25 research outputs found

    ์ธ์ฒด ์œ ๋ฐฉ์•” ์„ธํฌ์—์„œ Caveolin-1 ๊ฐ์†Œ์— ์˜ํ•œ ์•”์ค„๊ธฐ์„ธํฌ ํŠน์„ฑ ๋ฐœํ˜„ ์ด‰์ง„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๋Œ€ํ•™ ์•ฝํ•™๊ณผ, 2019. 2. ๅพๆฆฎไฟŠ.์•”์ค„๊ธฐ์„ธํฌ (Cancer stem cell)๋Š” ์ข…์–‘์˜ ๊ฐœ์‹œ (initiation), ์ „์ด (metastasis), ๊ทธ๋ฆฌ๊ณ  ์žฌ๋ฐœ (recurrence)์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ์‚ดํŽด๋ณด๋ฉด, ์•”์˜ ์ง„ํ–‰์— ์žˆ์–ด์„œ ์•”์ค„๊ธฐ์„ธํฌ์˜ ๋ณต์žกํ•œ ์ƒ๋ฆฌํ•™์  ๊ธฐ๋Šฅ์„ ์ดํ•ดํ•˜๊ณ , ์ด๋“ค์˜ ๋ฐœ์ƒ ๊ธฐ์ „์„ ์กฐ์ ˆํ•˜๋Š” ์น˜๋ฃŒ๋ฒ• ๊ฐœ๋ฐœ์ด ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ ๋ฐœ์ƒ ๊ธฐ์ „์„ ์กฐ์ ˆํ•˜๋Š” ์กฐ์ ˆ์ธ์ž (modulator)๋กœ์„œ Caveolin-1 (Cav-1)์„ ์„ ์ •ํ•˜์˜€๋‹ค. Cav-1์€ ์„ธํฌ๋ง‰ ๋‹จ๋ฐฑ์งˆ์ธ Caveolae๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์š” ๋‹จ๋ฐฑ์งˆ๋กœ์จ, ์„ธํฌ๋‚ด ์ฝœ๋ ˆ์Šคํ…Œ๋กค ํ•ญ์ƒ์„ฑ ์œ ์ง€ (cholesterol homeostasis), ๋ถ„์ž ์ˆ˜์†ก (vesicle trafficking), ์•”์˜ ์ง„ํ–‰ (tumor progression) ๋ฐ ์‹ ํ˜ธ ์ „๋‹ฌ (signal transduction) ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์— ๊ด€์—ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Cav-1์˜ ์•”์ค„๊ธฐ์„ธํฌ์— ๋Œ€ํ•œ ๋ถ„์ž๊ธฐ์ „์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•”์ค„๊ธฐ์„ธํฌ์˜ ๋ฐœ์ƒ๊ธฐ์ „์— ์žˆ์–ด์„œ Cav-1์˜ ์—ญํ• ์— ๋Œ€ํ•ด ์•Œ์•„ ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋จผ์ €, ์ค„๊ธฐ์„ธํฌ ๋ฐฐ์–‘๋ฐฉ๋ฒ•์œผ๋กœ ์ž˜ ์•Œ๋ ค์ง„ sphere-forming culture system์„ ํ†ตํ•ด ๋ฐฐ์–‘๋œ ์œ ๋ฐฉ์•” ์ค„๊ธฐ์„ธํฌ (tumorsphere MDA-MB-231)์—์„œ Cav-1์˜ ๋ฐœํ˜„์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์œ ๋ฐฉ์•”์„ธํฌ MDA-MB-231์— small interfering RNA (siRNA) ๊ธฐ๋ฒ•์„ ํ†ตํ•ด Cav-1์„ ์–ต์ œํ•˜์˜€์„ ๋•Œ, ์ค„๊ธฐ์„ธํฌ์—์„œ ๋งŽ์ด ๋‚˜ํƒ€๋‚˜๋Š” ํŠน์„ฑ์ธ ์ž๊ฐ€์žฌ์ƒ (self-renewal)๊ณผ epithelial-mesenchymal transition (EMT)์˜ ํ‘œํ˜„ํ˜• (phenotype)์ด ์ฆ๊ฐ€ํ•˜๊ณ , ๋”๋ถˆ์–ด ๊ตฌ์ฒดํ˜•์„ฑ๋Šฅ (tumorsphere forming capacity)์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ตฌ์ฒดํ˜•์„ฑ ์„ธํฌ (tumorsphere cell)์—์„œ Cav-1์˜ ๋ฐœํ˜„์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์€ ์œ ๋น„ํ€ดํ‹ดํ™”์— ์˜ํ•œ ๋‹จ๋ฐฑ์งˆ ๋ถ„ํ•ด ์กฐ์ ˆ ๊ธฐ์ „์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. Cav-1์˜ ํ™œ์„ฑ์—๋Š” tyrosine 14๋ฒˆ ์ž”๊ธฐ๊ฐ€ ์ฃผ๋กœ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๋ฌธํ—Œ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ, ํŠน์ • ๋ถ€์œ„ ๋Œ์—ฐ๋ณ€์ด (site-directed mutagenesis)๋ฅผ ํ†ตํ•ด tyrosine 14๋ฒˆ์„ phenylalanine์œผ๋กœ ์น˜ํ™˜ํ•˜์˜€์„ ๊ฒฝ์šฐ, ์ž๊ฐ€์žฌ์ƒ๋Šฅ๊ณผ EMT ํ‘œํ˜„ํ˜•์ด ๊ฐ์†Œ๋˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด, ์ค„๊ธฐ์„ธํฌ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ Cav-1์˜ tyrosine 14 ์ž”๊ธฐ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ Cav-1์ด ๋‹ค๋ฅธ ๋ถ„์ž์™€ ์ƒํ˜ธ๊ฐ„์˜ ์ง์ ‘์ ์ธ ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ์‹ ํ˜ธ ์ „๋‹ฌ์— ๊ธฐ์—ฌํ•œ๋‹ค๋Š” ๋ณด๊ณ ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ทธ ํ›„๋ณด๋ฌผ์งˆ๋กœ์„œ Nrf2๋ฅผ ์„ ์ •ํ•˜์—ฌ, ์‹ค์ œ ์ด๋“ค์ด ์œ ๋ฐฉ์•” ์„ธํฌ์—์„œ ๊ฒฐํ•ฉ์„ ์ด๋ฃจ๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , tumorsphere cell์—์„œ Cav-1์˜ ๋‹จ๋ฐฑ์งˆ ์•ˆ์ •ํ™”๊ฐ€ ๊ฐ์†Œ๋˜๋ฉด์„œ Cav-1๊ณผ ๊ฒฐํ•ฉ๋˜์–ด ์žˆ๋˜ Nrf2๊ฐ€ ํ•ต ์•ˆ์œผ๋กœ ์ด๋™๋˜์–ด ์ค„๊ธฐ์„ธํฌ๋Šฅ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ตœ๊ทผ ์•”์ค„๊ธฐ์„ธํฌ๋ฅผ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜๋Š” ์•”์˜ ์น˜๋ฃŒ ๋ฐ ์˜ˆ๋ฐฉ์„ ์œ„ํ•ด ๋น„๊ต์  ๋…์„ฑ์ด ์•ฝํ•œ ์‹๋ฌผ ์œ ๋ž˜ ํ™”ํ•ฉ๋ฌผ (phytochemicals)์„ ์ด์šฉํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์ด๋ฃจ์–ด ์ง€๊ณ  ์žˆ๋‹ค. Resveratrol์€ ๊ทธ ๊ฐ€์šด๋ฐ ๋Œ€ํ‘œ์ ์ธ ๋ฌผ์งˆ ์ค‘ ํ•˜๋‚˜๋กœ, ํฌ๋„, ๊ฑด๊ณผ๋ฅ˜ ๋ฐ ์žฅ๊ณผ๋ฅ˜ (berries) ๋“ฑ์— ๋‹ค๋Ÿ‰ ํ•จ์œ ๋˜์–ด ์žˆ๋Š” ํด๋ฆฌํŽ˜๋†€ ์„ฑ๋ถ„ ๋ฌผ์งˆ๋กœ ํ•ญ์‚ฐํ™” ํšจ๊ณผ, ์‹ฌํ˜ˆ๊ด€๊ณ„์งˆํ™˜ ์˜ˆ๋ฐฉํšจ๊ณผ, ํ•ญ์•”ํšจ๊ณผ, ์—ผ์ฆ๊ด€๋ จ ์งˆํ™˜ ์˜ˆ๋ฐฉ ํšจ๊ณผ๋ฅผ ๊ฐ€์ง„ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. Resveratrol์„ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ, ์œ ๋ฐฉ์•”์„ธํฌ์˜ ๊ตฌ์ฒดํ˜•์„ฑ๋Šฅ๊ณผ ์ž๊ฐ€์žฌ์ƒ, EMT ํ‘œํ˜„ํ˜•์ด ๊ฐ์†Œํ•˜๊ณ , Cav-1์˜ ๋ฐœํ˜„์€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋•Œ ์ฆ๊ฐ€ํ•œ Cav-1์„ siRNA๋ฅผ ์ด์šฉํ•˜์—ฌ ์–ต์ œ์‹œํ‚ค๋ฉด, ๊ฐ์†Œํ•˜์˜€๋˜ ์ค„๊ธฐ์„ธํฌ๋Šฅ์ด ๋‹ค์‹œ ์ฆ๊ฐ€ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ resveratrol์ด Cav-1์„ ๋งค๊ฐœ๋กœ ํ•œ ๊ฒฝ๋กœ ์กฐ์ ˆ์„ ํ†ตํ•ด ์•”์ค„๊ธฐ์„ธํฌ์  ์„ฑ๊ฒฉ์„ ์–ต์ œํ•˜์—ฌ, ํ–ฅํ›„ ์•”์ค„๊ธฐ์„ธํฌ๋ฅผ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด ์น˜๋ฃŒ๋ฒ•์˜ ์ ‘๊ทผ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.Cancer stem cells (CSCs), a subset of cancer cells characterized by the property of self-renewal and differentiation, initiate tumor growth and promote chemo-/radiotherapy resistance, which are considered to be responsible for progression, recurrence and metastasis. Several intrinsic and extrinsic signaling pathways maintaining CSCs population have been explored. A prominent property of CSCs is the ability to undergo self-renewal division. The dysregulation of self-renewal signaling may account for the regeneration of the tumor. Hence, understanding the signaling pathways for maintaining features of CSCs is likely to be important for developing targeted anticancer therapies. Caveolin-1 (Cav-1) is a major protein of caveolae, which is flask-shaped invagination at cell membranes. Caveolae participate in various cellular functions, such as vesicle tra๏ฌƒcking, cholesterol homeostasis, and tumor progression. Cav-1 is thought to regulate the activity of proteins, such as Src family kinases, H-Ras, protein kinase C, epidermal growth factor tyrosine kinase, extracellular signal-regulated kinase, and endothelial nitric oxide synthase involved in oncogenic signaling pathways. In this context, Cav-1 has been proposed as a potential therapeutic target for disrupting tumor progression and metastasis. In the present study, I investigated a role for Cav-1 in regulating the stemness of human breast cancer (MDA-MB-231) cells. To investigate whether Cav-1 could be involved in modulating the stemness of breast cancer cells, tumorspheres were generated from adherent cells. Cav-1 expression was significantly lower in tumorspheres than in adherent cells. Further, the proportion of breast stem-like CD44high and CD24low cells was increased in Cav-1 knocked down MDA-MB-231 cells. Mechanistically, the silencing of Cav-1 resulted in the elevated expression of the well-known stemness-related genes, Nanog, Oct 3/4, and Sox2 with concomitant upregulation of Bmi-1, a representative self-renewal regulator. In line with above findings, the Cav-1 knock down increased the size and the number of spheres derived from MDA-MB-231 cells. In a CSC-like state, the reduced Cav-1 levels were attributable to its destabilization through ubiquitin-proteasome degradation. Src-mediated phosphorylation of Cav-1 at the Tyr 14 residue is essential for its degradation. The expression of p-Cav-1 (Tyr14) and p-Src (Tyr416) was markedly elevated in tumorsphere cells, compared to adherent cells. Y14F Cav-1 mutation by replacing Tyr14 with phenylalanine was sufficient to abolish phosphorylation and ubiquitination of Cav-1 protein. To verify that Cav-1 suppresses the breast cancer cell stemness, we overexpressed Cav-1 in MDA-MB-231 tumorspheres. As a result, the MDA-MB-231 tumorspheres overexpressing WT-Cav-1 exhibited the reduced ability of spheroid formation compared with Mock treated control cells. Notably, the tumorsphere-forming ability of cells expressing Y14F mutant Cav-1 was weaker than that of cells expressing WT-Cav-1. Likewise, the Y14F Cav-1 mutation significantly mitigated the inhibitory effects of Cav-1 on the expression of Bmi-1 and EMT markers. Taken together, these findings suggest that Cav-1destabilization by Src-mediated phosphorylation may play a pivotal role in manifestation and maintenance of stemness in breast cancer cells. However, a question that still needs to be addressed is how Cav-1 destabilization promotes stemness properties. The Nuclear erythroid 2 p45-related factor-2 (Nrf2) is a key transcription factor that regulates the antioxidant and detoxification enzymes. Recently, it has been reported that Nrf2 signaling is involved in CSC-like properties of several types of cancer cells. Notably, Nrf2 has been reported to directly interact with Cav-1. In breast cancer, Cav-1 binds to Nrf2 and enhances its degradation in cytosol through ubiquitination. The reduction of the intracellular accumulation of Nrf2 by Cav-1 led to a decrease in stemness-related gene expression. When degradation of Cav-1 occurs through ubiquitin-proteasomal degradation, Nrf2 is dissociated from the Cav-1 complex. The liberated Nrf2 accumulates in the nucleus and enhances the expression of stemness-related genes, which promote the manifestation of CSC-like phenotypes. Thus, Cav-1 interact with Nrf2 in breast cancer and inhibits the Nrf2 signaling, thereby suppressing the manifestation of CSC-like properties. Recently, natural products have attracted much attention for prevention and treatment of cancer. Resveratrol (trans-3,4,5-triydroxystilbene), a phytoalexin found in grapes and other food products, has been investigated with regard to its chemopreventive and chemotherapeutic activities in various cancer cells as well as in animal models. Nonetheless, the underlying mechanism by which resveratrol regulates the signal transduction pathway involved in maintenance of CSCs and manifestation of their characteristics still remains to be largely unclear. Therefore, I investigated the effects of the resveratrol on breast cancer stem-like properties in the context of its modulation of Cav-1-mediated signaling. In this study, I found the inhibitory effect of resveratrol on the viability and migration capacity of tumorsphere MDA-MB-231 cells. Further, resveratrol significantly decreased the number and the size of MDA-MB-231 tumorspheres and also the proportion of CD44high/CD24low cell population Mechanically, the expression of self-renewal signaling molecules and EMT markers was reduced by treatment of resveratrol. Notably, resveratrol treatment decreased expression of self-renewal and EMT markers, which was elevated by knockdown of Cav-1. In conclusion, reduced Cav-1 accumulation depends on its destabilization through ubiquitin-proteasome degradation. After degradation of Cav-1, Nrf2 is dissociated from the Cav-1 complex and enhances the expression of stemness-related genes.. Resveratrol has an inhibitory effects on manifestation of Cav-1-mediated CSC-like properties. This study herein indicates that Cav-1 acts as a pivotal regulator in manifestation and maintenance of stemness in breast cancer cells and can be an important therapeutic target for breast cancer therapy.Chapter โ…  Role of Caveolin-1 in cancer progression and metastasis 1 1. Introduction 2 2. The role of Cav-1 expression in human cancer 4 2.1 Expression of Cav-1 in human cancer cells 4 2.2 Dual role of Cav-1 in cancer - 6 2.2.1 Tumor suppressor 6 2.2.2 (Transformation) suppressor 6 2.2.3 Oncogene 7 2.3 Implication of Cav-1 expression in pathogenesis of human cancer - 7 3. The role of Cav-1 in invasion, migration and metastasis 8 3.1 Cav-1 and EMT 9 3.2 Cav-1 and Rho-GTPases 10 3.3 Cav-1 and matrix metalloproteinase (MMP) 10 4. Conclusion - 11 5. References 16 Statement of purpose - 28 Chapter โ…ก Src-mediated phosphorylation, ubiquitination and degradation of Caveolin- 1 promotes breast cancer stemness and progression 29 1. Abstract 30 2. Introduction - 31 3. Materials and Methods 34 4. Results - 45 5. Discussion - 71 6. References - 76 Chapter โ…ข Caveolin-1 inhibits stem-like traits of breast cancer cells through direct interaction with Nrf2 86 1. Abstract 87 2. Introduction 88 3. Materials and Methods - 90 4. Results 98 5. Discussion - 110 6. References - 113 Chapter โ…ฃ Effects of resveratrol on Caveolin-1-mediated manifestation of breast cancer stem-like properties 120 1. Abstract 121 2. Introduction - 122 3. Materials and Methods 124 4. Results - 130 5. Discussion - 140 6. References - 143 Conclusion - 152 Abstract in Korean 154Docto

    ํ† ํ”ฝ ๋ชจ๋ธ๋ง์„ ์ด์šฉํ•œ ์ž๋™ ์ธํ„ฐ๋„ท ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ ์‹œ๊ทธ๋‹ˆ์ณ ์ถ”์ถœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 2. ๊น€์ข…๊ถŒ.Classifying network traffic according to the application that generated it has attracted significant interests among Internet researchers and operators, as it is an essential task for understanding, operating, optimizing, planning, and financing the Internet. Although content-analysis based Deep Packet (Payload) Inspection technique has been found very accurate once given a set of known payload signature strings for corresponding applications, it is very time consuming and challenging to manually derive and construct the signatures. In this paper, we propose a new, automatic payload content-analysis based traffic classification method called TASTE(Topic-model based Automatic Signature Extraction). TASTE adopts the Latent Dirichlet Allocation (LDA) topic model, which is one of the most popular probabilistic text modeling techniques for extracting latent semantic information from text corpa. Our evaluation with a broad range of data sets demonstrates that TASTE can automatically detect and identify signatures for a range of applications without any prior knowledge, with 96-98% of overall accuracy.Chapter 1 Introduction 1 1.1 Background 1 1.2 Main Idea and Contributions 2 1.3 Thesis Organization 3 Chapter 2 Related Work 4 Chapter 3 Topic Model Based Classification 8 3.1 LDA 8 3.2 Applying LDA to Traffic Classification 10 3.2.1 Overview 10 3.2.2 Inputs: Data pre-processing and Parameters 11 3.2.3 Outputs: Topics and their Distributions 12 Chapter 4 METHODOLOGIES 14 4.1. Performance metrics 14 4.2. Data set and reference benchmark 15 4.3. Parameter Setting 17 Chapter 5 RESULTS 23 5.1. Performance Comparison 23 5.2. Classification Quality 24 Chapter 6 DISCUSSION 26 Chapter 7 Conclusion 27Maste

    ํ’ˆ์ข…๋ณ„ ์ฒญ๊ณ ์ถ”์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ ๋ฐ ์œ ๋ฐฉ์•” ์„ธํฌ์ฃผ์—์„œ์˜ ์„ธํฌ์‚ฌ๋ฉธ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹ํ’ˆ์˜์–‘ํ•™๊ณผ, 2012. 8. ํ™ฉ์ธ๊ฒฝ.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๋‚ดยท์™ธ ํ’ˆ์ข…๋ณ„ green pepper์— ์žˆ๋Š” ๋น„ํƒ€๋ฏผ C, ์ด ํด๋ฆฌํŽ˜๋†€, ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ๋ฅผ ๋น„๋กฏํ•˜์—ฌ ๊ณ ์ถ”์— ์ฃผ๋กœ ํ•จ์œ ๋œ flavonoids์ธ quercetin, luteolin, apigenin์˜ ์–‘์„ ์ธก์ •ํ•˜๊ณ , ์ด๋“ค๋กœ ์ธํ•œ ํ•ญ์‚ฐํ™” ํšจ๊ณผ์™€ ๋”๋ถˆ์–ด ์œ ๋ฐฉ์•” ์„ธํฌ์—์„œ์˜ apoptosis๋ฅผ ํ†ตํ•œ ์„ธํฌ ์‚ฌ๋ฉธ ์œ ๋„์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์— ๊ตญ๋‚ด์‚ฐ green pepper์˜ flavonoids์— ๋Œ€ํ•œ ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•˜๊ณ , ์ด๋“ค์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ ๋ฐ ์œ ๋ฐฉ์•” ์„ธํฌ์—์„œ์˜ apoptosis๋ฅผ ํ†ตํ•˜์—ฌ ์•”์„ ๋น„๋กฏํ•œ ๋‹ค์–‘ํ•œ ์งˆ๋ณ‘์˜ ์˜ˆ๋ฐฉ์— ์žˆ์–ด ์ž ์žฌ์ ์ธ ๊ฐ€์น˜๋ฅผ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ํ’‹๊ณ ์ถ”, ์ฒญ์–‘๊ณ ์ถ”, ๊ฝˆ๋ฆฌ๊ณ ์ถ”, ์˜ค์ด๊ณ ์ถ”, ํ• ๋ผํ”ผ๋‡จ์˜ 5๊ฐ€์ง€ ํ’ˆ์ข…์˜ flavonoids๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ทธ ํ•จ๋Ÿ‰์— ์žˆ์–ด์„œ luteolin, quercetin, apigenin์˜ ์ˆœ์œผ๋กœ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํ’ˆ์ข… ๊ฐ„์—๋Š” ๊ฝˆ๋ฆฌ๊ณ ์ถ”์˜ flavonoids๊ฐ€ ์œ ์˜์ ์œผ๋กœ ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋น„ํƒ€๋ฏผ C์˜ ํ•จ๋Ÿ‰์€ ๊ฝˆ๋ฆฌ๊ณ ์ถ”๊ฐ€ ๊ฐ€์žฅ ๋†’์•˜์œผ๋ฉฐ, ๊ทธ ๋‹ค์Œ ์ฒญ์–‘๊ณ ์ถ”, ํ• ๋ผํ”ผ๋‡จ, ํ’‹๊ณ ์ถ”, ์˜ค์ด๊ณ ์ถ”์˜ ์ˆœ์œผ๋กœ ์ธก์ •๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์ด ํด๋ฆฌํŽ˜๋†€๊ณผ ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ํ•จ๋Ÿ‰์€ ๊ฝˆ๋ฆฌ๊ณ ์ถ”๊ฐ€ ์œ ์˜์ ์œผ๋กœ ๋†’๊ฒŒ ์ธก์ •๋˜์—ˆ๋Š”๋ฐ ์ด๋Š” DPPH, ABTS ์ž์œ ๊ธฐ ์†Œ๊ฑฐ ํ™œ์„ฑ๋Šฅ์—์„œ๋„ ๋น„์Šทํ•œ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Green pepper ์ถ”์ถœ๋ฌผ์˜ ์„ธํฌ ์„ฑ์žฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‚ดํŽด๋ณธ ๊ฒฐ๊ณผ, human breast cancer cell์ธ MCF-7๊ณผ MDA-MB-231์—์„œ 5๊ฐ€์ง€ ํ’ˆ์ข… ๋ชจ๋‘ ๋†๋„ ์˜์กด์ ์œผ๋กœ ์œ ์˜์ ์ธ ์ฆ์‹ ์–ต์ œ๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ๊ฝˆ๋ฆฌ๊ณ ์ถ”์—์„œ IC50 ๊ฐ’์ด 826 ฮผg/mL, 719 ฮผg/mL๋กœ ๊ฐ€์žฅ ๋‚ฎ๊ฒŒ ์ธก์ •๋˜์–ด ์ฆ์‹ ์–ต์ œ ํšจ๊ณผ๊ฐ€ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Necrosis๋กœ ์ธํ•œ ์„ธํฌ ์‚ฌ๋ฉธ ํšจ๊ณผ๋Š” ๊ฝˆ๋ฆฌ๊ณ ์ถ” ์ถ”์ถœ๋ฌผ์„ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ, ๋†๋„ ์˜์กด์ ์œผ๋กœ LDH๊ฐ€ ๋ถ„๋น„๋˜๋ฉฐ, plasma membrane integrity์˜ ๊ฐ์†Œ๊ฐ€ ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. Apoptosis์˜ ํ™•์ธ ์ธ์ž๋กœ Bax, cleaved caspase-3, PARP๋ฅผ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ, ๊ฝˆ๋ฆฌ๊ณ ์ถ” ์ถ”์ถœ๋ฌผ์—์„œ ๋†๋„ ์˜์กด์ ์œผ๋กœ apoptosis๋กœ ์ธํ•œ ์„ธํฌ์‚ฌ๋ฉธ ํšจ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋“ค์„ ํ†ตํ•˜์—ฌ, green pepper์—๋Š” luteolin, quercetin ๋ฐ apigenin์˜ flavonoids๋ฅผ ๋น„๋กฏํ•˜์—ฌ vitamin C ๋“ฑ ์—ฌ๋Ÿฌ ๊ธฐ๋Šฅ์„ฑ ์„ฑ๋ถ„์„ ํ•จ์œ ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํŠนํžˆ ๊ฝˆ๋ฆฌ๊ณ ์ถ”๊ฐ€ 5๊ฐ€์ง€ ํ’ˆ์ข… ๊ฐ€์šด๋ฐ ํ•ญ์‚ฐํ™” ๋ฐ ํ•ญ์•”๋Šฅ ์ธก์ •์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™œ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์œ ๋ฐฉ์•”์„ธํฌ์—์„œ apoptosis๋กœ ์ธํ•œ ์„ธํฌ ์‚ฌ๋ฉธ ํšจ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด์— ๊ตญ๋‚ด์‚ฐ green pepper์˜ flavonoids์˜ ์ •์„ฑยท์ •๋Ÿ‰์— ์žˆ์–ด์„œ ๊ธฐ์ดˆ์ž๋ฃŒ๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๋ฉฐ, ์ด๋“ค์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ์™€ ๋”๋ถˆ์–ด ์œ ๋ฐฉ์•” ์˜ˆ๋ฐฉ ๋ฐ ์น˜๋ฃŒ์— ์žˆ์–ด์„œ ์ž ์žฌ์ ์ธ ๊ฐ€์น˜๋ฅผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.Pepper (Capsicum annuum. var.) has various phytochemicals including capsaicin and flavonoid. However, studies on flavonoids in pepper are a few, compared to many researches done on capsaicin. So, we investigated total phenol, total flavonoid contents, antioxidant activity and antiproliferative activity though apoptosis on human breast cancer cell line (MCF-7, MDA-MB-231). This study was carried out to determine whether green pepper have a potential to prevent proliferation of human breast cancer. Four varieties of Korean green peppers (PP : Phut Pepper, CP : Cheongyang pepper, KP : Kkuri Pepper, OP : Ohi pepper) and one foreign green pepper (JP : Jalapeno Pepper) were used. Major flavonoids of green pepper were luteolin, quercetin, and apigenin. Content of luteolin was the highest in green pepper, especially in KP. The amounts of vitamin C were the highest in KP, followed by CP, JP, PP, and OP. The contents of total phenol were the highest in KP. KP had highest contents of total flavonoid. For antioxidant activity using DPPHยทABTS radical scavenging activity, KP had the most potent antioxidant activity, indicating the correlation between the content of flavonoid and vitamin C and the antioxidant activity. In the result of antiproliferative activity on human breast cancer cell, KP had the highest antiproliferative effect (IC50 826.07 ฮผg/ml in MCF-7, 719 ฮผg/mL in MDA-MB-231). KP extracts exhibited moderate cytotoxicity caused by necrosis against the cancer cell lines, in a dose-dependent manner, as measured by against the untreated control. To confirm the apoptotic activity, modulations of Bax, cleaved caspase-3, and PARP enzyme expression were evaluated by western blot, and KP showed dose dependent induction of apoptosis on breast cancer cell. These results suggest that green pepper has many functional compounds including flavonoids such as luteolin, quercetin, and apigenin, and vitamin C. Also, KP had the highest antioxidant activity and apoptotic activity among the five tested varieties. In conclusion, green pepper has significant antioxidant activity and can be a possible candidate for treatment of breast cancer.๊ตญ๋ฌธ์ดˆ๋ก ๋ชฉ์ฐจ ํ‘œ๋ชฉ์ฐจ ๊ทธ๋ฆผ๋ชฉ์ฐจ โ… . ์„œ๋ก  โ…ก. ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 1. ์‹คํ—˜์žฌ๋ฃŒ 2. ์‹คํ—˜๋ฐฉ๋ฒ• 2.1. ๋ฉ”ํƒ„์˜ฌ ์ถ”์ถœ 2.2. ๊ธฐ๋Šฅ์„ฑ ์„ฑ๋ถ„ ๋ถ„์„ 2.2.1. ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ๋ถ„์„ 2.2.2. ๋น„ํƒ€๋ฏผ C ํ•จ๋Ÿ‰ 2.2.3. ์ด ํด๋ฆฌํŽ˜๋†€ ํ•จ๋Ÿ‰ 2.2.4. ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ํ•จ๋Ÿ‰ 2.3 ํ•ญ์‚ฐํ™” ํ™œ์„ฑ ์ธก์ • 2.3.1. DPPH ์ž์œ ๊ธฐ ์†Œ๊ฑฐ ํ™œ์„ฑ๋Šฅ 2.3.2. ABTS ์ž์œ ๊ธฐ ์†Œ๊ฑฐ ํ™œ์„ฑ๋Šฅ 2.4 ๊ณ ์ถ”์ถ”์ถœ๋ฌผ์˜ ์„ธํฌ์‚ฌ๋ฉธ ํšจ๊ณผ ์ธก์ • 2.4.1. ์œ ๋ฐฉ์•” ์„ธํฌ์˜ ์ฆ์‹ ์–ต์ œ ํšจ๊ณผ 2.4.2. Necrosis ์ธก์ • 2.4.3. Apoptosis ์ธก์ • 2.4.3.1. Bax, cleaved caspase-3, PARP ์ธก์ • 3.1 ํ†ต๊ณ„์ฒ˜๋ฆฌ โ…ข. ์‹คํ—˜๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 1. ์ถ”์ถœ ์ˆ˜์œจ 2. ๊ธฐ๋Šฅ์„ฑ ์„ฑ๋ถ„ ๋ถ„์„ 2.1. ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ๋ถ„์„ 2.2. ๋น„ํƒ€๋ฏผ C ํ•จ๋Ÿ‰ 2.3. ์ด ํด๋ฆฌํŽ˜๋†€ ๋ฐ ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ํ•จ๋Ÿ‰ 3. ํ•ญ์‚ฐํ™” ํ™œ์„ฑ 3.1. DPPH ์ž์œ ๊ธฐ ์†Œ๊ฑฐ ํ™œ์„ฑ๋Šฅ 3.2. ABTS ์ž์œ ๊ธฐ ์†Œ๊ฑฐ ํ™œ์„ฑ๋Šฅ 3.3. Green pepper์˜ ๊ธฐ๋Šฅ์„ฑ ์„ฑ๋ถ„๊ณผ ํ•ญ์‚ฐํ™” ํ™œ์„ฑ ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„ 4. ๊ณ ์ถ”์ถ”์ถœ๋ฌผ์˜ ์„ธํฌ์‚ฌ๋ฉธ ํšจ๊ณผ 4.1. ์œ ๋ฐฉ์•” ์„ธํฌ์˜ ์ฆ์‹ ์–ต์ œ ํšจ๊ณผ 4.2. Necrosis 4.3. Apoptosis 4.3.1. Bax 4.3.2. cleaved caspase-3, PARP โ…ฃ. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  ์ฐธ๊ณ ๋ฌธํ—Œ AbstractMaste

    Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy

    Get PDF
    All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility.ope

    Cancer Patient Tissueoid with Self-Homing Nano-Targeting of Metabolic Inhibitor

    Get PDF
    The current paradigm of cancer medicine focuses on patient- and/or cancer-specific treatments, which has led to continuous progress in the development of patient representatives (e.g., organoids) and cancer-targeting carriers for drug screening. As breakthrough concepts, i) living cancer tissues convey intact profiles of patient-specific microenvironmental signatures. ii) The growth mechanisms of cancer mass with intense cell-cell interactions can be harnessed to develop self-homing nano-targeting by using cancer cell-derived nanovesicles (CaNVs). Hence, a tissueoid model of ovarian cancer (OC) is developed by culturing OC patient tissues in a 3D gel chip, whose microchannel networks enable perfusion to maintain tissue viability. A novel model of systemic cancer responses is approached by xenografting OC tissueoids into ischaemic hindlimbs in nude mice. CaNVs are produced to carry general chemotherapeutics or new drugs under pre/clinical studies that target the BRCA mutation or energy metabolism, thereby increasing the test scope. This pioneer study cross-validates drug responses from the OC clinic, tissueoid, and animal model by demonstrating the alignment of results in drug type-specific efficiency, BRCA mutation-dependent drug efficiency, and metabolism inhibition-based anti-cancer effects. Hence, this study provides a directional foundation to accelerate the discovery of patient-specific drugs with CaNV application towards future precision medicine.ope

    Hormone autocrination by vascularized hydrogel delivery of ovary spheroids to rescue ovarian dysfunctions

    Get PDF
    The regeneration potential of implantable organ model hydrogels is applied to treat a loss of ovarian endocrine function in women experiencing menopause and/or cancer therapy. A rat ovariectomy model is used to harvest autologous ovary cells while subsequently producing a layer-by-layer form of follicle spheroids. Implantation of a microchannel network hydrogel with cell spheroids [vascularized hydrogel with ovarian spheroids (VHOS)] into an ischemic hindlimb of ovariectomized rats significantly aids the recovery of endocrine function with hormone release, leading to full endometrium regeneration. The VHOS implantation effectively suppresses the side effects observed with synthetic hormone treatment (i.e., tissue overgrowth, hyperplasia, cancer progression, deep vein thrombosis) to the normal levels, while effectively preventing the representative aftereffects of menopause (i.e., gaining fatty weight, inducing osteoporosis). These results highlight the unprecedented therapeutic potential of an implantable VHOS against menopause and suggest that it may be used as an alternative approach to standard hormone therapy.ope

    $UsnJrnl ํŒŒ์ผ์„ ์ด์šฉํ•œ ์‚ฌ์šฉ์ž ํ–‰์œ„ ์ถ”์  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์ˆ˜๋ฆฌ์ •๋ณด๊ณผํ•™๊ณผ, 2018. 2. ์ฒœ์ •ํฌ.๋””์ง€ํ„ธํฌ๋ Œ์‹ ์ˆ˜์‚ฌ๊ด€์ด๋ผ๋ฉด ๋ˆ„๊ตฌ๋‚˜ ๋ฒ”์ฃ„์˜ ํ–‰์œ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๊ณ ๋ฏผ์„ ํ•˜๊ฒŒ ๋œ๋‹ค. ์‚ฌ๊ฑด์˜ ์œ ํ˜•์ด๋‚˜ ์‚ฌ์šฉ์ž์˜ ํ–‰์œ„ ํŒจํ„ด, ํ˜น์€ ์‚ฌ๊ฑด์˜ ์Ÿ์ ์— ๋”ฐ๋ผ ์••์ˆ˜์˜ ๋Œ€์ƒ์ด ๋‹ฌ๋ผ์ง€๊ณ  ์••์ˆ˜๋ฌผ์— ๋Œ€ํ•œ ๋ถ„์„ ๋ฐฉํ–ฅ์ด ๊ฒฐ์ •๋œ๋‹ค. ์˜ˆ์ปจ๋Œ€, ๊ธฐ์ˆ  ์œ ์ถœ ์‚ฌ๊ฑด์˜ ๊ฒฝ์šฐ๋ผ๋ฉด ํ˜์˜์™€ ๊ด€๋ จ๋œ ๋ฌธ๊ฑด์ด ํŠน์ • ๊ธฐ๊ธฐ์— ์กด์žฌ ํ–ˆ์—ˆ๋Š”์ง€์— ๋Œ€ํ•œ ์—ฌ๋ถ€, ํ˜น์€ ๊ธฐ์ˆ ์ด ์œ ์ถœ๋œ ๊ฒฝ๋กœ๋ฅผ ํ™•์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„์ด ์‹œ์ž‘๋˜๊ณ , ์ฆ๊ฑฐ ์ธ๋ฉธ์˜ ์‚ฌ๊ฑด์ด๋ผ๋ฉด ํ˜์˜์™€ ๊ด€๋ จ๋œ ๋ฌธ๊ฑด์ด ๋ฌด์—‡์ธ์ง€, ์–ธ์ œ, ์–ด๋–ค ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ญ์ œ๊ฐ€ ๋˜์—ˆ๋Š”์ง€, ํ˜น์€ ์‚ญ์ œ๋œ ๋ฌธ๊ฑด์„ ์–ด๋–ป๊ฒŒ ์ฐพ์•„๋‚ด๊ณ  ๋ณต๊ตฌํ• ์ง€์— ๋Œ€ํ•œ ํŒŒ์•…์œผ๋กœ ์‹œ์ž‘๋œ๋‹ค. ๋””์ง€ํ„ธ ๊ธฐ์ˆ ์˜ ๋ณดํŽธํ™”, ๋Œ€์ค‘ํ™”๋กœ ์ธํ•ด ๊ฐœ์ธ์˜ ์ผ์ƒ๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๋ฅผ ๋งบ๊ฒŒ ๋˜๋ฉด์„œ ์ฆ๊ฑฐ๋กœ์„œ์˜ ๋””์ง€ํ„ธ ์ •๋ณด๊ฐ€ ๊ฐ€์ง€๋Š” ์˜๋ฏธ๋Š” ์ ์ฐจ ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์ด ๊ณ ๋„ํ™” ๋˜๊ณ  ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ์ง€์‹์— ๋Œ€ํ•œ ์ ‘๊ทผ์ด ์šฉ์ดํ•ด์ง์— ๋”ฐ๋ผ ๊ฐœ์ธ๋“ค์˜ ๋””์ง€ํ„ธ ์ •๋ณด์— ๋Œ€ํ•œ ์ง€์‹์ด ์ง€๋Šฅํ™” ๋˜์–ด ์ˆ˜์‚ฌ๊ธฐ๊ด€์˜ ๊ฐœ๊ฐœ์ธ์˜ ๋””์ง€ํ„ธ ์ •๋ณด์— ๋Œ€ํ•œ ์ ‘๊ทผ์€ ์–ด๋ ค์›Œ์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๊ฐœ์ธ์˜ ํ”„๋ผ์ด๋ฒ„์‹œ๋‚˜ ๊ธฐ์—…์˜ ๋ณด์•ˆ ์˜์‹์ด ๊ฐ•ํ™”๋˜๋ฉด์„œ ์•ˆํ‹ฐํฌ๋ Œ์‹ ๊ธฐ์ˆ  ๋˜ํ•œ ๋”์šฑ ๋‹ค์–‘ํ•˜๊ณ  ์ •๋ฐ€ํ•ด ์ง์— ๋”ฐ๋ผ ์ด๋Ÿฌํ•œ ๋””์ง€ํ„ธ ์ฆ๊ฑฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ํ˜„์ถœํ•ด์•ผ ํ•˜๋Š” ๋””์ง€ํ„ธํฌ๋ Œ์‹ ์ˆ˜์‚ฌ๊ด€๋“ค์—๊ฒŒ๋Š” ๋” ๋‹ค์–‘ํ•˜๊ณ  ์‹ฌ๋„์žˆ๋Š” ๊ธฐ์ˆ ์ด๋‚˜ ์ •๋ณด ์Šต๋“์ด ์š”๊ตฌ๋˜์–ด์ง„๋‹ค. ๋””์ง€ํ„ธ ์ฆ๊ฑฐ ๋ถ„์„ ์š”์ฒญ์˜ ๋Œ€๋ถ€๋ถ„์€ ์‚ฌ์šฉ์ž์˜ ํŠน์ • ํ–‰์œ„์— ๋Œ€ํ•œ ์‹œ๊ฐ„ ์ •๋ณด๋‹ค. ํŠนํžˆ ์Ÿ์ ์ด ๋˜๋Š” ํ–‰์œ„์˜ ์‹คํ–‰ ์‹œ๊ฐ„, ์˜ˆ๋ฅผ ๋“ค์–ด ํŠน์ • ํŒŒ์ผ์ด ์กด์žฌํ•œ๋‹ค๋ฉด ๊ทธ ํŒŒ์ผ์„ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜ ๋ณ€๊ฒฝ, ์‚ญ์ œํ•œ ์‹œ๊ฐ„ ๋“ฑ์— ๋Œ€ํ•œ ์ •๋ณด๋‹ค. ๋ชจ๋“  ์‚ฌ๊ฑด์— ์žˆ์–ด์„œ ์‹œ๊ฐ„์ •๋ณด๋Š” ๋ฒ”์ฃ„ ํ–‰์œ„๋ฅผ ๊ทœ๋ช…ํ•˜๋Š” ํ•„์ˆ˜์  ์š”์†Œ์ด๊ณ , ๋””์ง€ํ„ธ ์ฆ๊ฑฐ์— ์žˆ์–ด์„œ๋„ ์˜ˆ์™ธ๋Š” ์•„๋‹ ๊ฒƒ์ด๋‹ค. ๋””์ง€ํ„ธํฌ๋ Œ์‹์˜ ๊ด€์ ์—์„œ ์ด๋Ÿฌํ•œ ์ •๋ณด๋“ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ์š”์†Œ๋“ค์€ ๋งŽ์ง€๋งŒ ๊ทธ ์ค‘ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์—ˆ๋˜ UsnJrnlํŒŒ์ผ์€๊ทธ๊ธฐ๋Šฅ์˜ํŠน์„ฑ์ƒ์‚ฌ์šฉ์ž๋ฐ์‹œ์Šคํ…œ์˜ํ–‰์œ„๋ฅผ๋น„๊ต์ ๊ตฌ์ฒด์ ์ธ์‹œ๊ฐ„์ •๋ณด์™€ํ•จ๊ป˜๊ธฐ๋กํ•˜๊ณ ์žˆ๋‹ค.ํ•˜์ง€๋งŒํ˜„์žฌ๊ตญโ‹…๋‚ด์™ธ์ ์œผ๋กœ๋””์ง€ํ„ธํฌ๋ Œ์‹์ˆ˜์‚ฌ๊ด€๋“ค์ดํ™œ์šฉํ• ์ˆ˜์žˆ๋Š”UsnJrnl ํŒŒ์ผ์€ ๊ทธ ๊ธฐ๋Šฅ์˜ ํŠน์„ฑ์ƒ ์‚ฌ์šฉ์ž ๋ฐ ์‹œ์Šคํ…œ์˜ ํ–‰์œ„๋ฅผ ๋น„๊ต์  ๊ตฌ์ฒด์ ์ธ ์‹œ๊ฐ„์ •๋ณด์™€ ํ•จ๊ป˜ ๊ธฐ๋กํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์žฌ ๊ตญยท๋‚ด์™ธ ์ ์œผ๋กœ ๋””์ง€ํ„ธํฌ๋ Œ์‹ ์ˆ˜์‚ฌ๊ด€๋“ค์ด ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” UsnJrnl ํŒŒ์ผ ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋‹ค์–‘ํ•œ ์ˆ˜์‚ฌ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์‹ค๋ฌด์ž๋“ค์—๊ฒŒ ์‚ฌ๊ฑด์„ ์ ‘๊ทผํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์‚ฌ๊ฑด์„ ํ•ด๊ฒฐํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ ์ž๋ฃŒ๊ฐ€ ๋˜๋Š” ๋ฐ”, ์ด๋ฒˆ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‚ฌ์šฉ์ž์˜ ํ–‰์œ„ ์ถ”์ ์— ์šฉ์ดํ•œ UsnJrnlํŒŒ์ผ์„ํ™œ์šฉํ•œ๋ถ„์„๋ฐฉ๋ฒ•์„์ œ์•ˆํ•˜๊ณ ์žํ–ˆ๋‹ค.๋ณธ์—ฐ๊ตฌ์—์„œ๋Š”์‹ค์ œ์‹ค๋ฌด์—์„œUsnJrnl ํŒŒ์ผ์„ ํ™œ์šฉํ•œ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์ œ ์‹ค๋ฌด์—์„œ UsnJrnl ํŒŒ์ผ๋กœ๋ถ€ํ„ฐ ํƒ์ง€๋œ ์ •๋ณด๋“ค์„ ํ™œ์šฉํ•œ ์‚ฌ๋ก€๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๊ณ , ๊ฐ€์ƒ์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ๊ตฌ์ฒด์ ์ธ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ–ˆ๋‹ค. ํ•ด๋‹น ์‚ฌ๋ก€ ๋ถ„์„์„ ํ†ตํ•ด ์‚ฌ๊ฑด์˜ ์Ÿ์ ์ด ๋˜๋Š” ํŒŒ์ผ์˜ ์‚ญ์ œ ์‹œ๊ฐ„ ์ •๋ณด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ, ํŠนํžˆ ์™„์ „ ์‚ญ์ œ ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ธฐํƒ€ ์•ˆํ‹ฐํฌ๋ Œ์‹ ํ–‰์œ„๋“ค์— ๋Œ€ํ•ด์„œ๋„ ๊ทธ ํ”์ ์„ ์ถ”์ ํ•ด ๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. UsnJrnlํŒŒ์ผ์ด๋‚จ๊ธฐ๋Š”๋ฌด์ˆ˜ํžˆ๋งŽ์€์ •๋ณด๋“ค์ค‘์—์„œํ•„์š”ํ•œ์ •๋ณด๋งŒ์„ํƒ์ƒ‰ํ•˜๋Š”๊ฒƒ์ด์‰ฌ์šด๊ฒƒ๋งŒ์€์•„๋‹ˆ์—ˆ๋‹ค.๊ทธ๋Ÿฌ๋‚˜๋‹จ1ํผ์„ผํŠธ์˜๊ฐ€๋Šฅ์„ฑ์ด๋ผ๋„์žˆ๋‹ค๋ฉด์‰ฝ๊ฒŒ๊ฐ„๊ณผํ• ์ˆ˜๋Š”์—†์„๊ฒƒ์ด๋‹ค.์ด๋ฒˆ์—ฐ๊ตฌ๋ฅผํ†ตํ•ด๋”๋‹ค์–‘ํ•˜๊ณ ํ™œ๋ฐœํ•œ์—ฐ๊ตฌ์˜ํ•„์š”์„ฑ์„๋Š๋ผ๋ฉด์„œ๋™์‹œ์—๋ณธ์—ฐ๊ตฌ๊ฐ€์šฐ๋ฆฌ๋””์ง€ํ„ธํฌ๋ Œ์‹์ˆ˜์‚ฌ๊ด€๋“ค์—๊ฒŒ์œ ์šฉํ•˜๊ฒŒํ™œ์šฉ๋˜๊ธฐ๋ฅผ๋ฐ”๋ž€๋‹ค.์ œ1์žฅ์—ฐ๊ตฌ์˜๋ชฉ์ ๊ณผ๋ฐฉ๋ฒ•1์ œ2์žฅ๊ด€๋ จ์—ฐ๊ตฌ31.InPrivate๋ชจ๋“œ๋ฐCCleaner์‚ฌ์šฉํ”์ ์—ฐ๊ตฌ32.UsnJrnl ํŒŒ์ผ์ด ๋‚จ๊ธฐ๋Š” ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ์ •๋ณด๋“ค ์ค‘์—์„œ ํ•„์š”ํ•œ ์ •๋ณด๋งŒ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์ด ์‰ฌ์šด ๊ฒƒ๋งŒ์€ ์•„๋‹ˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ 1ํผ์„ผํŠธ์˜ ๊ฐ€๋Šฅ์„ฑ์ด๋ผ๋„ ์žˆ๋‹ค๋ฉด ์‰ฝ๊ฒŒ ๊ฐ„๊ณผํ•  ์ˆ˜๋Š” ์—†์„ ๊ฒƒ์ด๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋” ๋‹ค์–‘ํ•˜๊ณ  ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์„ ๋Š๋ผ๋ฉด์„œ ๋™์‹œ์— ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ์šฐ๋ฆฌ ๋””์ง€ํ„ธํฌ๋ Œ์‹ ์ˆ˜์‚ฌ๊ด€๋“ค์—๊ฒŒ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋˜๊ธฐ๋ฅผ ๋ฐ”๋ž€๋‹ค.์ œ1์žฅ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ๊ณผ ๋ฐฉ๋ฒ• 1 ์ œ2์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 3 1. InPrivate ๋ชจ๋“œ ๋ฐ CCleaner ์‚ฌ์šฉ ํ”์  ์—ฐ๊ตฌ 3 2. UsnJrnl ๋ฐ LogFile์˜์กฐํ•ฉ์„ํ†ตํ•œMFTEntry๋ถ„์„์—ฐ๊ตฌ4์ œ3์žฅNTFSํŒŒ์ผ์‹œ์Šคํ…œ์˜์ €๋„ํŒŒ์ผ51.LogFile์˜ ์กฐํ•ฉ์„ ํ†ตํ•œ MFT Entry ๋ถ„์„ ์—ฐ๊ตฌ 4 ์ œ3์žฅ NTFS ํŒŒ์ผ ์‹œ์Šคํ…œ์˜ ์ €๋„ํŒŒ์ผ 5 1. UsnJrnl ํŒŒ์ผ ๋ฐ ๊ด€๋ จ ํŒŒ์ผ ๊ฐœ์š” 5 (1) MFT Entry 6 (2) UsnJrnl7(3)UsnJrnl 7 (3) LogFile 16 2. ํฌ๋ Œ์‹ ๊ด€์ ์—์„œ์˜ ๋‘ ์ €๋„ํŒŒ์ผ ๋น„๊ต 19 3. ์„ธ ํŒŒ์ผ์˜ ์—ฐ๊ฒฐ ์›๋ฆฌ 21 4. UsnJrnlํŒŒ์ผ์„ํ†ตํ•œMFTEntry์ •๋ณด๋ถ„์„23์ œ4์žฅUsnJrnl ํŒŒ์ผ์„ ํ†ตํ•œ MFT Entry ์ •๋ณด ๋ถ„์„ 23 ์ œ4์žฅ UsnJrnl ํŒŒ์ผ์˜ ์ˆ˜์ง‘ ๊ทผ๊ฑฐ ๋ฐ ํ•„์š”์„ฑ 26 1. UsnJrnlํŒŒ์ผ์˜์ฆ๊ฑฐ๋กœ์„œ์˜๊ฐ€์น˜์™€์ฆ๊ฑฐ๋Šฅ๋ ฅ262.UsnJrnl ํŒŒ์ผ์˜ ์ฆ๊ฑฐ๋กœ์„œ์˜ ๊ฐ€์น˜์™€ ์ฆ๊ฑฐ๋Šฅ๋ ฅ 26 2. UsnJrnl ํŒŒ์ผ์˜ ์‚ฌ๊ฑด ๊ด€๋ จ์„ฑ ์—ฌ๋ถ€ ํŒ๋‹จ 28 3. UsnJrnlํŒŒ์ผ์˜์ „๋ฌธ๋ฒ•์น™์ ์šฉ์—ฌ๋ถ€284.UsnJrnl ํŒŒ์ผ์˜ ์ „๋ฌธ๋ฒ•์น™ ์ ์šฉ ์—ฌ๋ถ€ 28 4. UsnJrnl ํŒŒ์ผ์˜ ์ˆ˜์ง‘ ํ•„์š”์„ฑ ๋ฐ ๋ฐฉ๋ฒ• 30 ์ œ5์žฅ ์‹ค๋ฌด์—์„œ์˜ $UsnJrnl ํŒŒ์ผ ํ™œ์šฉ ์‚ฌ๋ก€ 31 1. ๊ธฐ์ˆ  ์œ ์ถœ ์‚ฌ๋ก€ 31 2. ์—ฐ์˜ˆ์ธ ์–ผ๊ตด์„ ํ•ฉ์„ฑํ•œ ์Œ๋ž€๋ฌผ ์œ ํฌ ์‚ฌ๋ก€ 32 ์ œ6์žฅ ๊ฐ€์ƒ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํ†ตํ•œ ํ™œ์šฉ ๋ฐฉ์•ˆ ์ œ์•ˆ 34 1. ์ฆ๊ฑฐ์ธ๋ฉธ ์‚ฌ๋ก€ 35 (1) ๋ถ„์„ ํ™˜๊ฒฝ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• 35 (2) ๋ถ„์„ ๊ฒฐ๊ณผ ๋ฐ ํ™œ์šฉ ๋ฐฉ๋ฒ• 37 2. ๊ธฐ์ˆ ์œ ์ถœ ์‚ฌ๋ก€ 61 (1) ๋ถ„์„ ํ™˜๊ฒฝ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• 62 (2) ๋ถ„์„ ๊ฒฐ๊ณผ ๋ฐ ํ™œ์šฉ ๋ฐฉ๋ฒ• 64 3. ์†Œ๊ฒฐ 84 ์ œ7์žฅ ๊ฒฐ๋ก  88Maste

    ๊ฒน์„ ํ˜• ์‚ฌ์ƒ์„ ์ด์šฉํ•œ ์ต๋ช… ์‹ ์šฉ์žฅ ์‹œ์Šคํ…œ๊ณผ ๊ถŒํ•œ ๊ด€๋ฆฌ

    No full text
    Thesis(doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2006.Docto

    Algorithms for Coppersmith`s method and its application

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2001.Maste
    corecore