3,859,467 research outputs found
Comment on "Evidence for nontrivial ground-state structure of 3d +/- J spin glasses"
In a recent Letter [Europhys. Lett. 40, 429 (1997)], Hartmann presented
results for the structure of the degenerate ground states of the
three-dimensional +/- J spin glass model obtained using a genetic algorithm. In
this Comment, I argue that the method does not produce the correct
thermodynamic distribution of ground states and therefore gives erroneous
results for the overlap distribution. I present results of simulated annealing
calculations using different annealing rates for cubic lattices with
N=4*4*4spins. The disorder-averaged overlap distribution exhibits a significant
dependence on the annealing rate, even when the energy has converged. For fast
annealing, moments of the distribution are similar to those presented by
Hartmann. However, as the annealing rate is lowered, they approach the results
previously obtained using a multi-canonical Monte Carlo method. This shows
explicitly that care must be taken not only to reach states with the lowest
energy but also to ensure that they obey the correct thermodynamic
distribution, i.e., that the probability is the same for reaching any of the
ground states.Comment: 2 pages, Revtex, 1 PostScript figur
Gravitating Brane Systems: Some General Theorems
Multidimensional gravity interacting with intersecting electric and magnetic
-branes is considered for fields depending on a single variable. Some
general features of the system behaviour are revealed without solving the field
equations. Thus, essential asymptotic properties of isotropic cosmologies are
indicated for different signs of spatial curvature; a no-hair-type theorem and
a single-time theorem for black holes are proved (the latter makes sense in
models with multiple time coordinates). The validity of the general
observations is verified for a class of exact solutions known for the cases
when certain vectors, built from the input parameters of the model, are either
orthogonal in minisuperspace, or form mutually orthogonal subsystems. From the
non-existence of Lorentzian wormholes, a universal restriction is obtained,
applicable to orthogonal or block-orthogonal subsystems of any -brane
system.Comment: 13 pages, Latex2e, 1 Latex figure, uses bezier.st
Relativistic Kinetic Equations for Finite Domains and Freeze-out Problem
The relativistic kinetic equations for the two domains separated by the
hypersurface with both space- and time-like parts are derived. The particle
exchange between the domains separated by the time-like boundaries generates
source terms and modifies the collision term of the kinetic equation. The
correct hydrodynamic equations for the ``hydro+cascade'' models are obtained
and their differences from existing freeze-out models of the hadronic matter
are discussed
Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches
Effects of plasma inhomogeneity on self-modulating proton bunches and
accelerated electrons were studied numerically. The main effect is the change
of the wakefield wavelength which results in phase shifts and loss of
accelerated particles. This effect imposes severe constraints on density
uniformity in plasma wakefield accelerators driven by long particle bunches.
The transverse two stream instability that transforms the long bunch into a
train of micro-bunches is less sensitive to density inhomogeneity than are the
accelerated particles. The bunch freely passes through increased density
regions and interacts with reduced density regions.Comment: 7 pages, 10 figure
Role of Fe substitution on the anomalous magnetocaloric and magnetoresistance behavior in Tb(Ni1-xFex)2 compounds
We report the magnetic, magnetocaloric and magnetoresistance results obtained
in Tb(Ni1-xFex)2 compounds with x=0, 0.025 and 0.05. Fe substitution leads to
an increase in the ordering temperature from 36 K for x=0 to 124 K for x=0.05.
Contrary to a single sharp MCE peak seen in TbNi2, the MCE peaks of the Fe
substituted compounds are quite broad. We attribute the anomalous MCE behavior
to the randomization of the Tb moments brought about by the Fe substitution.
Magnetic and magnetoresistance results seem to corroborate this proposition.
The present study also shows that the anomalous magnetocaloric and
magnetoresistance behavior seen in the present compounds is similar to that of
Ho(Ni,Fe)2 compounds
Effect of Zn doping on the Magneto-Caloric effect and Critical Constants of Mott Insulator MnV2O4
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped
MnV2O4 have been measured and from the magnetic measurement the critical
exponents and magnetocaloric effect have been estimated. The XANES study
indicates that Zn doping does not change the valence states in Mn and V. It has
been shown that the obtained values of critical exponents \b{eta}, {\gamma} and
{\delta} do not belong to universal class and the values are in between the 3D
Heisenberg model and the mean field interaction model. The magnetization data
follow the scaling equation and collapse into two branches indicating that the
calculated critical exponents and critical temperature are unambiguous and
intrinsic to the system. All the samples show large magneto-caloric effect. The
second peak in magneto-caloric curve of Mn0.95Zn0.05V2O4 is due to the strong
coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces
the residual spins on the V-V pairs resulting the decrease of coupling between
orbital and spin degrees of freedom.Comment: 19 pages, 9 Figures. arXiv admin note: substantial text overlap with
arXiv:1311.402
Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy
The effect of pressure on the magnetic and the magnetocaloric properties
around the martensitic transformation temperature in NiCoMnSb Heusler alloy has
been studied. The martensitic transition temperature has significantly shifted
to higher temperatures with pressure, whereas the trend is opposite with the
application of applied magnetic field. The maximum magnetic entropy change
around the martensitic transition temperature for Ni45Co5Mn38Sb12 is 41.4 J/kg
K at the ambient pressure, whereas it is 33 J/kg K at 8.5 kbar. We find that by
adjusting the Co concentration and applying suitable pressure, NiCoMnSb system
can be tuned to achieve giant magnetocaloric effect spread over a large
temperature span around the room temperature, thereby making it a potential
magnetic refrigerant material for applications.Comment: 16 pages, 5 figure
Mass spectral analysis and quantification of Secondary Ion Mass Spectrometry data
This work highlights the possibility of improving the quantification aspect
of Cs-complex ions in SIMS (Secondary Ion Mass Spectrometry), by combining the
intensities of all possible Cs-complexes. Identification of all possible
Cs-complexes requires quantitative analysis of mass spectrum from the material
of interest. The important steps of this mass spectral analysis include
constructing fingerprint mass spectra of the constituent species from the table
of isotopic abundances of elements, constructing the system(s) of linear
equations to get the intensities of those species, solving them, evaluating the
solutions and employing a regularization process when required. These steps are
comprehensively described and the results of their application on a SIMS mass
spectrum obtained from D9 steel are presented. It is demonstrated that results
from the summation procedure, which covers entire range of sputtered clusters,
is superior to results from single Cs-complex per element. The result of
employing a regularization process in solving a mass spectrum from an SS316LN
steel specimen is provided to demonstrate the necessity of regularization.Comment: 10 pages, 3 figures; added reference for section "Theory", a few
sentences modified for clarit
- …
