to remove amplifier drift and ultra-low frequency components 

(Figure 2.1). Independent component analysis (ICA) was used to decompose the EEG 

into statistically independent components using the EEGLAB toolbox (Delorme and 

Makeig, 2004) after manually removing data segments corrupted by movement artifacts. 

Independent components corresponding to eye blinks and eye movements were 

identified and removed, followed by a projection back to the scalp EEG space. Six 

peripheral channels (M1, M2, TP9, TP10, PO9 and PO10) were excluded from further 

analysis. EEG data were low-pass filtered at 1 Hz with a zero-phase 4th order 

Butterworth filter. These filter cutoffs (0.3 – 1 Hz) were chosen based on previous 

findings (Agashe and Contreras-Vidal, 2011; Bradberry et al., 2010; Garipelli et al., 

2013). EEG data were downsampled to 100 Hz (for faster computations) and 

differentiated. Temporally lagged versions of EEG were concatenated along the third 

dimension, for a total of 11 lags (10 to 0 samples, corresponding to 100 to 0 ms in steps 

of 10 ms), resulting in an           data matrix, with the first dimension 

corresponding to time, the second dimension to EEG channels and the third dimension 

to lags. Continuous EEG was segmented into trials, from 400 ms before movement 

onset to 100 ms after movement offset and standardized by subtracting the mean and 

dividing by standard deviation across all trials.  

Kinematics data preprocessing 

Fifteen hand joint angles were recorded at 1000 Hz synchronously with EEG 

data. The joint angle data were lowpass filtered at 1 Hz with a 4th order zero-phase 

Butterworth filter, followed by downsampling to 100 Hz (Figure 2.1). The change 

introduced due to filtering the kinematics was quantified using the signal-to-error ratio 

(   ) defined as    (    )         
   ( )

   (    )
, where   is the raw kinematics,    is the 

filtered kinematics,     denotes the variance and     is the mean square error. The 
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mean     across all blocks was found to be 15.5 ± 2.9 dB ensuring filter cutoffs were 

appropriate. Joint angles were then differentiated to yield angular velocities. Kinematics 

were segmented consistent with EEG (400 ms before movement onset to 100 ms after 

movement offset). Principal Component Analysis (PCA) was used to decompose the 

joint angular velocities into kinematic synergies, across all trials. The input to the PCA 

matrix consisted of an      matrix, where   is the sum of trial lengths. The first three 

synergies accounted for 90 ± 1 % of the variance and were retained for decoding. 

Individually, the first three synergies accounted for 50 ± 1 %, 29 ± 1 % and 10 ± 1 % of 

the variance.    

Decoding 

A Wiener filter was used to continuously decode joint angle velocity PCs: 

   [ ]        ∑ ∑         [   ] 
   

 
   , 

where    [ ] is the     PC (        for the first three PCs),      are the model 

parameters,           are the number of EEG channels used for decoding,   is the 

maximum time lag (100 ms) and     [   ] is the preprocessed EEG value of the     

channel at time    .  

Within each subject, an 8-fold cross validation procedure was employed to 

assess the decoding accuracy: data were divided into eight parts, with the     part 

designated as testing data in the     cross validation fold (a total of eight folds). The 

remaining seven parts in a cross validation fold constituted the training data for that fold. 

For each cross-validation fold, model parameters were calculated on training data by 

minimizing the square error between the observed and model-estimated values for each 

PC. These model parameters were then applied to pre-processed EEG from the testing 

set to obtain a prediction of the PC value. We report the median correlation coefficient 



10 
 

between the predicted and the observed PC values across all folds as the metric to 

assess decoding accuracy.  

We evaluated the dependency of the decoding accuracy on the number of EEG 

channels used for the decoding process by the following procedure. Preprocessed EEG 

channels were ranked according to how well they were correlated with the three 

kinematic principal components (PCs), averaged over all lags. Specifically, the metric 

used for ranking was  

   
 

   
∑ √      

        
        

   
   , 

where    is the metric for the     EEG channel and   are the regression parameters 

calculated over the entire dataset for each subject (Bradberry et al., 2010). The 8-fold 

cross validation decoding procedure was then performed iteratively using the best   

EEG channels (         ) according to the channel ranking metric described above.  

We assessed the contribution     at each lag   (            ) as  

           
∑ √      

        
        

  
   

∑ ∑ √      
        

        
  

   
 
   

. 

We plotted the contributions from EEG channels at each lag on a scalp map to 

graphically assess the evolution of sensor contributions with time.  

Discrete classification 

To quantify the information content of EEG to discriminate between the grasp 

types, we constructed a multiple kernel learning (MKL) classifier (Gönen and Alpaydın, 

2011; Rakotomamonjy et al., 2008), which is a multiple-kernel generalization of support 

vector machines (SVM). The key idea of MKL is to replace the single kernel in a SVM by 

a weighted linear combination of different basis kernels. The scalp was divided into 8 

regions of interest (ROIs): left frontal (LF), right frontal (RF), left temporal (LT), right 

temporal (RT), left sensori-motor (LSM), right sensori-motor (RSM), left parietal-occipital 
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(LPO), and right parietal-occipital (RPO). The combined kernel function  (     ) for input 

feature samples    and    was represented as 

 (     )   ∑     (     )
 
   , 

such that     , and ∑   
 
     , where      is the number of basis kernels and 

   is the weight for the     basis kernel   . Parameters    were optimized through 

gradient descent on an SVM-based objective function according to “SimpleMKL” 

algorithm (Rakotomamonjy et al., 2008). Radial basis functions with relative width 

parameter             were used as basis kernels for each of the 8 ROIs, resulting in 

a total of 24 basis kernels. This range of values was found to be reasonable after 

applying kernel alignment to an initial training set for each subject (Shawe-Taylor and 

Kandola, 2002). The input features for the discrete classifier were identical to the Wiener 

filter decoder detailed above, i.e., low frequency time-domain EEG, lagged from 0 to 100 

ms.  

The information content  in EEG was calculated as the reduction in entropy of the 

probability distribution over grasp types (Quian Quiroga and Panzeri, 2009):    

   ∑  (     )     

 (     )

 (  ) (  )
     

   

where   is the information content in EEG about the grasp type;  (     ) is the joint 

probability over predicted grasp type    and measured grasp type   , calculated from 

the confusion matrix of the classifier;  (  ) and  (  ) are the marginal probabilities. 

We calculated the information content from -1 to 3 seconds with respect to movement 

onset, in steps of 250 ms (Figure 2.6). For each time step, an 8-fold cross validation 

scheme was used, and the results shown (Figure 2.6) are the median values of 

information over testing folds. The classifier confusion matrix at 250 ms is shown in 

Figure 2.6.      
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2.3  Results 

Both joint and synergy spaces can be decoded from scalp EEG 

Previous studies point to both joint angular velocities as well as synergies as 

possible spaces in which the brain encodes grasping movement information (Acharya et 

al., 2010; Kubánek et al., 2009; Vargas-Irwin et al., 2010; Agashe and Contreras-Vidal, 

2011; Pistohl et al., 2012). Here, we found high decoding accuracies for both joint angle 

velocities and their synergies. Movement synergies were calculates as the principal 

components (PCs) of joint angular velocities across all grasp types (Santello et al., 1998; 

Figure 2.2 Kinematic trajectories show synergies while grasping objects. (A) 

Mean principal component (PC) amplitudes (± s.e.m; shaded regions) are shown for the first 

three PCs in subject S5. (B) PC loading on the fifteen joint angles are shown for the first three 

PCs.  
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Vinjamuri et al., 2010). We retained the first three PCs, which retained 90% of the  

variance. Figure 2.2 shows examples of PC trajectories across all objects and the 

Figure 2.3 Decoding Accuracies. (A) Mean decoding accuracies across subjects are 
shown in red (± s.e.m; shaded regions) for PC1, PC2 and PC3. (B) Mean decoding accuracies for 
all joint angles (± s.e.m; errorbars).   
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visualization of PC loadings on each joint angle. PC1 was highly loaded on the finger 

PIP and MCP joints representing grasp opening/closing motion. PC2 was loaded mainly 

on the abduction joints, representing the spreading motion of the hand. PC3 was loaded 

on the thumb joints, mainly rotation, and represents the independent movement of the 

thumb.  

Decoding accuracies were quantified as the median correlation coefficient  

between the predicted and measured kinematics across cross validation folds. For each 

subject, we calculated decoding accuracies across the best   channels, with   ranging 

from 1 to 58, to evaluate the dependence of decoding accuracy on the number of EEG 

channels used. The common pattern across all decoded kinematics  was a rapid initial 

increase followed by saturation/slow decrease (Figure 2.3). To determine the peak in a 

robust manner, we fit a double exponential to the curves. For PC1, PC2 and PC3, peak 

decoding accuracies (mean ± s.e.m) were r = 0.59 ± 0.04, 0.47 ± 0.06 and 0.32 ± 0.05, 

with the peaks occurring when 22, 29 and 27 EEG channels were used to decode, 

Figure 2.4 Decoded trajectories. Predicted trajectories (light traces) showed similarity 

with measured trajectories (heavy traces). Examples of decoded PC trajectories for each object 

are shown for subject S5.  
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respectively. Examples of decoded PC trajectories are shown in Figure 2.4. For 

individual joint angle velocities, we found that peak decoding accuracies were highest for 

the index, middle and ring PIP joints (r = 0.65 ± 0.03, 0.63 ± 0.02 and 0.58 ± 0.02) and 

lowest for thumb CMC, index MCP and middle MCP joints (r = 0.38 ± 0.04, 0.39 ± 0.03 

and 0.37 ± 0.02). The mean decoding accuracy across all joints was r = 0.49 ± 0.02. The 

decoding accuracies for joint angles and kinematic PCs are comparable, indicating that 

both kinematic spaces may be equally encoded in EEG-based sensor space. These 

decoding accuracies are comparable to results from ECoG studies (r = 0.52 for first 

synergy; Acharya et al., 2010) and intracortical studies in monkeys (r = 0.62 for grasp 

aperture and r = 0.46 for aperture velocity; Zhuang et al., 2010). 

Decoding accuracies were highly significant (p<0.001; Bonferroni corrected for 

multiple comparisons across all subjects, kinematic variables, number of EEG channels 

and cross validation folds). We also calculated empirical chance levels using two 

methods: 1) by scrambling the phase of the EEG (Theiler et al., 1992) and 2) by 

scrambling the EEG trial indices (Antelis et al., 2013). ‘Phase-scrambled’ EEG signals 

were obtained by randomizing the phase in the Fourier domain, while keeping the 

magnitude unchanged, followed by a transformation back to the time domain. The 

assumption behind time-domain decoding is that EEG signals are phase-locked to the 

kinematics, and a randomization of the phase would theoretically result in zero decoding 

accuracy. In the case of ‘fold-scrambled’ EEG, the pairing between EEG and kinematics 

across trials was randomized, so that EEG corresponding to the kinematics from trial   

was assigned to trial  . The expected decoding accuracy in this case is also close to 

zero. The decoding procedure as detailed in the methods section was applied to the 

‘phase-scrambled’ and ‘fold-scrambled’ EEG signals, and we found close to zero 

decoding accuracy in both cases (Figure 2.3), showing that the decoding accuracy 

obtained without scrambling is significantly higher than chance levels. 
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Artifacts did not aid decoding 

EEG is known to be affected by ocular and muscular artifacts (Goncharova et al., 

2003), which may contribute to decoding if they are task-correlated. In our experiment, 

muscular artifacts are unlikely to affect decoding results because we low-pass filtered 

EEG signal at 1 Hz, and the frequency content of muscular artifacts is above 8 Hz 

(Goncharova et al., 2003). We prevented ocular artifacts from affecting our results in two 

stages: 1) by using Independent Component Analysis (ICA) to identify and remove 

ocular artifacts (Delorme and Makeig, 2004), as detailed in the methods section, and 2) 

by experiment design: All objects to be grasped were presented to subjects in the same 

spatial location, likely resulting in identical eye movements for all objects, making it 

unlikely that such a common pattern across objects could distinguish between them. To 

show the efficacy of these steps, we ran the decoding procedure without the four frontal 

channels affected most by ocular artifacts (FP1, FP2, AF7 and AF8). The decoding 

accuracy was unchanged (Figure 2.3), demonstrating that ocular artifacts did not affect 

our decoding results.      

Figure 2.5 Scalp locations and lags contribution to PC1 prediction. The overall 

percentage contribution of each lag is shown below each scalp map. Lags -90 and -80 ms 

contributed maximally, particularly with EEG channels C1, FC1, P1 and P3. 
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Neural representation of grasping kinematics in sensor space  

To assess which scalp regions contributed the most to kinematics prediction, we 

plotted the contribution of EEG channels (see Methods section) at each time lag on a 

scalp map, for PC1 (Figure 2.5), as PC1 accounted for 50 ± 1 % of the joint velocity 

variance and was also the best decoded synergy. Lags -90 and -80 ms contributed 

maximally (17.0% and 15.7%), particularly at scalp locations C1, FC1, P1 and P3. 

Figure 2.6 Information content in EEG. (A) Information in EEG peaked at around 250 
ms after movement onset. (B) The classifier confusion matrix at 250 ms after movement onset is 
diagonal, indicating high classification accuracies.  
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Interestingly, C1 and FC1 are located above the primary motor cortex and 

supplementary motor areas, which may explain their high contributions. P1 and P3 lie 

above the associative cortices which process the visuo-motor transformations necessary 

for a reach-and grasp movement. In agreement with established neuroscience findings, 

the contralateral hemisphere made the highest contribution. However, motor areas from  

the ipsilateral hemisphere (C5, P5 and CP7) also made contributions. At around -60 to -

40 ms, CP5 played the major role in decoding PC1 kinematics. Transient recruitment of 

specific EEG channels primarily between -90 to -40 ms argues against movement 

artifacts inadvertently aiding the decoding process, since movement artifacts are 

expected to correlate maximally with movement at zero lag.   

Grasp classification peaked 250 ms after movement onset  

The decoding accuracies shown represent the prediction of the finger joint 

velocities/PCs, and can be implemented directly to control the grasping motion of a 

prosthetic hand. A hybrid approach could conceivably be used as well, in which the 

grasp type is predicted as a discrete class from EEG, based on which a pre-determined 

grasp trajectory can be implemented. A metric that measures the performance of such a 

classification-based motor prosthesis is the information (in bits) conveyed about the 

grasp type. We constructed multiple kernel learning classifiers (see Methods) to classify 

100 ms windows of EEG into discrete grasp types. When applied over the grasp 

duration, from -1 to 3 seconds with respect to movement onset, the information content 

in EEG peaked at 250 ms (Figure 2.6). This is in agreement with a previous study 

(Pistohl et al., 2012) which showed similar results with ECoG (electrocorticographic) 

data over a two-class grasp (precision vs. power)  problem. For our five-class problem, 

the maximum information was 0.68 bits, occurring 250 ms after movement onset. The 

mean confusion matrix across subjects at 250 ms is shown in Figure 2.6. The classifier 

confusion matrix at 250 ms after movement onset is diagonal, indicating high 
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classification accuracies. Precision grasps were decoded at a lower classification 

accuracy (27%; card, penny) than whole-hand grasps (48%; can, CD, screwdriver). 

Surprisingly, a penny (precision grasp) was often misclassified as a CD (whole hand 

circular grasp), possibly due to the similarity in their kinematic trajectory shapes (Figure 

2.2A), despite the differences in amplitude. The overall decoding accuracy was 40% 

across the 5 objects, with chance level at 20%.         

2.4 Discussion 

Delta-band time domain EEG encodes grasping kinematics 

Recent studies on monkeys and humans attempted to decode various aspects of 

grasping such as joint angles or grasp types from brain activity recorded through 

microelectrode arrays implanted in the brain or electrocorticographic (ECoG) grids 

placed over the cortex (Acharya et al., 2010; Kubánek et al., 2009; Pistohl et al., 2012; 

Vargas-Irwin et al., 2010; Agashe and Contreras-Vidal, 2011; Artemiadis et al., 2007; 

Hamed et al., 2007; Zhuang et al., 2010; Saleh et al., 2010; Townsend et al., 2011; 

Aggarwal et al., 2008). Activity of multiple neurons in the motor cortex has been shown 

to classify finger and wrist movements as well as grasp patterns (Artemiadis et al., 2007; 

Hamed et al., 2007; Aggarwal et al., 2008). Interestingly, individuated finger movements 

and movements during slow grasping motion can be predicted from the fluctuations of 

low-pass filtered (the so-called “local motor potential” or LMP) ECoG activity in humans 

(Acharya et al., 2010; Kubánek et al., 2009). Accurate classification of precision vs. 

whole-hand grip has also been shown with ECoG LMP (Pistohl et al., 2012). A recent 

study showed that motor networks controlling the upper limb exhibit an intrinsic 

periodicity at submovement frequencies in the delta band (0.1 – 4 Hz) that is reflected in 

the speed profile of movements (Hall et al., 2014). The present results, obtained using 

low-frequency time domain features, suggest that such an encoding mechanism, based 
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on amplitude modulation, is observed in non-invasively recorded macro-scale level brain 

activity as well (Figure 2.3). 

Relevance to clinical populations and brain-machine interfaces 

The spatial locations of highly contributing electrodes over multiple lags over the 

scalp suggest early recruitment of the contralateral frontal-central scalp areas and 

parietal electrodes, followed by involvement of the central electrodes over primary 

sensorimotor cortical areas (Figure 2.5). This pattern of spatiotemporal information 

processing is in agreement with previous studies (Castiello, 2005). Changes in these 

spatial patterns of neural activity, at the level of scalp electrodes, may provide a window 

to investigate the plasticity of the brain during learning to use a brain-machine interface 

(BMI). These maps of predictive electrodes may also be informative when compared to 

those from clinical populations. The high values and significance levels of the decoding 

accuracies (Figure 2.3) argue against the need for more localized means of extracting 

neural activity for decoding, and suggest that information about dexterous grasping 

movements are represented in fast-changing global networks at the EEG scale. 

Importantly, these findings merit further investigation to assess the feasibility of EEG-

based decoding for closed-loop BMI systems to control dexterous neuroprosthetics. 

The high decoding accuracies obtained in this study suggest that this 

methodology is a promising candidate for application in real-time closed loop BMI 

systems for inferring desired grasping movements. We obtained similar levels of 

decoding for individual joint angles and synergies based on PCs, which suggests that a 

PC-based control scheme requiring lesser degrees of freedom is advantageous over 

individual joint angle control for closed-loop control of a hand neuroprosthesis. We are 

cognizant that effective BMI systems require decoding of movement intent in the 

absence of real movement. In this regard, recent studies demonstrated reach and grasp 

by tetraplegics using a neurally (intracranial electrodes) controlled robotic arm, albeit not 
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as fast or accurate as those of an able-bodied person (Hochberg et al., 2012; Collinger 

et al., 2012). Although the present study deciphers the cortical EEG signatures of actual 

movement, it is likely that some neural characteristics or features may be shared 

between imagined and real movements (Hochberg et al., 2012; Yuan et al., 2010; 

Bradberry et al., 2011; Agashe and Contreras-Vidal, 2013b). Results from a few studies 

suggest that with training, patients could regain control of neural populations that would 

otherwise participate in natural movements for the purpose of a BMI (Hochberg et al., 

2012; Collinger et al., 2012; Hochberg et al., 2006). Our methodology could also help to 

elucidate the changes in the neural representation for movement during skill learning or 

during intervention to rehabilitate fine motor control after brain injury. Importantly, our 

results challenge the perceived limitations of scalp EEG as a source signal for BMI 

systems or their use to investigate cortical plasticity during imagined or performed motor 

acts. 

In this study we decode with a simple linear model as they have been shown to 

provide high decoding accuracies from a multitude of brain signals (spiking activity, LFP, 

ECoG, EEG and MEG) (Mollazadeh et al., 2011; Acharya et al., 2010; Bradberry et al., 

2010, 2008). Dexterous tasks like handwriting have been reconstructed from 

electromyographic (EMG) signals from the hand with linear filters (Linderman et al., 

2009). While evidence is mounting for the time-domain encoding mechanism in field 

potentials, more research is needed to elucidate its relationship with frequency domain 

representations and spiking activity (Bansal et al., 2011). Further research is also 

required to characterize the consistency of the channel selections made across subjects, 

and to investigate the role of higher frequencies for EEG decoding. 
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CHAPTER 3: NONINVASIVE NEUROPROSTHETIC CONTROL OF GRASPING BY 

UPPER LIMB AMPUTEES  

3.1 Introduction 

Upper limb amputation, stroke, or severe spinal cord injury result in loss or 

significant reduction in bimanual motor function and dexterous hand movements in the 

affected limb(s). Improved upper extremity function is the leading requirement among 

tetraplegics (Snoek et al., 2004) and other clinical populations with impaired hand 

function. Recent advances in robotic prosthetics for the upper limb potentially allow 

amputees to control a multitude of dexterous tasks (Cipriani et al., 2011a; Resnik et al., 

2012, 2014). In addition to positioning the arm in space, an important challenge is to be 

able to control the pre-shaping of fingers during grasping. Recent advances such as 

targeted muscle reinnervation (TMR) (Kuiken et al., 2009) and myoelectric control using 

residual limb muscle activity  offer exciting possibilities (Cipriani et al., 2011a, 2014; 

Resnik et al., 2014). Brain-machine interfaces, which directly translate neural activity in 

the cortex to control external devices, may increase the level of natural control currently 

available in myoelectric prostheses (Lebedev and Nicolelis, 2006; Contreras-Vidal et al., 

2012).  

There are currently multiple myoelectric controlled hand prostheses available 

commercially, such as the i-limb (Touch Bionics, UK), the (FDA approved) DEKA arm 

(Deka integrated solutions corporation, USA) and the (FDA approved) Axon-Bus 

Peripheral System/Michelangelo hand (Otto Bock Healthcare Product GmbH, Austria). In 

In this study, we used the IH2 Azurra, a hand prosthesis developed as research platform 

at Prensilia s.r.l., Italy. Amputee-relevant behavioral testing methods have so far focused 

on peripheral neural interfaces (Zhou et al., 2007). Notably, EMG-based systems have 

shown reasonably reliable 7- DOF control of a prosthetic limb using EMG after targeted 

muscle reinnervation (TMR) – a surgical technique pioneered by Dr. Kuiken involving the 
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transfer of residual nerves in the amputated arm to the remaining muscle, which then 

provide EMG signals that correlate to the original nerve functions allowing a virtual or 

physical prosthetic arm to respond directly and more naturally to the brain signals 

(Kuiken et al., 2009; Li et al., 2010). However, some critical challenges of this approach 

concern the stability of EMG recordings, interference from muscles controlling remaining 

joints, effects of tissue loading, control of fine dexterous movements, and the cognitive 

burden of operating the device (Kuiken et al., 2009). Other studies have shown that 

dexterous control of robotic hands is possible using surface/intramuscular EMG from the 

muscles in the residual limb (Cipriani et al., 2014).  

Recent milestones in BMI research include real-time cortical control of robotic 

limbs in monkeys (Musallam et al., 2004; Taylor et al., 2002; Kim et al., 2006; Serruya et 

al., 2002), non-human primates (Carmena et al., 2003; Velliste et al., 2008; Clanton et 

al., 2010) and the control of 2D/3D computer cursors by able bodied and/or paralyzed 

individuals (Hochberg et al., 2006; McFarland et al., 2010; Bradberry et al., 2011; Schalk 

et al., 2008; Ganguly and Carmena, 2009) . Hochberg et al (2006) reported results for a 

tetraplegic human (MN) implanted with a 96-microelectrode array in the primary motor 

cortex (MI). Subject MN was able to achieve, in the course of 57 consecutive sessions 

over 9 months, BMI control of 2D cursor movement that MN used to open and close 

email, operate devices such as a television and open and close a prosthetic hand to 

grasp and transport an object from one location to another. More recently, results from 

two tetraplegics demonstrating their ability to control 3D reach and grasp movements 

with the DEKA robotic arm (Resnik et al., 2014) were published (Hochberg et al., 2012). 

Collinger et al., 2012 showed that over a period of 13 weeks, a tetraplegic could learn to 

control a robotic arm with 7 degrees of freedom (including 1 for grasping) in 3D space. 

Overall, intracranial BMIs have showed control of arm positioning with a high degree of 

accuracy in tetraplegic users, but have a single degree of freedom to control grasping 
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(Hochberg et al., 2012; Collinger et al., 2012; Velliste et al., 2008). In amputees who are 

able to produce muscular activity in residual limbs, intracortical BMIs present an 

unfavorable risk to benefit ratio compared to myoelectric prosthetics. In such cases, 

noninvasive BMIs to control prosthetic limbs could potentially augment myoelectric 

control, but have not been demonstrated yet.  

Proximal and distal upper extremity movement information has been shown to be 

encoded as the power in specific frequency bands in cortical field potentials at different 

spatial scales: local field potentials (LFPs), electrocorticography (ECoG), 

electroencephalography (EEG) and magnetoencephalography (MEG) (Zhuang et al., 

2010; Kubánek et al., 2009; Pistohl et al., 2012; Ball et al., 2008; Waldert et al., 2009). 

More recently, researchers have shown that information is also encoded in the time-

domain amplitudes of these field potentials in the lowest frequency band (0-5 Hz) 

(Mollazadeh et al., 2011; Bansal et al., 2011; Acharya et al., 2010; Kubánek et al., 2009; 

Bradberry et al., 2010, 2009; Hall et al., 2014). In our previous work we show that 

grasping movements in able-bodied individuals can be decoded from time-domain low 

delta-band (0.1 – 1 Hz) electroencephalographic (EEG) activity, a noninvasive modality 

to record cortical potentials at the scalp (Agashe and Contreras-Vidal, 2011, 2013a; 

Paek et al., 2014). Further, we showed that principal components (PCs) of finger 

kinematics are decoded with the same level of accuracy as finger joint angles during 

grasp pre-shaping. In a closed-loop BMI scenario, it is advantageous to control the 

kinematic PCs as they allow grasp pre-shaping with fewer degrees of freedom. 

In recent years, concerns over the long-term stability of intracortical neural 

recordings have been raised, and studies show a decrease in BMI performance over 

time (Chestek et al., 2011; Dickey et al., 2009; Perge et al., 2014). In intracortical 

implanted electrode studies, changes in recorded signals and the resulting changes in 

BMI performance are attributed to formation of scar tissue and migration of neurons, as 
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well as unstable electrode material characteristics (Chestek et al., 2011; Dickey et al., 

2009). (Simeral et al., 2011) investigated the stability and reliability of intracortical 

microelectrode arrays in a human with tetraplegia 1000 days post- implantation and 

showed viable recordings for decoding and satisfactory performance of a cursor control 

task during five consecutive days of testing. The same subject S3 also demonstrated 

continuous neuronal ensemble control of simulated arm reaching using a Kalman 

decoder in days 1049, 1057, and 1080 post-implant (Chadwick et al., 2011).  Chao et al., 

2010 evaluated ECoG- based decoding of hand position and arm joint angles during 

reaching movements in non-human primates over a period of several months. This study 

showed that decoding performance did not significantly degrade with time and that 

decoding performance and the time between decoder model generation and decoder 

testing were not negatively correlated. (Perge et al., 2014) studied two tetraplegics 

implanted with multi-electrode arrays over the period of one year. Decoding accuracy 

during a motor imagery task declined at the rate of 3.6[5.65]%/month (for subjects T2 

and [S3] respectively), using a multi-unit spiking activity based decoder. For LFP-based 

decoder, a similar decline (2.4[2.85]%/month) was reported.  

In the case of EEG, the reasons for session-to-session variability are different: 

variability in electrode placement, gradual changes in impedance between scalp and 

electrodes due to changes in environmental conditions such as humidity, temperature, 

channel motion, and sweat, and changes in emotional, hormonal and pharmacological 

states of subjects. However, similar questions regarding the long-term signal quality and 

BMI performance hold in the case of EEG, and have not yet been investigated. In this 

study, we look at stability of EEG signals as well as changes in BMI performance over 

multiple sessions performed on different days in two chronic transradial amputees.      
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3.2 Materials and methods 

Study participants 

This study was approved by the institutional review board at the University of 

Houston. Two amputee volunteers participated in this study after giving written informed 

consent. The inclusion criteria for this study were: a) Traumatic transradial amputation in 

right arm b) Right hand dominant before amputation c) No untreated pain/neuromas in 

residual limb and no untreated phantom pain e) Should be able to carry weight of 

prosthetic (640 g) fitted to their stump socket. Participant A1 was a 56 years old healthy 

male who underwent bilateral transradial upper limb amputation following an 

electrocution injury 32 years before this study. At the time of testing, he used a body-

powered hook prosthetic which he had been using for the past 25 years. Participant A2 

was a 59 years old woman who underwent right transradial upper limb amputation 

following an automotive accident 14 years before this study. At the time of testing, she 

used a myoelectric controlled electric hook prosthetic which she had been using for the 

past 14 years. Both participants did not show any indications of cognitive deficits, and 

were right hand dominant before amputation. Participant A1 was under supervised 

pharmacological treatment to manage hypertension and urinary bladder function. 

Participant A2 was under supervised pharmacological treatment for depression, 

Figure 3.1 Experimental setup. Amputee participants were fitted with the IH2 Azurra 
robotic hand to their residual limb sockets. Sixty-four channel active EEG was recorded 
simultaneously while participants performed the grasping task.   
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hormone imbalance, pain management (for phantom pain as well as shoulder joint 

inflammation) and drug dependence. Both participants did not report any changes in 

phantom sensation on the residual limb during the experiment.  

Data acquisition 

Participants were fitted with an anthropomorphic prosthetic hand (IH2 Azurra, 

Prensilia s.r.l., Italy) to their residual limb sockets (Figure 3.1) fitted by a CPO specialist. 

Whole head 64 channel active EEG (BrainAmpDC with actiCAP, Brain Vision LLC, USA) 

was recorded at 100 Hz during the experiment. Simultaneous recording of EEG, real-

time data processing, and control of the robotic hand was achieved using the BCI2000 

software framework (Schalk et al., 2004). Although EEG was recorded at 100 Hz, data 

packets were sent from EEG amplifiers at a rate 50 Hz, constraining the real-time loop to 

20 ms. Consequently, robotic hand control was also sampled at 50 Hz. 

The IH2 Azurra robotic hand has five degrees of freedom (dof): one each for the 

flexion-extension of the thumb, index finger and middle finger, one for the combined 

flexion-extension of the ring and little finger, and one for the thumb rotation (Cipriani et 

al., 2011b). The IH2 Azurra hand uses a differential mechanism via which a single dof is 

used to control both the MCP (metacarpal-phalangeal) and PIP (proximal inter-

phalangeal) finger joints in such a way that when the MCP joint encounters an 

Figure 3.2 PC1 and PC2 training phase trajectories. Pre-determined trajectories 
during the training phase were based on two synergies of movement, PC1 and PC2. PC1 
controlled the flexion/extension of the fingers and the thumb, while PC2 controlled the thumb 
rotation.   
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obstruction (due to grasping an object), the PIP continues to flex until the object is fully 

grasped  (Cipriani et al., 2011a). Finger kinematics for a single dof were specified at an 

8-bit resolution, with 0 and 255 corresponding to open and fully flexed positions 

respectively. Nominally, two synergies of grasping based on principal component 

analysis of the joint angles were identified based on previous work (Agashe and 

Contreras-Vidal, 2011; Santello et al., 1998) corresponding to the correlated movement 

of the flexion-extension across all fingers and the thumb (PC1), and the thumb rotation 

(PC2).  

Experiment design 

Participants performed 13 sessions over a period of 5 weeks, with each session 

being performed on a different day. In the first 6 sessions, participants performed a 

‘training’ phase (used to create a BMI decoder) followed by a ‘testing’ phase (closed loop 

control using the decoder created in the training phase). In the next 6 sessions (sessions 

7 – 12), only the testing phase was performed, using the decoder from the training 

phase of the 6th session. The first 6 sessions allowed us to investigate the changes in 

decoders over multiple days, while the sessions 7-12 allowed us to investigate the 

adaptability of the brain to a fixed decoder, the consistency of the EEG signals, and any 

changes in BMI performance across multiple sessions. The final (13th) session was used 

to measure chance levels for the continuous time predictions: blind to participants, 

computer-generated Brownian noise was used to control the robotic hand, instead of 

participants’ EEG, while they attempted to do so.    

Participants were seated at a table with their attached robotic hand resting on a 

flat switch, which served to synchronize onset of hand transport and EEG decoder 

output controlling grasp preshaping. During the behavioral task, participants grasped an 

object (either an aluminum water bottle or a credit card, corresponding to cylindrical and 

lateral grasps respectively) with the robotic hand. Each trial consisted of the researcher 
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presenting an object to be grasped at a pre-determined comfortable distance (20-30 cm) 

away from the resting position. Following presentation of the object to be grasped, 

participants self-initiated hand transport towards the object.  

 During the training phase, initiation of hand transport triggered a pre-determined 

grasping sequence in the robotic hand, suitable to the object being presented. The pre-

determined finger joint trajectories were created so as to have typical human grasp 

aperture time profiles seen during grasping (Castiello, 2005). A Gaussian profile was 

used for PC1 activation, while a Gaussian profile was used for PC2 velocity, with a total 

time lengths 2 s and 1.5 s respectively (Figure 3.2). The thumb rotation (PC2) was held 

constant during the second half of the trajectory in the case of the lateral grasp. 

Participants timed their hand transport in conjunction with hand pre-shaping, so that the 

object was grasped by the end of the hand transport. Participants were instructed to 

imagine themselves controlling the hand pre-shaping and grasping. In addition to the 

visual feedback, participants were asked to imagine kinesthetic feedback as well. The 

grasp was held steady for 2 s, followed by an opening of the grasp and a return to the 

resting position (reverse of the grasping trajectory). During the grasp release trajectory, 

participants transported the hand back to its resting position (Figure 3.3). Participants 

Figure 3.3 Grasp trajectories in the training phase. Snapshots of the grasp trajectory 
are shown above for thy cylindrical grasp (top row) and the lateral grasp (bottom row). 
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performed 100 trials during the training phase. The order in which objects (bottle or card) 

were presented varied in a pseudorandom fashion.   

 A mapping between the 64-channel EEG data and the two synergies (PC1 and 

PC2) was created using data recorded in the training phase. In the testing phase, this 

mapping was applied to EEG to make real-time predictions of PC1 and PC2, allowing 

closed-loop control of the robotic hand pre-shaping. Initiation of hand transport by the 

participant, following presentation of an object to be grasped, triggered the start of 

closed-loop control (Figure 3.4). Thereafter, participants had 5 s to grasp the presented 

object. The outcome of each trial was marked as a ‘success’ or ‘failure’ depending on 

whether the participant was able to grasp the object or not within the allotted preset time 

(5 s). Monitoring current drawn by the actuator motor for each degree of freedom 

allowed us to detect when an object was grasped, since the current drawn spikes up if 

resistance due to the object is encountered. Once an object was successfully grasped, 

closed loop control ceased and the grasp was held steady for 2 s. Following either 

outcome, the hand shape was returned to resting position according to the pre-

determined grasp release trajectory suitable for the presented object, as used in the 

training phase.  

Figure 3.4 Grasp pre-shaping with closed loop control. Examples of successful 
grasps during the closed-loop control are shown for the cylindrical (top row) and the lateral 
(bottom row) grasps .   
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Signal processing 

A causal filter was used to band-pass filter data between 0.1 -1 Hz. This was 

implemented as cascaded high pass and low pass 2nd order Butterworth filters. The 

maximum group phase delay in the passband was 300 ms. Both training phase and 

testing phase EEG were filtered in this manner. After the training phase, EEG and 

kinematics were extracted and processed offline in MATLAB (The Mathworks Inc., USA). 

A lag of 100 ms was introduced in the EEG so that kinematics at time   aligned with EEG 

at time       ms. This was done to account for the cortico-spinal delay; the lag 

estimate was based on previous decoding studies (Bradberry et al., 2010). EEG data 

were standardized by their mean and standard deviation. Kinematics were upsampled to 

100 Hz (from 50 Hz) using the MATLAB pchip (piecewise cubic hermite interpolating 

polynomial) method, followed by a transformation to PC1 and PC2 by multiplying with 

the PC coefficient matrix for the pre-determined grasp trajectories. PC1 was set to the 

average of the 4 finger and thumb flexion values, corresponding to PC loadings of 0.25 

for each of the 4 joints. PC2 was set to the thumb rotation value. Data were segmented 

into movement periods, from movement onset to completion of grasp, and concatenated 

along trials.  

Decoding 

These data were then used to construct a linear mapping using robust linear 

regression, which mitigates the effect of outliers by weighting them less. This method 

was implemented in MATLAB (The Mathworks, Inc., USA) using the robustfit function 

which uses iteratively reweighted least squares with a bisquare weighting function. PC1 

and PC2 were modeled independently as a linear combination of EEG sensor data:  

   [ ]       ∑      [        ] , 
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where    [ ] is the ith PC being decoded at time  ,     are the model parameters and    

are the processed EEG from the jth electrode. In the testing phase, this linear mapping 

was used to predict PC1 and PC2 values from filtered and standardized EEG. Standard 

deviation from the training phase was used to scale EEG. These PC predictions were 

then scaled using a gain parameter so that when transformed back to the kinematic 

space of joint actuators, they represent movements which spanned the kinematic range. 

A few (typically 5-10) trials were conducted before the testing phase to manually tune 

the gain parameters according to the subjects’ preference of the range of motion. A 

saturation filter was applied to the output to constrain final predicted kinematic actuator 

values to 0-255. 

3.3 Results 

Closed-loop grasping performance was stable over sessions 

During closed loop BMI operation, participants were allowed 5 s from movement 

onset to grasp the presented object in each trial. If the object was grasped successfully, 

Figure 3.5 Closed loop BMI performance across sessions. The first six sessions 
(open circles) represent sessions in which a training phase preceded the testing phase. The last 
six sessions (solid circles) used the decoder calibration from the sixth session.  
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we marked it as a ‘success’, and as a ‘failure’ otherwise. Figure 3.4 shows examples of 

successful closed-loop grasps for the two objects. We used the percentage of successful 

trials (success rate) within a session as a performance metric to measure BMI 

performance. In addition to correctly decoded kinematics, this metric also depended on 

the ability of participants to position and time the hand transport to successfully grasp 

the presented object. Correct decoding of hand grasp kinematics (finger extension 

followed by flexion with suitable amplitude and timing) but incorrect hand orientation 

resulted in a failure to grasp the object functionally, and was counted as such. Thus, 

while functionally relevant, success rate as a metric was a compounded measure of 

participants’ ability to position and time the hand transport in synchrony with the decoded 

kinematics. The first 6 sessions included observation-based decoder training 

immediately preceding the closed-loop operation (see methods). In sessions 7-12, 

participants performed only the closed-loop control (testing) phase. In the 13th session, 

blind to subjects, we controlled the two synergies using Brownian noise. In this case, the 

success rate is an isolated measure of their ability to time their hand transport and 

position to successfully grasp an object, when the prosthetic hand randomly opens and 

closes. Brown noise was used as it spectrally similar to EEG, with the power spectra of 

both signals following a characteristic  
 

 | | curve (Nunez and Srinivasan, 2006). It should 

be noted that chance levels are not 50%, since the two outcomes (success vs. failure) 

do not necessarily have equal probabilities and because the decoding task was not 

discrete and depended on appropriate EEG-based scaling and timing of prosthetic grasp 

suitable for the test object.  

Success rates were significantly above chance levels (p < 0.05) for participant 

A1, except for one session (Figure 3.5). For participant A2, success rates were 

significantly above chance levels in only 2 sessions. Participant A2 had greater difficulty 
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with hand transport, in part due to shoulder pain, resulting in lower chance levels than 

participant A1. Participant A2 was also under the influence of various pharmacological 

agents to treat her depression, pain and addition, which may have likely contributed poor 

signal stability and lower BMI performance. During the first 6 sessions, when the 

decoder was calibrated before each closed-loop phase, performance for participant A1 

remained stable at 66 ± 3%, indicating that BMI performance is consistent across 

multiple decoders created on different days. With the exception of one session, 

performance for sessions 7 to 12 was also stable at 65 ± 2%, indicating that the brain is 

able to recall decoders from previous sessions.  

Long-term stability of EEG signal features and decoders  

Three factors determine BMI performance: the quality and stability of the input 

signals (EEG features), the decoder, and the user’s changing internal states. Stability of 

EEG features used as inputs to the BMI across sessions has not been investigated 

previously. In this regard, we tracked delta-band EEG standard deviation and amplitude 

changes at the time scale of 10 s, across multiple sessions (Figures 3.6A, B) for 

participant A1 who had BMI performance above chance levels. We did not observe any 

discernible differences between the observation-based calibration phases and the 

closed-loop phase. Across all sessions, EEG amplitude is higher in the prefrontal and 

temporal scalp regions, likely due to high amplitude ocular and myographic artifacts. 

One of the sessions (session 9) had high EEG amplitudes and standard deviation across 

all scalp regions, but did not correspond to lower BMI performance. EEG features were 

also stable over time scales relevant for decoding (100 ms), and across sessions with 

differing BMI performance (Figure 3.6C). 

To visualize the changes in the decoders across the first 6 sessions for 

participant A1, we plotted the model parameters on a scalp map for PC1 and PC2 

(Figure 3.7). In each BMI calibration (training) phase, models were created so as to 
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minimize the least square error between the model predicted and actual kinematic  

trajectories. Since the BMI performance was stable, changes in the model over sessions 

indicates underlying EEG signal changes. Interestingly, although models for PC1 and 

PC2 were created independently, they showed very similar sets of EEG channels over 

which the magnitude of model parameters was high, within each session (Figure 3.7). 

This indicates that signals over similar scalp areas control both PC1 and PC2 

amplitudes, and is expected from the smoothly coordinated and temporally coupled 

synergies during natural grasping (Santello et al., 1998, 2002).      

 

Figure 3.6 Longitudinal stability of EEG (participant A1). (A) Shows the standard deviation in 
the delta band, at a timescale of 10s. (B) Shows the mean at the same timescale. (C) Shows the 
changes in EEG at the timescale of 100 ms (timescale relevant for decoding).  
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 3.4 Discussion  

Closed-loop BMI performance 

Over all sessions, BMI success rate was 63 ± 3% for participant A1 (above 

chance levels in 11 sessions) and 32 ± 2% for participant A2 (above chance levels in 2 

sessions). With a fixed decoder (sessions 7-12), the success rate was 60 ± 5% for 

participant A1 (above chance levels in 5 sessions) and 30 ± 3% for participant A2 (above 

chance levels in 1 session). Participant A2 was under pharmacological treatment for 

depression, hormone imbalance, pain management (for phantom pain as well as 

shoulder joint inflammation) and drug dependence. Pharmacological interventions for 

depression and pain management, and hormonal interventions are known to affect 

global brain activity as measured in EEG (Hunter et al., 2006; Becker et al., 1980; 

Guisado et al., 1975), and may explain the lower BMI performance levels in participant 

A2. In addition, shoulder pain resulted in participant A2 being unable at times to 

smoothly coordinate hand transport. These conditions may represent useful exclusion 

criteria for future EEG-based neuroprosthetics. 

Figure 3.7 Stability of decoder across sessions (participant A1). For the first 6 sessions, BMI 
decoders were calibrated after the training phase. BMI decoder parameters for PC1 (top row) and 
PC2 (bottom row) were plotted on a scalp map.  
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In the absence of overt kinematics in amputees, being able to train decoders 

presents a challenge for researchers. In the past, movement observation has been used 

to train BMI models in primates for 3D reaching movements  (Wahnoun et al., 2004, 

2006). A similar approach has been used to calibrate intracortical BMI systems to control 

positioning of an arm in space in humans (Hochberg et al., 2012). Bradberry et al., 2011 

have shown that it is possible to use action observation to determine a mapping between 

noninvasive EEG activity and cursor movement on a computer screen. We show in this 

study that observing grasping actions performed by a robotic hand can be used to train 

time-domain EEG-based neural interfaces, allowing amputees to grasp objects. 

Closed-loop BMI and EEG stability 

Learning to use a BMI is similar to learning a new tool (Bradberry et al., 2011). 

Given a new fixed decoder, neural patterns have been shown to change over sessions, 

resulting in an increase in BMI performance (up to a limit) as the brain learns the new 

‘tool’ (Carmena et al., 2003). Over larger time scales of months, BMI performance may 

also decay, owing to loss in signal quality (Perge et al., 2014). A complementary 

approach to keeping the decoder fixed and letting the brain adapt is to adapt the 

decoder itself to changing neural activity, such that BMI performance is maximized 

(Orsborn et al., 2012). There is typically a characteristic time-scale associated with 

changes in BMI performance over sessions due to changes in neural patterns, and a 

time-scale at which the BMI model is adaptive (Digiovanna et al., 2009). In our study, we 

used two extremes on the closed-loop BMI system adaptation time-scale spectrum: the 

first 6 sessions, when the decoder was changed every session, represents the fastest 

time-scale (single session), while sessions 7-12, when a fixed decoder was used, 

represent the other extreme in which adaptation was limited to the user’s brain.  

Changing the decoder every session is generally accepted to be detrimental to 

BMI performance (Orsborn et al., 2012), and strategies have been proposed to make 
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optimal use of the interaction between the adaptive BMI algorithm and the learning 

process of the brain itself (Digiovanna et al., 2009; Orsborn et al., 2012). Nevertheless, 

we created a new decoder every session for the first six sessions as we wanted to study 

the stability of such decoder over sessions, with respect to the input EEG features. Our 

results show that as a result of changing EEG features, decoders are not stable. The 

performance drop in session 3 for participant A1 could possibly be associated with 

unstable EEG signal quality during the training phase for this session (Figure 3.6A, B) 

During sessions 7-12, the decoder was fixed, allowing us to examine the potential for 

cortical plasticity, given that performance was stable, except for one session. 

Surprisingly, the performance was stable for this duration, and possibly because the 

time-scale of BMI user learning may be longer than 6 sessions (Hochberg et al., 2012; 

Collinger et al., 2012; Perge et al., 2014).  

Implications for noninvasive BMIs  

In this study, an amputee participant (A1) was able to control a robotic hand to 

grasp two objects (bottle and credit card) with a success rate of 63% over 5 weeks. We 

previously showed that low-frequency time domain EEG contains information about a 

variety of upper limb movement intentions, such as hand transport (Bradberry et al., 

2010), grasping (Agashe and Contreras-Vidal, 2011, 2013a), and finger movements 

(Paek et al., 2014). Studies from other groups show similar results from field potentials 

at smaller spatial scales, like LFPs (Zhuang et al., 2010; Mollazadeh et al., 2011; Bansal 

et al., 2011; Hall et al., 2014) and ECoG (Acharya et al., 2010; Kubánek et al., 2009; 

Pistohl et al., 2012). Closed-loop studies with implanted intracortical electrodes also 

show significant information in low-frequency time-domain LFP (Perge et al., 2014). 

Here, we show for the first time that this feature space is viable for extracting grasping-

related movement intent from amputees, and can be used to control closed-loop 

neuroprosthetics. 
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Our current BMI relies on subject-initiated hand transport to trigger BMI control of 

the hand via a switch, constraining the system to laboratory use. BMI systems able to 

detect initiation of hand transport for grasping without a switch, would be more suited for 

use outside the lab is a target for future innovation. Further studies with a larger time 

window that will be able to detect changes in BMI learning over the scale of months are 

also needed. Tactile feedback from fingertip sensors may also help neuroprosthetic 

embodiment and closed-loop performance. Further studies are also needed to 

investigate the generalizability of decoders to different grasp types. Results from this 

study show that EEG-based BMIs are feasible when the right input feature space is 

used.  
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CHAPTER 4: CONCLUSION 

Current myoelectric control of upper limb prosthetics allows reasonable control 

over arm positioning and orientation. Brain machine interfaces which directly translate 

cortical activity to control prosthetic devices may augment existing myoelectric control by 

allowing natural and intuitive control. Current BMI technology is invasive and requires 

the use of implanted microelectrodes to access cortical signals and is restricted to 

tetraplegics. Here we develop a noninvasive (EEG-based) BMI for prosthetic control and 

demonstrate its feasibility in amputees.  

Representation of grasping kinematics at the macro scale of EEG has not been 

investigated previously. Here, we show that low frequency (0.1 – 1 Hz) time domain 

EEG encodes grasping kinematics accurately. Specifically, we were able to show high 

correlation between predicted and actual trajectories of finger joint angle velocity 

synergies during grasp pre-shaping. In addition to synergies, we also demonstrated high 

accuracies for individual joint angular velocities. The spatio-temporal pattern of 

recruitment of scalp areas was found to be in agreement with previously known 

neurophysiological correlates of motor control. Information content in EEG about the 

grasp type peaked at 250 ms after movement onset. The high decoding accuracies in 

this study are significant not only as evidence for time-domain modulation in macro-scale 

brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, 

which harnesses the neural ‘symphony’ as opposed to local members of the neural 

ensemble (as in intracranial approaches), may provide a means of extracting information 

about motor intent for grasping without the need for penetrating electrodes. 

Using the low frequency time domain EEG feature space, we designed a closed-

loop BMI with which an amputee participant (A1) was able to control a robotic hand to 

grasp two objects (bottle and credit card) with a success rate of 63%. Here, we show for 

the first time that this feature space is viable for extracting grasping-related movement 
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intent from amputees, and can be used to control closed-loop neuroprosthetics. Further 

investigation is required to ascertain stability of BMI models and EEG over longer time 

scales. Further studies are also needed to investigate the generalizability of BMI models 

to different grasp types. Results from this study show that EEG-based BMIs are feasible 

when the right input feature space is used.  
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