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ABSTRACT 

 

Loss of Caveolin-1 promotes stem-like 

traits in breast cancer cells 

 

HYO-JIN YOON 

 

Under the supervision of Professor Young-Joon Surh 

at the College of Pharmacy, Seoul National University 

 

 

Cancer stem cells (CSCs), a subset of cancer cells characterized by the property of 

self-renewal and differentiation, initiate tumor growth and promote chemo-

/radiotherapy resistance, which are considered to be responsible for progression, 

recurrence and metastasis. Several intrinsic and extrinsic signaling pathways 

maintaining CSCs population have been explored. A prominent property of CSCs is 

the ability to undergo self-renewal division. The dysregulation of self-renewal 
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signaling may account for the regeneration of the tumor. Hence, understanding the 

signaling pathways for maintaining features of CSCs is likely to be important for 

developing targeted anticancer therapies.  

Caveolin-1 (Cav-1) is a major protein of caveolae, which is flask-shaped 

invagination at cell membranes. Caveolae participate in various cellular functions, 

such as vesicle trafficking, cholesterol homeostasis, and tumor progression. Cav-1 is 

thought to regulate the activity of proteins, such as Src family kinases, H-Ras, protein 

kinase C, epidermal growth factor tyrosine kinase, extracellular signal-regulated 

kinase, and endothelial nitric oxide synthase involved in oncogenic signaling 

pathways. In this context, Cav-1 has been proposed as a potential therapeutic target 

for disrupting tumor progression and metastasis.  

In the present study, I investigated a role for Cav-1 in regulating the stemness 

of human breast cancer (MDA-MB-231) cells. To investigate whether Cav-1 could 

be involved in modulating the stemness of breast cancer cells, tumorspheres were 

generated from adherent cells. Cav-1 expression was significantly lower in 

tumorspheres than in adherent cells. Further, the proportion of breast stem-like 

CD44high and CD24low cells was increased in Cav-1 knocked down MDA-MB-231 

cells. Mechanistically, the silencing of Cav-1 resulted in the elevated expression of 

the well-known stemness-related genes, Nanog, Oct 3/4, and Sox2 with concomitant 
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upregulation of Bmi-1, a representative self-renewal regulator. In line with above 

findings, the Cav-1 knock down increased the size and the number of spheres derived 

from MDA-MB-231 cells. In a CSC-like state, the reduced Cav-1 levels were 

attributable to its destabilization through ubiquitin-proteasome degradation. Src-

mediated phosphorylation of Cav-1 at the Tyr 14 residue is essential for its 

degradation. The expression of p-Cav-1 (Tyr14) and p-Src (Tyr416) was markedly 

elevated in tumorsphere cells, compared to adherent cells. Y14F Cav-1 mutation by 

replacing Tyr14 with phenylalanine was sufficient to abolish phosphorylation and 

ubiquitination of Cav-1 protein. To verify that Cav-1 suppresses the breast cancer 

cell stemness, we overexpressed Cav-1 in MDA-MB-231 tumorspheres. As a result, 

the MDA-MB-231 tumorspheres overexpressing WT-Cav-1 exhibited the reduced 

ability of spheroid formation compared with Mock treated control cells. Notably, the 

tumorsphere-forming ability of cells expressing Y14F mutant Cav-1 was weaker 

than that of cells expressing WT-Cav-1. Likewise, the Y14F Cav-1 mutation 

significantly mitigated the inhibitory effects of Cav-1 on the expression of Bmi-1 

and EMT markers. Taken together, these findings suggest that Cav-1destabilization 

by Src-mediated phosphorylation may play a pivotal role in manifestation and 

maintenance of stemness in breast cancer cells. 
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However, a question that still needs to be addressed is how Cav-1 

destabilization promotes stemness properties. The Nuclear erythroid 2 p45-related 

factor-2 (Nrf2) is a key transcription factor that regulates the antioxidant and 

detoxification enzymes. Recently, it has been reported that Nrf2 signaling is 

involved in CSC-like properties of several types of cancer cells. Notably, Nrf2 has 

been reported to directly interact with Cav-1. In breast cancer, Cav-1 binds to Nrf2 

and enhances its degradation in cytosol through ubiquitination. The reduction of the 

intracellular accumulation of Nrf2 by Cav-1 led to a decrease in stemness-related 

gene expression. When degradation of Cav-1 occurs through ubiquitin-proteasomal 

degradation, Nrf2 is dissociated from the Cav-1 complex. The liberated Nrf2 

accumulates in the nucleus and enhances the expression of stemness-related genes, 

which promote the manifestation of CSC-like phenotypes. Thus, Cav-1 interact with 

Nrf2 in breast cancer and inhibits the Nrf2 signaling, thereby suppressing the 

manifestation of CSC-like properties. 

Recently, natural products have attracted much attention for prevention and 

treatment of cancer. Resveratrol (trans-3,4’,5-triydroxystilbene),  a phytoalexin 

found in grapes and other food products, has been investigated with regard to its 

chemopreventive and chemotherapeutic activities in various cancer cells as well as 

in animal models. Nonetheless, the underlying mechanism by which resveratrol 
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regulates the signal transduction pathway involved in maintenance of CSCs and 

manifestation of their characteristics still remains to be largely unclear. Therefore, I 

investigated the effects of the resveratrol on breast cancer stem-like properties in the 

context of its modulation of Cav-1-mediated signaling. In this study, I found the 

inhibitory effect of resveratrol on the viability and migration capacity of tumorsphere 

MDA-MB-231 cells. Further, resveratrol significantly decreased the number and the 

size of MDA-MB-231 tumorspheres and also the proportion of CD44high/CD24low 

cell population Mechanically, the expression of self-renewal signaling molecules and 

EMT markers was reduced by treatment of resveratrol. Notably, resveratrol treatment 

decreased expression of self-renewal and EMT markers, which was elevated by 

knockdown of Cav-1. 

In conclusion, reduced Cav-1 accumulation depends on its destabilization 

through ubiquitin-proteasome degradation. After degradation of Cav-1, Nrf2 is 

dissociated from the Cav-1 complex and enhances the expression of stemness-related 

genes.. Resveratrol has an inhibitory effects on manifestation of Cav-1-mediated 

CSC-like properties. This study herein indicates that Cav-1 acts as a pivotal regulator 

in manifestation and maintenance of stemness in breast cancer cells and can be an 

important therapeutic target for breast cancer therapy. 
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Role of Caveolin-1 in cancer progression 

and metastasis 
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1. Introduction 

Caveolins are the main integral proteins of caveolae, a flask-shaped invagination 

present at the plasma membrane [1]. Caveolae are very heterogeneous in normal and 

tumor cells, and they are most abundant in stromal cells, such as adipocytes, 

fibroblasts, vascular endothelial cells, and smooth muscle cells [2]. Caveolins have 

amino-terminal and carboxy-terminal domains localized at the cytoplasmic face of 

the cell membrane (Fig. 1-1 A) [3]. Caveolins also contain a scaffolding domain, 

referred to as the Caveolin scaffolding domain (CSD), for binding to signaling 

proteins, making caveolae key regulators of signal transductions. Caveolins 

modulate functions of several signaling molecules, such as Src, eNOS and H-RAS, 

involved in cell proliferation and growth (Fig. 1-1 B) [4, 5]. Caveolins consist of the 

three principle members, Caveolin-1 (Cav-1), Caveolin-2 (Cav-2) and Caveolin-3 

(Cav-3). Cav-1 is widely expressed in various cells, and Cav-2 shares a expression 

profile similar to Cav-1 as it requires Cav-1 for stabilization. However, Cav-3 is 

predominantly expressed in muscle cells [6]. Cav-1 and Cav-3 form homo-oligomers, 

and oligomerization is essential for caveolae biogenesis. Ablation of Cav-1 and Cav-

3 causes a deficiency of caveolae in various cell types [7, 8]. Caveolae formation by 

Cav-1 and Cav-3 involves oligomerization and association with cholesterol-rich 

lipid-raft domains. Caveolins have multiple functions in cells besides formation of 
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caveolae. These include cholesterol homeostasis, vesicle trafficking, endocytosis, as 

well as regulation of signal transduction [10-11]. Cav-1 expression is sufficient and 

necessary to drive the formation of morphologically identifiable caveolae, making it 

the first protein marker of caveolae [9, 10]. Cav-1 belongs to a select group of 

proteins that function both as a tumor suppressor and as an oncogene commonly 

associated with enhanced malignant behavior, such as metastasis and multi-drug 

resistance [11].  

Metastasis is the spread of tumor cells from the primary site to distant organs 

and their subsequent growth, and is the major cause of cancer-associated death [12-

14]. Only few circulating tumor cells (CTCs) survive the immune surveillance and 

hemodynamic forces [15]. Surviving CTCs cells will colonize distant organs and 

become disseminated tumor cells (DTCs). Remarkably, most DTCs do not survive 

the initial colonization, whereas the rest may persist to reside in the secondary sites 

in a quiescent state (cellular dormancy) for many years, or progressively grow to 

form metastases [13, 16] (Fig. 1-2).  

Epithelial-mesenchymal transition (EMT) facilitates development of highly 

invasive and mobile characteristics of cancer cells, thus enabling their dissemination 

from the primary site. Activation of the EMT, an also bestow cancer cells with high 

plasticity by acquiring stem-like traits. According to the model of cancer stem cells 
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(CSC), a small subpopulation of cancer cells is endowed with stem like-traits to 

promote cancer progression. These CSCs induce tumor initiation and metastasis [17]. 

Several studies have demonstrated relations among EMT, stemness, and the 

metastatic initiating potential of DTCs. Induction of EMT in transformed epithelial 

cells was shown previously to culminate in endowing cells with stem-like traits [18, 

19]. These stem-like traits in transformed epithelial cells promoted the initiation of 

primary tumors and accelerated metastasis [20, 21]. Hence, the fluctuation between 

EMT/mesenchymal-epithelial transition (MET) state and CSC-like traits may dictate 

whether DTCs will remain dormant or emerge to metastasis. Therefore, 

understanding the mechanism of physical translocation is likely to be important for 

preventing metastasis in patients who are diagnosed with early cancer.  

 

2. The role of Cav-1 expression in human cancer  

2.1 Expression of Cav-1 in human cancer cells 

Mounting studies have demonstrated controversial roles of Cav-1 expression in 

human cancer. There is no consistent profile of Cav-1 expression in cancer cells. 

Cav-1 is down-regulated in breast cancer [22-24], gastric cancer [25], and hepatic 

cancer [26], whereas the expression levels of Cav-1 are elevated, according to 

advanced tumor stage, high histological type and the metastasis of some human 
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cancer cells, including renal [27], pancreatic [28], esophagus [26, 29] and colorectal 

[30] cancer. Previous studies indicated a contradictory profile of the expression of 

Cav-1 in breast [22, 24], gastric [25, 31], hepatic [26] and oral [32] cancer. 

Sagara and colleagues investigated the mRNA and protein expression levels of Cav-

1 in 162 cases of breast cancer and found that the mRNA and protein expression of 

Cav-1 was suppressed in breast cancer tissue compared with the normal tissues [33]. 

In gastric cancer, the positive staining of Cav-1 was higher in the advance gastric 

cancer group than in the early gastric cancer group, whereas the progressive 

downregulation of Cav-1 in gastric epithelial cells was found to correlate with gastric 

carcinogenesis [25]. Moreover, the Cav-1 mRNA expression in hepatitis B virus-

related hepatocellular carcinoma (HCC) cells was found to negatively correlate with 

the tumor size, major venous invasion, single or multiple tumors, pTNM staging and 

factors associated with the prognosis of HCC, inconsistent with other studies [26]. 

Several studies have shown the downregulation of Cav-1 in cancer cells, such as 

pancreatic [29] and renal [34] cancer compared with normal tissues. Conversely, 

breast [33], ovarian [35], lung [36], and hepatic [26] cancer cells exhibit upregulated 

Cav-1 compared with the normal cells. Further studies are needed to demonstrate the 

mechanism of the different Cav-1 expression.  
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2.2 Dual role of Cav-1 in cancer  

Cav-1 may function both as a tumor suppressor and as an oncogene, depending on 

the stage of oncogenic transformation and extent of tumor progression (Fig. 1-3).  

 

2.2.1 Tumor suppressor 

In some tissues, Cav-1 functions as a tumor suppressor. Cav-1 is highly expressed in 

differentiated or quiescent cells, including adipocytes, endothelia, smooth muscle 

cells, and Type I pneumocytes. Several studies have shown that induction of Cav-1 

inhibits colony growth and induces apoptosis in transformed cells and breast cancer 

cells [37-39], suggesting a possible role for Cav-1 as a negative regulator of cell 

proliferation. 

 

2.2.2 (Transformation) suppressor 

Accumulating data reveal the inverse relationship between Cav-1 expression and 

transformation, suggesting that Cav-1 functions as a “transformation suppressor” 

gene. During the initial characterization of Cav-1, it was demonstrated that the level 

of residual Cav-1 inversely correlated with soft agar growth [39]. In addition, forced 

re-expression of Cav-1 abrogates anchorage-independent growth of transformed 

cells [37, 38, 40, 41]. 
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2.2.3 Oncogene 

 In certain tumors, further progression into a metastatic or drug-resistant form has 

been attributable to re-expression of Cav-1. Up-regulation of Cav-1 in these tumors 

is thought to contribute to tumor cell invasiveness and resistance to anoikis, 

properties that are essential for tumor cell metastasis [38, 42]. Increased Cav-1 has 

also been associated with the development of drug resistance in tumors. In some 

tissues [33, 43], including prostate, Cav-1 is not normally expressed but, as tumor 

progresses, expression increases, which may account for enhanced tumor cell 

malignancy. Moreover, re-expression of Cav-1 in lung adenocarcinoma cells is 

sufficient to promote filopodia formation, cell migration and enhance the metastatic 

potential of these cells [44]. These findings, taken all together, suggest an oncogenic, 

prometastatic function for Cav-1. 

 

2.3 Implication of Cav-1 expression in pathogenesis of human cancer  

Several studies have demonstrated that loss of Cav-1 has been associated with poor 

outcomes in various tumor types, such as prostate, gastric and pancreatic cancer as 

well as melanoma [45, 46]. Mechanistically, low stromal expression of Cav-1 

increases TGFβ1 expression and induces phosphorylation and activation of Akt [47]. 
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Conversely, there is no consistent change in Cav-1 expression between cancer cells 

and their normal adjacent cells, and the effects of Cav-1 expression on 

tumorigenicity and aggressiveness vary widely among different cancer types [2, 48]. 

On the other hand, high Cav-1 expression is correlated with good clinical outcomes 

in head and neck cancer and extrahepatic biliary carcinoma cells [49]. In in vivo 

experiments, Cav-1-knockout mice show increased progression of colon, lung, and 

breast, as well as melanoma and non-melanoma skin cancers [50, 51]. Several 

distinct epithelial and stromal mechanisms seem to be co-operating in Cav-1-

knockout mice. For example, cyclin D1 is upregulated and RB phosphorylation is 

increased in mammary cancer cells of Cav1-/- mouse mammary tumor virus 

(MMTV)-polyoma middle T (PyMT) transgenic mice [52]. Similarly, Cav-1 

knockout mice have increased cyclin D1 upregulation in non-melanoma skin cancer, 

which is induced by chemical carcinogenesis [51].  

 

3. The role of Cav-1 in invasion, migration and metastasis 

Recent studies have indicated that cell invasion during tumor progression may be 

critically dependent on the acquisition of EMT features. The aim of this section is to 

summarize on molecular events associated with Cav-1 in progression, invasion, and 
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metastasis. The role of Cav-1 effectors and core regulators, and molecular pathways 

associated with Cav-1 in progression and metastasis will be discussed. 

 

3.1 Cav-1 and EMT 

Multiple lines of evidence support that Cav-1 mediates the invasion and metastasis 

of cancer which are accompanied by the EMT. Cav-1 can promote bladder cancer 

metastasis by inducing EMT which is associated with activation of 

phosphatidylinositol 3-kinase (PI3K)/AKT and upregulation of Slug expression [53]. 

Moreover, overexpressed Cav-1 increases vimentin expression, but decreases E-

cadherin expression. This accompanies the change of EMT, which causes the 

increased the motility and invasiveness in hepatocellular carcinoma [54]. The 

reduced levels of Cav-1 in hypoxia increases epidermal growth factor receptor 

(EGFR) activation, leading to the activation of signal transducer and activator of 

transcription 3 (STAT3). This, in turn, results in the downregulation of E-cadherin 

and upregulation of mesenchymal markers, such as Slug, α-SMA, N-cadherin and 

vimentin, suggesting that Cav-1 can mediate the EMT and promote invasiveness in 

gastric cancer [54].  
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3.2 Cav-1 and Rho-GTPases 

Accumulating studies have demonstrated that Rho-GTPases are likely to play a role 

in tumor metastasis and invasion [55, 56]. Previous studies have indicated the role 

of Cav-1 in regulating the activity of Rho-GTPases in various cancers. The 

association between Cav-1 and Rho-GTPases promotes tumor metastasis, which 

depends on the elevated expression of α5-integrin and the enhanced activation of Src 

and Ras [57]. Lin and colleague have reported that Cav-1 expression inhibits RhoC 

GTPase activation and subsequently activates the p38 mitogen-activated protein 

kinase (MAPK) leading to suppression of migration and invasion of primary 

pancreatic cancer cells [58].  

 

3.3 Cav-1 and matrix metalloproteinase (MMP) 

MMPs are a family of zinc-containing proteolytic enzymes that degrade various 

components of ECM [59]. Cav-1 may function as a negative regulator of metastasis 

by inhibiting MT4-MMP expression in colon cancer [60]. Moreover, overexpressed 

Cav-1 reduces the metastasis and invasion capacity of metastatic mammary tumor 

cells by inhibiting the activity of MMP-2 and MMP-9 [52]. Conversely, the 

migration and invasion-promoting effect of Cav-1 overexpression in HCC appears 
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to be mediated by increasing secretion or expression of MMP-2, MMP-9 and MT1-

MMP, as well as inducing an EMT-like phenotype [61].  

  

4. Conclusion  

As a main component of caveolae, Cav-1 is involved in many biological processes 

that include substance uptake and transmembrane signaling. In addition, Cav-1 

contributes to cell transformation, tumorigenesis, and metastasis. As depicted in the 

Fig. 1-3, Cav-1 may function both as an oncogene and as a tumor suppressor 

depending on the stage of tumor progression. Because CSCs contribute to 

development and progression in cancer, the presence of CSC population in 

precancerous stage is an early indicator of malignant progression. Despite a number 

of controversies on role of Cav-1 in cancer, the majority of reports suggest that Cav-

1 represents an important cancer cell biomarker in carcinogenesis, differentiation, 

metastasis and tumor progression, and independently serves as a predictor of overall 

survival rate. In addition, through interaction with other biological molecules, Cav-

1 modulates stem-like traits. To succeed in establishing novel diagnostic molecular 

and targeted therapies against Cav-1, mechanical studies are required to further 

unveil the clinical value of Cav-1 expression in multiple types of cancer and cancer 

stem cells. 
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Figure 1-1. Structures of Caveolae and Caveolin-1. (A) The diagrams of Caveolae 

and Caveolin-1 . Cav-1 is inserted into the caveolar membrane, with the N and C 

termini facing the cytoplasm and a intramembrane domain embedded within the 

membrane bilayer. (B) The sequence of the caveolin-scaffolding domain (CSD; 

residues 82-102) and the caveolin binding sequence motifs within several caveolae-

localized signaling molecules are shown. These include epidermal growth factor 

receptor (EGF-R), Src family tyrosine kinases, eNOS, G-protein α subunits (Gi2α), 

and PKC isoforms (PKCα). In most cases, this caveolin interaction is inhibitory, 
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leading to inactivation of the signaling molecules and modulation of downstream 

signal transduction. 
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Figure 2-2. The metastatic cascade. Cancer cells within the primary tumor undergo 

an epithelial-mesenchymal transition (EMT) process and acquire stem-like traits 

(CSCs) and endow invasive capacity, then intravasate into the tumor vasculature in 

the form of circulating tumor cells (CTCs), which must be able to survive the 

circulating blood and evade from the innate immune response and other defenses. 

Once CTCs migrate to a secondary site, the settlement in supportive niches enables 

them to survive and retain their stem-like tumor-initiating capacity. In the target site, 

disseminated cancer cells (DTCs) encounter inhibitory signals resulted in the 

arrested in cell cycle subsequently leading to dormancy from months to decades 

while they adapt to their newfound microenvironment. Cancer cells undergo MET 

in order to acquire feature proliferation to metastatic outgrowth in the target site. 
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Figure 3-3. Dual role of Caveolin-1 in cancer. Cav-1 may function both as a tumor 

suppressor and as an oncogene, depending on the stage of oncogenic transformation 

and extent of tumor progression. Cav-1 is expressed at relatively high levels in many 

differentiated cells. During oncogenic transformation, Cav-1 is downregulated, in 

certain tumors, further progression into a metastatic or drug-resistant form is 

associated with re-expression of Cav-1. Upregulation of Cav-1 in these tumors is 

thought to contribute to tumor cell invasiveness and resistance to anoikis, properties 

that are essential for tumor cell metastasis. Increased Cav-1 has also been associated 

with the development of drug resistance in tumors.  
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STATEMENT OF PURPOSE 

 

Caveolin-1 (Cav-1), a major component of cell membrane caveolae, is involved in a 

variety of cellular signal pathway and transmembrane transport. Cav-1 acts as a 

scaffolding protein, modulating the transduction of multiple signaling molecules. To 

date, most of these signals are highlighted in cancer development. However, the 

molecular mechanism by which caveolin-1 is involved in regulating cancer stem cell 

signaling networks remain largely unknown. Because CSCs contribute to 

development and progression in cancer, the presence of CSC population in precancer 

stage is an early indicator of malignant progression. In the present study, I thus 

elucidated the role of Cav-1 in breast CSC-like model. Furthermore, I investigated  

the effect of Cav-1and Nrf2 binding on stemness signaling transduction. Subsequent 

work confirmed the effect of resveratrol on the stemness phenotype and underlying 

molecular mechanisms in the context of inhibiting of migration and stemness in 

breast cancer cells. To establish novel diagnostic molecular and targeted therapies 

against Cav-1, I unveiled the mechanical studies about the value of Cav-1 expression 

in types of breast cancer and cancer stem cells. 
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Chapter Ⅱ 

 

Src-mediated phosphorylation, 

ubiquitination and degradation of 

Caveolin-1 promotes breast cancer cell 

stemness and progression 
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1. Abstract 

Cancer stem cells (CSCs) are responsible for tumor initiation, metastasis and 

recurrence. Caveolin-1 (Cav-1) is a major protein of caveolae, which participates in 

various cellular functions, such as vesicle trafficking, cholesterol homeostasis, tumor 

progression, etc. In the present study, I investigated a role for Cav-1 in regulating the 

stemness of human breast cancer (MDA-MB-231) cells. Cav-1 expression was 

significantly lower in tumorspheres than in adherent cells. The silencing of Cav-1 

enhanced stemness of MDA-MB-231 cells. Mechanistically, Cav-1 silencing was 

accompanied by enhanced expression of Bmi-1, which is a representative self-

renewal regulator, and promoted epithelial-mesenchymal transition. In a CSC-like 

state, reduced Cav-1 depends on its destabilization through ubiquitin-proteasome 

degradation. I further found that Src-mediated phosphorylation of Cav-1 at the Tyr 

14 residue is essential for its degradation. Taken together, these findings suggest that 

Cav-1 destabilization by Src may play a pivotal role in manifestation and 

maintenance of stemness in breast cancer cells. 

 

Keywords: breast cancer stem cell; Caveolin-1; c-Src; phosphorylation; 

destabilization;  
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2. Introduction  

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer 

death in women worldwide. In spite of the diverse therapeutic options, chemo-

/radioresistance and disease relapse often develop, which is attributed to the presence 

of stem-like cancer cells in the tumor microenvironment [1, 2]. 

Cancer stem cells (CSCs) are defined as a subset of cancer cells characterized 

by the property of self-renewal and differentiation, which drive tumorigenesis and 

tumor heterogeneity [3-5]. Several lines of evidence suggest that epithelial-

mesenchymal transition (EMT) and stem cell-like traits are intertwined processes to 

foster metastatic tumor microenvironment. As an initial step of tumor cell migration, 

EMT can induce differentiation of cancer cells into a CSC-like state [6]. In this 

context, CSCs may underlie local and distant metastases by acquiring mesenchymal 

features which would greatly facilitate systemic dissemination from the primary 

tumor mass to metastatic tumor [7]. Many of the signaling molecules including 

Wnt/β-catenin, Notch, Hedgehog, STAT3, and TGF-β are involved in generation and 

maintenance of CSCs [8-10]. Therefore, therapeutic strategies targeting CSCs by 

modulating these signaling molecules have attracted special attention.  

Caveolin-1 (Cav-1) is a major protein of caveolae, which is flask-shaped 

invagination at cell membranes. Caveolae participate in various cellular functions, 
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such as vesicle trafficking, cholesterol homeostasis, tumor progression, and 

especially modulation of various signal transduction pathways [11, 12]. Cav-1 is 

thought to regulate the activity of proteins, such as Src family kinases, H-Ras, protein 

kinase C, epidermal growth factor tyrosine kinase, extracellular signal-regulated 

kinase, and endothelial nitric oxide synthase involved in oncogenic signaling 

pathways [13, 14]. Src interaction with the plasma membrane is an important 

determinant of its activity. For instance, the intrinsic kinase activity of Src 

phosphorylates Cav-1. Subsequent binding of the activated Src to 

phosphotyrosylated Cav-1 modulates its association with the membrane [15]. 

Originally identified as a substrate for v-Src, Cav-1 is phosphorylated on Tyr14 by 

c-Src [16]. Circumstantial evidence suggests that phosphorylated Cav-1 also 

regulates its cellular localization and function [17-21]. Collectively, Cav-1 

modulates various signaling pathways and elicits anti-cancer responses in breast [22], 

glioblastoma [23], lung [24], and other cancer types [25].  

The role of Cav-1 in development and progression of cancer is 

controversial because it is suggested to exert both tumor-suppressive and 

oncogenic effects. In recent studies, Cav-1-mediated signaling has been 

correlated with maintenance of stemness to augment various cancer stem cells 

expansion [26]. However, the precise function of Cav-1, particularly in relation 
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to its phosphorylation by Src, in affecting CSCs is largely unknown. Here I report 

that Src-mediated phosphorylation and subsequent destabilization of Cav-1 

contributes to maintenance of breast CSCs and manifestation of their characteristics. 
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3. Materials and methods  

Reagent and antibodies 

Dulbecco’s modified Eagle’s medium (DMEM), Rosewell Park Memorial Institute 

(RPMI) 1640 medium, Dulbecco’s modified Eagle Medium Nutrient Mixture F-12 

(DMEM/F-12), and fetal bovine serum (FBS) were purchased from Gibco BRL 

(Grand Island, NY, USA). TRIzol® was obtained from Invitrogen (Carlsbad, CA, 

USA). Primary antibodies for Bmi-1, Notch-1, CD133, Sox-2, Src, p-Src, and 

ubiquitin were purchased from Cell Signaling Technology (Danvers, MA, USA). 

Antibodies against Cav-1, Oct 3/4, Snail, and β-actin were obtained from Santa Cruz 

(Santa Cruz, CA, USA). Antibodies against p-Cav-1, Twist1, N-cadherin, E-cadherin, 

CD24 and CD44 were purchased from BD Biosciences (Bedford, MA, USA). The 

bicinchoninic acid (BCA) protein assay reagent was a product of Pierce 

Biotechnology (Rockfold, IL, USA). MG-132 was obtained from Enzo Life Sciences 

(Exeter, UK). The Src inhibitor (PP2) was purchased from EMD Milipore 

Corporation (Bilierica, MA, USA).   

 

Cell culture 

The human breast cancer cell lines MCF-7, T47D, SKBR3, MDA-MB-453, MDA-

MB-231, and MDA-MB-468 were obtained from the Korean Cell Line Bank (Seoul, 
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South Korea). MDA-MB-453, MDA-MB-231 and MDA-MB-468 cells were 

maintained in DMEM, whereas MCF-7, T47D, and SKBR3 cells were maintained 

in RPMI 1640 cell culture medium. All culture media were supplemented with 10% 

FBS and 1 % antibiotics and cells were grown at 37 ℃ with 5 % CO2 /95 % air.  

 

Tumorsphere culture  

For tumorsphere formation from the adherent cells, single cells were cultured in a 

serum free DMEM/F12 medium supplemented with B27 (GIBCO), 20 ng/mL 

epidermal growth factor (EGF; Sigma-Aldrich, St. Louis, MO, USA), 20 ng/mL 

basic fibroblast growth factor (b-FGF; PeproTech, Rocky Hill, NJ, USA) and 4 

ng/mL heparin (Sigma-Aldrich). Primary tumorspheres were seeded at a density of 

1 x 104 cells/mL in 100 mm ultralow attachment plates (Corning, NY, USA) for 5 

consecutive days, and 2 mL of medium was added every third day. To culture 

secondary tumorspheres, primary tumorspheres were gently collected and 

dissociated into a single-cell suspension using 40 µm strainer. Single cells were 

counted and then seeded again for another 5 days with addition of 2 mL medium 

every third day. Using the same experimental method, tertiary mammospheres were 

generated from secondary mammospheres. The number of mammospheres formed 

(> 100 µm) was counted at indicated times under a microscope. Images were 



 

３６ 

analyzed by using the ImageJ software (http://rsb.info.nih.gov/ij/docs/index.html). 

3D picture analysis and quantification were carried out using the ReViSP software 

(https://sourceforge.net/projects/revisp/). 

 

Flow cytometry analysis 

Cells were collected, washed with phosphate-buffered saline (PBS), and dissociated 

with Accutase solution (Sigma-Aldrich). Cells were then counted and washed with 

PBS containing 2 % FBS and 0.1% Tween-20. Cells were stained with CD24-PE and 

CD44-APC for 30 min at 4 °C. After incubation, cells were collected and washed 

with PBS again. Cells were dissociated into single cells by using 40 µm strainer, and 

then the population of CD44high/CD24low cells was measured using BD FACSCalibur 

(Becton Dickinson Biosciences, San Jose, USA).  

 

ALDEFLUOR Assay 

The ALDEFLUOR™ kit (StemCell Technologies, Durham, NC, USA) was used to 

identify the cells that express high levels of the enzyme aldehyde dehydrogenase 

(ALDH). MDA-MB-231 mammospheres were obtained and suspended in the 

ALDEFLUOR Assay Buffer containing ALDH substrate at a density of 1 x 105 

cells/mL and incubated for 30 min at 37 °C. For negative control, each sample was 

http://rsb.info.nih.gov/ij/docs/index.html
https://sourceforge.net/projects/revisp/
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treated with an ALDH specific inhibitor, diethylaminobenzaldehyde (DEAB), for 

background fluorescence. The sorting gates were established by eliminating the cells 

stained positive with ALDH in negative control group. Data were analyzed by the 

BD FACSCalibur (Becton Dickinson Biosciences). 

 

Western blot analysis. 

Whole cell lysate was prepared by scapping the cells in RIPA lysis buffer [(150 mM 

NaCl, 0.5 % Triton x 100, 50 mM Tri-HCl (pH 7.4), 25 mM NaF, 20 mM EGTA, 1 

mM dithiothreitol, 1 mM Na3VO4, 0.1 mM phenylmethane sulfonyl fluoride (PMSF)] 

for 15 min on ice followed by centrifugation at 13000 g for 15 min. The supernatant 

containing proteins was collected and stored at -70 ℃. For Western blot analysis, 

the protein concentration of whole cell lysates was measured by using the BCA 

protein assay kit (Pierce, Rockford, IL, USA). Lysates from cells were separated by 

running through 8-12 % SDS-PAGE gel and transferred to the polyvinylidene 

difluoride (PVDF) membrane (Gelman Laboratory, Ann Arbor, MI, USA). The blots 

were blocked with 5% non-fat dry milk/TBST (Tris-buffered saline buffer containing 

0.1 % Tween-20) for 1 h at room temperature. The membranes were incubated with 

the respective primary antibody diluted in TBST overnight 4 ℃. Blots were rinsed 

three times with TBST at 10-min intervals followed by incubation with respective 
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horseradish peroxidase conjugated secondary antibodies (rabbit, mouse or goat) in 

TBST for 1 h at room temperature. The blots were washed again three times with 

TBST. The band intensities in Western blotting were visualized with an enhanced 

chemiluminescent (ECL) detection kit (Amersham Pharmacia Biotech, 

Buckinghamshire, UK) and quantified with the LAS-4000 Image Analyzer (Fujifilm, 

Tokyo, Japan).  

 

Reverse transcription-polymerase chain reaction (RT-PCR). 

Total RNA was isolated from each cell by using TRIzol® reagent (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer’s protocol. To generate the 

cDNA from RNA, 1 µg of total RNA was reverse transcribed with murine leukemia 

virus reverse transcriptase (Promega, Madison, WI, USA) for 50 min at 42 °C and 

again for 15 min at 72 °C. About 1 μL of cDNA was amplified with a PCR mixture 

(HS Prime Taq 2X Premix, Daejeon, South Korea) in sequential reactions. The 

primers used for each RT-PCR reactions are as follows : CAV-1, 5’-ATG TCT GGG 

GGC AAA TAC GTA-3’ and 5’–TTG GAA CTT GAA ATT GGC ACC A-3’ ; BMI-

1, 5’-CCA GGG CTT TTC AAA AAT-3’ and 5’-GCA TCA CAG TCA TTG CTG 

CT-3’ ; NOTCH-1, 5’-GGG TCC ACC AGT TTG AAT GG-3’ and 5’-GTT TGC 

TGG CTG CAG GTT CT-3’; GAPDH, 5’-AAG GTC GGA GTC AAC GGA TTT-3’ 
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and 5’-GCA GTG AGG GTC TCT CTC T-3’; TWIST1, 5’-GGA GTC CGC AGT 

CTT ACG AG-3 and 5’-TCT GGA GGA CCT GGT AGA GG-3’ ; SNAIL, 5’-CCT 

GCT GGC AGC CAT CCC AC-3’ and 5’-GGC ACG GTG TGG CTT CGG AT-3’ ; 

SLUG, 5’-ACG CCC AGC TAC CCA ATG GC-3’ and 5’–AGG GCG CCC AGG 

CTC ACA TA-3’ ; ZEB1, 5’-AGT GAT CCA GCC AAA TGG AA-3’ and 5’-TTT 

TTG GGC GGT GTA GAA TC-3’ (forward and reverse, respectively). Amplification 

products were analyzed by 1.5-2 % agarose gel electrophoresis, followed by staining 

with SYBR Green (Invitrogen, Carlsbad, CA, USA) and photographed using 

fluorescence in LAS-4000 (Fujifilm, Tokyo, Japan). 

 

Transient transfection of siRNA 

MDA-MB-231 cells were seeded at a density of 1 x 105 cells/mL in 100 mm dish in 

complete growth media. Cav-1 siRNA (25 nM) was transfected into MDA-MB-231 

cells with lipofectamine RNAiMAX (Invitrogen) reagent according to the 

manufacturer’s instructions. The target sequence for human Cav-1 siRNA was 5’ -

AGA CGA GCU GAG CGA GAA GCA UU3’ (forward) and 5’ -UGC UUC UCG 

CUC AGC UCG UCU UU-3’ (reverse). siRNA oligonucleotides targeting for Cav-1 

was purchased from Genolution Pharmaceuticals (Seoul, South Korea). 
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Transient transfection of plasmid 

Transient transfection of plasmid encoding native or mutant Cav-1 in which tyrosine 

14 is replaced by phenylalanine (Y14F-Cav-1) was performed by Lipofectamine®  

2000 reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. After 36 h transfection, cells were harvested or cultured to generate 

according to purpose of the experiment.- 

 

Immunofluorescent analysis 

Human paraffin-embedded breast cancer tissue array (US Biomax, Inc., cat. no. 

BR1201a; Rockville, MD, USA) was subjected to deparaffinization with xylene. 

Following antigen retrieval by heated citrate buffer, sections were permeabilized and 

blocked according to the standard protocol. After overnight incubation at 4 °C with 

anti-Cav-1, the tissue sections were washed with PBS and then labeled with TRITC-

conjugated anti-mouse IgG secondary antibody for 1 h at room temperature. The 

slides were then analyzed under a fluorescent microscope. 

 

Immunocytochemical analysis 

MDA-MB-231 cells were plated on the 8-well chamber slide (0.5 x cells/well) and 

transfected with control or Cav-1 specific siRNA. Cells were fixed in 95% methanol 
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for 10 min at -20 ℃. After rinse with PBS containing 0.1 % Tween 20 (PBST), cells 

were incubated in 0.2 % Triton X-100 in PBS for 5 min. After three washing steps 

with PBST, cells were blocked for 2 h in fresh blocking buffer [PBST (pH 7.4) 

containing 5% bovine serum albumin (BSA)]. Dilution (1:100) of primary antibody 

was made in PBST with 1% BSA, and cells were incubated overnight at 4 ℃. After 

three washing steps with PBST, the cells were incubated with a diluted (1:1000) 

TRITC-conjugated anti-mouse or FITC-conjugated anti-rabbit IgG secondary 

antibody in PBST with  1% BSA at room temperature for 1 h. Cells were also 

stained with 4',6-diamidino-2-phenylindole (DAPI) and rinsed with PBST. Stained 

cells were analyzed under a confocal microscope (Leica Microsystems, Heidelberg, 

Germany) and photographed. The accumulation effects area was quantified using the 

Image J software.    

 

Immunoprecipitation 

Cells were lysed in 250 mM sucrose, 50 mM Tris-HCl (pH 8.0), 25 mM KCl, 5 mM 

MgCl2, 1 mM EDTA, 2 μM NaF, 2 μM sodium orthovanadate, 1 mM PMSF and 10 

mM N-ethylmaleimide. Total protein (500 μg) was subjected to immunoprecipitation 

by shaking with Cav-1 primary antibody at 4 ℃ for 24 h followed by the addition of 

20 μL of 25 % protein G-agarose bead slurry (Santa Cruz Biotechnology, Inc.; Santa 
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Cruz, CA, USA) and additional shaking for 2 h at 4 ℃. After centrifugation at 10,000 

g for 1 min, immunoprecipitated beads were collected by discarding the supernatant 

and washed with cell lysis buffer. After final wash, immunoprecipitate was 

resuspended in 50 μL of 2X SDS electrophoresis sample buffer and boiled for 5 min. 

Forty five μL of supernatant from each sample was loaded on SDS-PAGE. The 

expression of phosphorylated or ubiquitinated Cav-1 and phosphorylated Src was 

visualized by antibody against p-Src, p-Cav-1 or ubiquitin.  

 

Site-directed mutagenesis 

Point mutation of tyrosine to phenylalanine at the residue 14 (Y14F) in Cav-1 was 

induced by using a QuikChange® site-directed mutagenesis kit (Stratagene; Cedar 

Creek, TX, USA) according to the manufacturer's protocol. Mutant strand synthesis 

reaction was performed by denaturation at 96 °C for 45 s, annealing at 60 °C for 45 s 

and extension at 72 °C for 8 min with 30 cycles using the 5.4 kb plasmid template 

encoding Myc-Cav1. Generally, extension time of 1 min/kb is recommended 

depending on the length of plasmid template and extension time of 8 min was set as 

an optimal condition. The following complementary primer pairs were used: sense, 

5′-GAC TCG GAG GGA CAT CTC TTC ACC GTT CCC ATC CGG G-3′; antisense, 

5′-CCC GGA TGG GAA CGG TGA AGA GAT GTC CCT CCG AGT C-3′. The 
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DNA sequences of all plasmids were verified by sequencing (Cosmo Genetech, 

Seoul, South Korea). 

 

Tumorigenesis assay  

All animal experiment were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Seoul National University (authorization number: SNU-

160912-1). Six-week-old female BALB/c nude mice (total 12) were purchased from 

Central Lab Animal, Inc. (Seoul, South Korea). All the animals were maintained 

under specific pathogen-free (SPF) conditions with 12-h light/12-h dark cycle. After 

one week of acclimation period, 1 × 104 mock, native (WT-Cav-1) or mutant (Y14F-

Cav-1) transfected MDA-MB-231 tumorspheres re-suspended in equal volumes of 

PBS and matrigel (total volume of 100 μL) were injected into the fourth mammary 

fat pads of mice. Four mice were included in each group. The tumor incidence was 

identified by palpation every 3 day. Tumor volume was regularly measured with 

digital calipers and calculated according to the formula; V = 0.5 ab2, where ‘a’ is the 

longest and ‘b’ is the shortest perpendicular diameters. After mice were killed, 

xenograft tumors were excised and fixed in formalin for further analysis.  
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Statistical analysis 

Data were represented as means of ± standard deviation (SD) at least three 

independent experiments. Statistical significance was determined by Student’s t-test 

and a p-value of less than 0.05 was considered to be statistically significant. 
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4. Results  

Cav-1 is down-regulated in tumorspheres derived from highly invasiveness breast 

cancer cells 

I initially investigated the correlation between Cav-1 expression and clinical 

progress of breast cancer patients. For this purpose, immunofluorescent analysis was 

performed to detect the expression of Cav-1 in 120 patients tissues with different 

clinical stages, including stage 1 (n = 6), stage 2 (n = 94), and stage 3 (n = 20). As 

shown in Fig. 2-1A, Cav-1 expression was strongly correlated with clinical stages in 

breast cancer patients. This finding is corroborated by the microarray data retrieved 

from the Cancer Genome Atlas analyzed through the oncomine web portal 

(www.oncomine.org) (Fig. 2-1B). Likewise, higher expression of Cav-1 was found 

in MDA-MB-231 and MDA-MB-468 cells, highly invasiveness breast cancer cell 

lines (Fig. 2-1C). Next, I examined whether Cav-1 could be involved in modulating 

the stemness of breast cancer cells. I enriched for stemness characteristics of breast 

cancer cells (MCF-7, MDA-MB-453, MDA-MB-231 and MDA-MB-468), by 

culturing them as spheroids (Fig. 2-1D). As shown in Fig. 2-1E, the expression of 

CD133, Oct 3/4, and Sox2, well-known stemness markers, was increased in 

tumorspheres. I also observed that tumorspheres derived from MDA-MB-231 and 

MDA-MB-468 breast cancer cells exhibited much lower levels of Cav-1 (Fig. 2-1F). 
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Furthermore, immunofluorescent analysis reveals that Cav-1 expression is 

associated with a stemness marker, Sox2 (Fig. 2-1G). Based on these observations, 

Cav-1 is likely to play a crucial role in the stemness of breast cancer cells.  

 

Silencing of Cav-1 enhances the stemness phenotype of MDA-MB-231 cells 

As Cav-1 expression is down-regulated in MDA-MB-231 tumorspheres 

compared to adherent cells, I carried out an experiment using siRNA to examine the 

impact of Cav-1 on manifestation of stemness. As shown in Fig. 2-2A, the silencing 

of Cav-1 resulted in the elevated expression of the well-known stemness-related 

proteins, Nanog, Oct 3/4, and Sox2. Consistently, the Cav-1 knockdown increased 

the size and the number of spheres in MDA-MB-231 (Fig. 2-2B). In addition, the 

proportion of CD44high and CD24low cells was increased when Cav-1 was knockdown 

in MDA-MB-231 (Fig. 2-2C). The ALDH activity, which also accounts for major 

stemness property, was increased by transfection with the Cav-1 siRNA (Fig. 2-2D). 

These findings, taken all together, suggest that Cav-1 plays an important role in 

maintaining a stemness of breast cancer cells.  
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Loss of Cav-1 increases the expression of a self-renewal marker, Bmi-1 and EMT 

markers 

As described above, silencing of Cav-1 results in enhancement of stemness in 

MDA-MB-231 breast cancer cells. Self-renewal is one of the important properties 

employed by the CSCs to maintain the proliferating capacities. Notch1 and Bmi-1 

are known as the key regulators of self-renewal activity in mammary stem cells [27]. 

In this study, Cav-1 knockdown up-regulated Bmi-1 expression at both mRNA and 

protein levels, but there was no change in the expression levels of Notch-1 (Fig. 2-

3A, B). Since acquisition of stem-like traits has been linked to EMT properties [28, 

29], I also investigated the role of Cav-1 in the induction of EMT in MDA-MB-231 

cells. The induction of EMT leads to the loss of epithelial characteristics (such as E-

cadherin, desmoplakin and claudins) and an acquisition of mesenchymal phenotype 

(vimentin, α5β1integrin and fibronectin) [30, 31]. Cav-1 inhibition increased the 

expression of EMT marker genes, such as Snail, Twist1, and N-Cadherin (Fig. 2-3C) 

and their protein products (Fig. 2-3D). An immunocytochemistry assay verified the 

upregulation of N-cadherin and snail in Cav-1 knockdown cells (Fig. 2-3E). 

Moreover, I found that elevated expression of α5 and β1 integrins were observed in 

tumorspheres compared to adherent cells. I next determined whether Bmi-1 could 

affect EMT signaling. siRNA-mediated silencing of Bmi-1 markedly reduced the 
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mRNA and protein expression of EMT markers in MDA-MB-231 cell (Fig. 2-3G 

and 3H). These results suggest that Bmi-1 expression induced by the Cav-1 

downregulation plays a role in stimulating EMT in a MDA-MB-231 breast cancer 

cells. 

 

Expression of the Cav-1 protein, but not its mRNA transcript, is reduced and 

induces its proteasomal degradation in MDA-MB-231 tumorspheres 

In contrast to no significant difference in Cav-1 mRNA expression levels 

between the adherent and the tumorsphere cells, MDA-MB-231 derived 

tumorspheres exhibited significant alteration in the steady state level of the Cav-1 

protein (Fig. 2-4A). To determine whether acquisition of stemness is a consequence 

of Cav-1 protein destabilization, I monitored the degradation of Cav-1 in 

tumorsphere as well as adherent cells after inhibition of de novo protein synthesis by 

cycloheximide. As illustrated in Fig. 2-4B, Cav-1 in the MDA-MB-231 

tumorspheres underwent degradation rapidly as compared with adherent cells after 

addition of cycloheximide. Many labile proteins are commonly degraded via the 

ubiquitin-proteasomal pathway. As shown in Fig. 2-4C, treatment of MDA-MB-231 

tumorspheres with the proteasome inhibitor, MG-132 resulted in increased 

accumulation of Cav-1. Generally, proteins subjected to proteasomal degradation are 
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marked by prior attachment of ubiquitin to their lysine residue. As illustrated in Fig. 

2-4D, MDA-MB-231 tumorspheres exhibited enhanced ubiquitiation of Cav-1 with 

a concomitant acquisition of stem-like properties compared to adherent cells.  

 

Role of Src in phosphorylation and stability of Cav-1 in MDA-MB-231 

tumorspheres 

Src has a kinase activity which contributes to its association with Cav-1. Thus, 

binding of Src to phosphotyrosylated Cav-1 affects Cav-1-regulated signaling [12, 

32]. This prompted us to examine whether Cav-1-Src interaction was involved in the 

maintenance of stemness in breast cancer cells. As shown in Fig 2-5A, the expression 

of p-Cav-1 (Tyr14) and p-Src (Tyr416) was much higher in tumorsphere cells, 

compared to adherent cells. In line with the notion that Src-dependent 

phosphorylation targets Cav-1 for degradation, PP2, a specific Src inhibitor, 

abrogated Cav-1 phosphorylation in MDA-MB-231 tumorspheres (Fig. 2-5B). 

These findings suggest that sustained phosphorylation of Cav-1 (Tyr14) by active Src 

accounts for Cav-1 degradation. Moreover, PP2 treatment attenuated Cav-1 

ubiquitination (Fig. 2-5C), the characteristic signature of proteasomal targeting. 

Consistently, the Cav-1 expression repressed in MDA-MB-231 tumorspheres was 

restored after addition of PP2, whereas the expression levels of Cav-1 in the adherent 
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cells had no differences (Fig. 2-5D). In addition, treatment of MDA-MB-231 

tumorspheres with PP2 decreased the size and the number of spheres (Fig. 2-5E). 

Thus, it is likely that destabilization of Cav-1 in tumorsphere occurs by Src-

dependent phosphorylation of Cav-1 (Tyr14).  

 

Tyrosine 14 of Cav-1 is a key amino acid in maintaining stemness of breast cancer  

The tyrosine 14 residue of Cav-1 is thought to be the principal site for 

recognition by c-Src kinase. To ensure this tyrosine residue is implicated in the 

regulation of Cav-1, I mutated the tyrosine 14 to phenylalanine, which eliminated 

the phosphorylation site. The mutant construct (Y14F-Cav-1) was then transfected 

into MDA-MB-231 cells. Analysis of each of the transfected lines revealed that the 

Y14F-Cav-1 mutation was sufficient to abolish phosphorylation and ubiquitination 

of Cav-1 expression (Fig. 2-6A and 6B). To verify that Cav-1 suppresses the breast 

cancer cell stemness, I overexpressed Cav-1 in MDA-MB-231 tumorspheres. As a 

result, the MDA-MB-231 tumorspheres overexpressing WT-Cav-1 reduced the 

ability of spheroid formation compared with MOCK cells. Additionally, the 

tumorsphere-forming ability of cells expressing Y14F mutant Cav-1 was weaker 

than that of cells expressing WT-Cav-1 (Fig. 2-6C). Consistent with this finding, the 

Y14F-Cav-1 mutation significantly mitigated the retarding effects of Cav-1 on the 
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expression of Bmi-1 and EMT markers (Fig. 2-6D and 6E). Thus, tyrosine 14 is 

considered a key amino acid within Cav-1 that regulates stemness capacity in breast 

cancer cells.  

 

Tyrosine 14 of Cav-1 is essential for the tumorigenicity of MDA-MB-231 

tumorspheres  

After finding that phosphorylation of tyrosine 14 of Cav-1 is pivotal to the stem-

like properties of breast cancer cells in vitro, I assessed whether this amino acid 

residue would affect the oncogenicity of MDA-MB-231 tumorspheres. The 

tumorigenic ability was measured for MDA-MB-231 tumorspheres, which were 

transfected with MOCK, WT-Cav-1 or Y14F-Cav-1 mutant construct and inoculated 

into the mammary pads of BALB/c nude mice. The representative image of the 

excised tumors at the day 40 after inoculation was presented in Fig. 2-7A. As shown 

in Fig. 2-7B, the tumors derived from tumorspheres harbouring Y14F-Cav-1 

appeared to have longer latency than those from MOCK and WT-Cav-1 tumorsphere 

groups. After 40 days, the volume and the weight formed in the Y14F-Cav-1 

tumorsphere group were markedly reduced compared with those in MOCK and WT-

Cav-1 tumorsphere groups (Fig. 2-7C and 7D). Hematoxylin-eosin (H&E) staining 

showed the presence of prominent apoptotic figures in MOCK tumorsphere groups, 
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in contrast to tumors isolated from WT-Cav-1 tumorsphere groups and Y14F-Cav-1 

tumorsphere groups containing less apoptotic cells. Immunohistochemical analysis 

also showed a relatively weaker nuclear staining of pCav-1 in the tumor tissues of 

mice transplanted with Y14F-Cav1 spheres (Fig. 2-7E).  
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Figure 2-1. Repression of Cav-1 expression in the spheroids of basal-like breast 

cancer cells. (A) Immunofluorescent analysis for Cav-1 expression was classified as 

absent/weak, moderate, or strong in human breast cancer tissues with different 

clinical stages. The expression of Cav-1 at different levels in each stages was 

assessed by immunofluorescence staining, and the relative fluorescence intensity 

was calculated using Image J, an open platform for Java-based scientific image 

analysis. Hematoxylin and Eosin (H&E) images were provided by US Biomax Inc. 

(Rockville, MD, USA). Scale bar = 200 µm. (B) The expression level of Cav-1 in 

human breast cancer tissues grouped by invasive stage was assessed by Oncomine 

database analysis. (C) The mRNA and protein levels of Cav-1 in various subtypes of 

breast cancer cells were measured by reverse transcription-PCR and Western blot 

analyses, respectively. (D) Tertiary tumorspheres derived from breast cancer cells 

(MCF-7, MDA-MB-453, MDA-MB-231 and MDA-MB-468 cells) were cultured 

under sphere-forming conditions. For sphere-forming culture, breast cancer cells 

were exposed to cancer stem cell medium for 24 h. Cells were cultured in an ultra-

low attachment plate to generate primary tumorspheres. After 5 days, primary 

tumorspheres were counted, collected and replated under the same conditions to 

form secondary tumorspheres. Using the same experimental method, tertiary 

mammospheres were generated from secondary mammospheres. The number of 
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mammospheres formed (> 100 µm) was counted under a microscope. Scale bar = 

100 µm. (E) Expression of stem cell-related marker proteins was analyzed by 

Western blotting in adherent and sphere cells. (F) The expression level of Cav-1 was 

measured by Western blotting in adherent and sphere cells. The values are expressed 

as means ± SD (n = 3). (G) Immunofluorescent analysis was performed for 

measuring Cav-1 and Sox2 expression in human breast cancer tissues. The scatter 

plot demonstrates correlation between Cav-1 and Sox2. Scale bar = 200 µm. 
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Figure 2-2. Enhancement of the stemness of MBA-MB-231 by Cav-1 

knockdown. (A) The protein levels of Nanog, Oct 3/4 and SOX2 were assessed by 

Western blot analysis in the MDA-MB-231 cells transfected with control siRNA or 

specific Cav-1 siRNA for 36 h. The values are expressed as means ± SD (n = 3). (B) 

After control siRNA or Cav-1 siRNA treatment, MDA-MB-231 cells were cultured 
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under sphere-forming condition. Tumorsphere frequencies of Cav-1 knockdown 

MDA-MB-231 cells were calculated and representative sphere images were 

visualized under a microscope. The volume of each spheroid was computed by using 

ReViSP, a software specifically designed to accurately estimate the volume of 

spheroids and to render an image of their 3D surface. The values are expressed as 

means ± SD (n = 3). (C) Proportions of CD44 high and CD24low cells were determined 

by flow cytometry in the MDA-MB 231 cells transfected with control siRNA or 

specific Cav-1 siRNA for 36 h. The cells were stained with anti-CD44-APC and anti-

CD24-PE antibodies. (D) Proportions of ALDH+ MDA-MB-231 cells were 

determined by flow cytometry. After cells were treated with control siRNA or 

specific Cav-1 siRNA for 36 h, the proportions of ALDH+ cells were determined by 

FACS analysis. Lower part: negative control obtained by treating cells with DEAB, 

an irreversible inhibitor or ALDH activity. Levels of a specific fluorescence were set 

as background. Upper part: specific ALDH-dependent fluorescence levels in control 

siRNA or Cav-1 siRNA treated cells. y-axis: side scatter distribution of the tested 

cell populations. x-axis: distribution of fluorescent cells in the tested cell populations. 

The values are expressed as means ± SD (n = 3). 
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Figure 2-3. Up-regulation of Bmi-1 and EMT markers in Cav-1 knockdown 

MDA-MB-231 cells. MDA-MB-231 cells were transfected with control siRNA or 

specific Cav-1 siRNA for 36 h. (A, B) RT-PCR and Western blot analysis were 

performed to detect expression of self-renewal marker genes, Bmi-1 and Notch-1 and 

their protein products, respectively. N.S.; non-significant. (C, D) The mRNA and 

protein levels of EMT markers were determined by RT-PCR and Western blot 

analysis, respectively. (E) Immunocytochemical analysis was performed using 

antibodies against N-cadherin and Snail. Conditions for Cav-1 knockdown MDA-

MB-231 cells are same as described in (A). Cells stained with DAPI were visualized 

by fluorescent microscopy. Relative mean fluorescence intensity was calculated 

using Image J. (F) The expression level of integrins were measured by Western 

blotting in adherent and sphere cells. (G, H) RT-PCR and Western blot analysis of 

EMT markers in MDA-MB-231 cells that were transfected with non-specific or Bmi-

1 specific siRNA for 36 h. GAPDH and β-actin were used as a loading control.  

 

 

 

 

 



 

６２ 

Figure 2-4. Enhanced ubiquitination and proteasomal degradation of Cav-1 

protein in MDA-MB-231 tumorspheres. (A) MDA-MB-231 cells were cultured 

on ultra-low attachment plates for 5 days to generate primary tumorspheres, and then 

were dissociated into single cell suspension to generate secondary tumorspheres for 

5 days. Using the same experimental method, tertiary tumorspheres were generated 
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from secondary tumorspheres. The expression of Cav-1 and its mRNA transcript was 

determined by Western blot and RT-PCR analyses, respectively in adherent and 

MDA-MB-231 tumorspheres. β-Actin and GAPDH were used as a loading or 

internal control. N.S.; non-significant. (B) To monitor the protein stability, adherent 

and MDA-MB-231 tumorspheres were treated with 70.07 μM of cycloheximide 

(CHX), and the expression levels of Cav-1 was measured at indicated time points. 

(C) Tertiary tumorsphere cells were treated with or without 20 µM of MG-132, and 

expression levels of Cav-1 were determined by Western blot analysis as compared 

to adherent cells. The values are presented means ± SD (n = 3). (D) To assess the 

ubiquitination of Cav-1, adherent and MDA-MB-231 tumorspheres were 

immunoprecipitated with anti-Cav-1 antibody, followed by Western blot analysis 

with anti-ubiquitin antibody. 
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Figure 2-5. Effect of Src on phosphorylation and stability of Cav-1 in MDA-

MB-231 tumorspheres. (A) The expression levels of total and Tyr416 

phosphorylated Src and Cav-1 phosphorylated at Tyr14 were measured by Western 

blot analysis in adherent and MDA-MB-231 tumorspheres. The values are presented 

means ± SD (n = 3). (B) Tertiary tumorspheres were treated with PP2 (10 μM) or 
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DMSO for 24 h before the sample collection. Src and Cav-1 phosphorylated at 

Tyr416 and Tyr14, respectively as well as their total forms in adherent and MDA-

MB-231 tumorspheres were measured by immunoprecipitation with anti-Cav-1 

antibody, followed by immunoblot analysis with antibodies against corresponding 

antibodies. (C) The ubiquitination of Cav-1 was measured by immunoprecipitation 

as described in the legend to Fig. 2-4D. (D) Following treatment of adherent and 

tertiary tumorsphere cells with PP2 (10 µM) or DMSO, the protein level of Cav-1 

was examined by Western blot analysis. (E) The effects of PP2 on tumorsphere 

formation was confirmed by the tumorsphere assay. Alterations in the shape of 

tumorspheres were examined by phase-contrast microscopy. The histogram 

represents the number of spheres that were bigger than 100 μm. The values are 

indicated as means ± S.D. (n = 3).  
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Figure 2-6. Essential role of tyrosine 14 of Cav-1 in maintaining stemness of 

breast cancer cells in vitro. MDA-MB-231 cells were transiently transfected with 

Myc-tagged wild-type (WT-Cav-1) or mutant-Cav1 (Y14F-Cav-1). (A) The tyrosine 

phosphorylation of Cav-1 was detected by immunoprecipitation followed by 

immunoblot analysis. The expression levels of Cav-1 and myc-tagged Cav-1 in 

clones expressing MOCK (vector alone) or WT-Cav-1/Y14F-Cav-1 (vector 

containing myc-tagged Cav-1) were measured by Western blot analysis. (B) The 

ubiquitination of Cav-1 was measured by immunoprecipitation. (C) Tumorsphere-

forming ability was calculated, and representative sphere images were visualized 

under a microscope. The volume of each spheroid was computed by using ReViSP, 

a software specifically designed to accurately estimate the volume of spheroids and 

to render an image of their 3D surface. The values are expressed as means ± SD (n 

= 3). The expression level of self-renewal (D) and EMT markers (E) were analyzed 

by Western blotting.  
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Figure 2-7. A critical role of tyrosine 14 of Cav-1 in growth and proliferation of 

MDA-MB-231 tumorspheres transplanted to nude mice. MDA-MB-231 cells 

transfected with mock or Myc-tagged wild-type (WT-Cav-1) or mutant-Cav1 (Y14F-

Cav-1) were cultured in cultured in ultra-low attachment plates and then passaged to 

tertiary tumorspheres as described in Materials and methods. A total 1 × 104 cells 

were injected into the mammary fat pad of BALB/c nude mice. (A) Representative 

tumor images excised from mice at the end of the experiment at the day 40. (B) The 

tumor volume was measured by using the following formula; Volume (V) = 0.5 × 

longest diameter × (shortest diameter)2. The values are indicated as means ± S.D. of 

six xenografts for each group, *p < 0.05, **p < 0.01. (C) Histograms of the mean 

tumor volume of each group. Mean tumor volume for each group was calculated at 

40 days after injection. (D) The tumor weight was measured at the end of the 
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experiment. The results are expressed as means ± SD., *p < 0.05, **p < 0.01, ***p 

< 0.001. (E) Immunohistochemical stains of Cav-1 and p-Cav-1 in tumors from mice. 

Scale bar = 200 μm. 
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5. Discussion  

Chemo-resistance and disease relapse in cancer are attributed to a small subset of 

cancer stem cells (CSCs) with the capability of self-renewal and differentiation [33, 

34]. Several studies have demonstrated association between stemness and the 

metastatic potential of disseminated tumor cells [28, 35-37]. In the tumor progression, 

disseminated cancer cells may display a more mesenchymal phenotype, bestowing 

these cells with stem-like traits. The transformed cells with stem-like traits can 

migrate from the primary tumor to the bone marrow, due to their capacity to perform 

the EMT. CSCs localize in the pre-metastatic niche, a distinct region responsible for 

metastatic progression [38-41]. According to the model of CSCs, a small 

subpopulation of cancer cells is endowed with stem like traits with the potential to 

promote cancer progression [42]. CSCs are also primarily responsible for the 

recurrence of cancer. Therefore, eradication of CSCs in tumors may represent an 

effective anticancer therapeutic strategy. So far, significant efforts have been made 

to explore the signaling pathways modulating self-renewal and differentiation of 

CSCs, to develop regimens or therapeutic strategies targeting CSCs [43, 44]. 

Several lines of evidence suggest that Cav-1 may function as a regulator of self-

renewal signaling pathways in stem cells [45, 46]. In various cancer types, Cav-1 

levels vary during the course of tumor progression. It has been speculated that Cav-
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1 acts both as a tumor suppressor and an oncogene, depending on the stage of 

neoplastic transformation and extent of tumor progression [47, 48]. Cav-1 is down-

regulated in early stages facilitating oncogenic transformation, while restoration of 

Cav-1 in later stages possibly contributes to the development of invasiveness and 

drug resistance. However, the precise function of Cav-1 on acquisition of stem cell-

like properties in cancer progression is largely unknown. 

The tumorsphere culture system has been widely used to identify and enrich for 

putative CSCs from cancer cell lines or primary tumors [49]. In this study, four 

human breast cancer cell lines representing the major molecular subtypes of breast 

cancer (Luminal; MCF-7, HER2; MDA-MB-453, Basal-like; MDA-MB-231 and 

MDA-MB-468) were exploited to generate tumorspheres. I observed that 

tumorspheres derived from breast cancer cells exhibited much lower levels of Cav-

1, compared with adherent cells. Silencing of Cav-1 with siRNA induced stemness 

properties as evidenced by increased CD44high/CD24low cell population, ALDH 

activity, expression of stemness-related genes and tumorsphere formation. Recently, 

the CD44high/CD24low and ALDH+ phenotypes are less frequently utilized to identify 

of CSCs, because their expression is not consistent even in the same molecular 

subtype of breast cancer. Systematic comparison of their functions is also still 

insufficient [50, 51]. Nevertheless, their expression is still used to identify breast 
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CSCs. Another frequently used stem cell marker is Oct4 (octamer-binding 

transcription factor 4).  According to a hierarchy of breast cancer cells proposed by 

Patel et al. [52], there is a subset of cells with the least maturity that express a high 

level of Oct4. This most immature subset of Oct4high breast cancer cells demonstrates 

chemoresistance, dormancy, and stem cell properties, such as self-renewal, serial 

passaging ability, cycling quiescence, long doubling time, asymmetric division, high 

metastatic and invasive capability. 

Several studies highlighted the role of cadherins and integrins, not only in the 

regulation of EMT but also in maintaining CSC [53-55]. Consistent with these 

findings, I noticed that the expression of α5β1 integrin was increased in 

tumorspheres. Furthermore, Cav-1 expression has been found to be significantly 

associated with α5β1 integrin [56]. Results from our present study suggest that Cav-

1 knockdown led to EMT which endows breast cancer cells with stem-like features. 

Similar effects of Cav-1 on stemness were also observed in other cancer cell lines 

[57], further confirming that Cav-1 plays a role in the cancer progression.  

Decreased protein expression of Cav-1 in tumorspheres is not attributable to 

reduced expression of its mRNA transcript, but rather due to lowered protein stability. 

It has been reported that phosphorylation of Cav-1 at tyrosine 14 reduces Cav-1 
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protein stability by facilitating the ubiquitination and proteasomal degradation [58]. 

Cav-1 is mainly phosphorylated on tyrosine 14 by Src kinase [15, 19, 59]. 

Phosphorylation on Tyr 14 by Src is clearly relevant to Cav-1 functions in a number 

of settings, such as EGF-induced caveolae formation [60], integrin-regulated 

membrane microdomain internalization [61], and association with the membrane 

type-Ⅰ matrix metalloproteinase [19]. Our finding reveals that the tyrosine residue at 

position 14 of Cav-1 is required for its modulating spheroid formation, and acquiring 

EMT and stem-like traits. Cav-1 mutation by replacing the Tyr14 with phenylalanine 

significantly impaired tumorigenic ability of tumorspheres derived from human 

breast cancer cells.  

In summary, the down-regulation of Cav-1 is detected in breast CSC-like cells, 

which is associated with upregulation of Bmi-1 and EMT markers. Cav-1 negatively 

regulates CSC markers, including CD133, Oct 3/4, and Sox2 and tumor spheroid 

formation, a key feature of CSCs. Down-regulation of Cav-1 is attributed to its 

destabilization through the Src-mediated phosphorylation at the Tyr14 and 

subsequent degradation via the ubiquitin-proteasome pathway. Cav-1 destabilized 

cells exhibit stem-like characteristics which facilitate the formation of tumorspheres 

and enhance the tumorigenicity (Fig. 7F). Together, our results unveil a novel 

mechanism of CSC regulation, which could be crucial in understanding the 
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aggressive behaviors of cancer cells and in identifying potential targets for CSC 

therapy.  
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1. Abstract 

Breast cancer is a fatal tumor and comprises heterogeneous cells in which a sub-

population with stem cell-like properties is included. Cancer cells with stem cell-like 

traits account for tumor progression, metastasis and recurrence. Therefore, 

identification and characterization of specific factors regulating stem-like traits are 

critical for development of breast cancer therapeutics. In the present study, Caveolin-

1 (Cav-1), the plasma membrane component protein, was found to regulate stem-

like traits of breast cancer cells through direct interaction with NF-E2-related factor 

2 (Nrf2). Biochemical studies show that Nrf2 colocalized with Cav-1, and Cav-1 

limited the migration of Nrf2 to the nucleus in adherent cells. In contrast, Nrf2 was 

constitutively localized in the nucleus of tumorspheres, which exhibited low 

expression of Cav-1. Functional studies demonstrated that knockdown of Cav-1 

exhibited the increased stemness signaling molecules and EMT markers, which was 

decreased by Nrf2 siRNA treatment. Taken together, Cav-1 interacts with Nrf2 in 

breast cancer and inhibits Nrf2 nuclear translocation, thereby suppressing CSC-like 

properties. 

 

Keywords: breast cancer stemness; Caveolin-1; Nrf2; direct interaction; nuclear 

translocation 
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2. Introduction 

Breast cancer is the most frequently diagnosed cancer and the leading cause of 

cancer-related death in women worldwide [1]. Accumulating evidence suggests 

that a small subpopulation of tumor cells, called cancer stem cells (CSCs) are 

implicated in tumor progression, recurrence and therapeutic resistance [2, 3]. 

However, the molecular mechanisms underlying manifestation and maintenance 

of stem-like properties remain largely unknown. 

Caveolin-1 (Cav-1) is a scaffolding protein primarily located in the lipid raft 

domains of the cellular plasma membrane. Cav-1 participate in various cellular 

functions, such as cellular metabolism, endocytosis, vesicle trafficking, 

cholesterol homeostasis, tumor progression and signal transduction Cav-1 has 

been known to interact with various important molecules such as nitric oxide 

synthase, epidermal growth factor receptor, Src-like nonreceptor tyrosine kinases, 

and protein kinase A [4, 5]. It has been reported that Cav-1 promotes the cancer stem 

cell-regulatory activity [6].  

Nuclear erythroid 2 p45-related factor-2 (Nrf2) is a key transcription factor that 

regulates the antioxidant gene expression [7]. Under homeostatic conditions, Keap1 

(Kelch-like ECH-associated protein 1) binds to Nrf2 and facilitates the degradation 
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of Nrf2 via the proteasome system [8]. Upon stimulation, Nrf2 dissociates from its 

cytoplasmic inhibitor Keap1, translocates to the nucleus, and transactivates the 

expression of antioxidant genes [9, 10]. Although Nrf2 exhibits a beneficial effects 

in normal cells, the constitutive overactivation of this transcription factor has been 

observed in some tumors [11]. Overactivation of Nrf2 also confers chemoresistance 

in cancer cells through upregulation of antioxidant enzymes [12]. Recent studies 

have demonstrated that Nrf2 signaling is involved in CSC-like properties of 

several types of malignancies [13-15]. However, how Cav-1 regulates the 

expression of Nrf2 in cancer stem cells remains unclear. Our previous studies have 

demonstrated that Nrf2 and its target protein, HO-1 augment stem-like traits of breast 

cancer cells [16]. This prompted us to further investigate whether Cav-1 could 

regulate stemness by targeting the Nrf2-HO-1 axis. It has been reported that Cav-1 

physically interacts with Nrf2, thereby suppressing its antioxidant activity in normal 

cells [17, 18]. In the present study, I found that Cav-1 could interact with Nrf2 in 

breast cancer and inhibit the Nrf2 signaling, thereby suppressing the manifestation 

of CSC-like properties. 
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3. Materials and methods  

Reagent and antibodies 

Dulbecco’s modified Eagle’s medium (DMEM), Rosewell Park Memorial Institute 

(RPMI) 1640 medium, Dulbecco’s modified Eagle Medium Nutrient Mixture F-12 

(DMEM/F-12), and fetal bovine serum (FBS) were purchased from Gibco BRL 

(Grand Island, NY, USA). TRIzol® was obtained from Invitrogen (Carlsbad, CA, 

USA). Primary antibodies for Bmi-1, ubiquitin and α-tubulin were purchased from 

Cell Signaling Technology (Danvers, MA, USA). Antibodies against Cav-1, Nrf2, 

Snail, Lamin B and β-actin were obtained from Santa Cruz (Santa Cruz, CA, USA). 

Antibody against N-cadherin was purchased from BD Biosciences (Bedford, MA, 

USA). The bicinchoninic acid (BCA) protein assay reagent was a product of Pierce 

Biotechnology (Rockfold, IL, USA).  

 

Cell culture 

The human breast cancer cell lines MCF-7, MDA-MB-231, and MDA-MB-468 were 

obtained from the Korean Cell Line Bank (Seoul, South Korea). MDA-MB-231 and 

MDA-MB-468 cells were maintained in DMEM, and MCF-7 cells were maintained 

in RPMI 1640 culture medium. All culture media were supplemented with 10% FBS 

and 1% antibiotics and cells were grown at 37℃ with 5% CO2 / 95 % air.  
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Tumorsphere culture  

For tumorsphere formation from the adherent cells, single cells were cultured in a 

serum free DMEM/F12 medium supplemented with B27 (GIBCO), 20 ng/mL 

epidermal growth factor (EGF; Sigma-Aldrich, St. Louis, MO, USA), 20 ng/mL 

basic fibroblast growth factor (b-FGF; PeproTech, Rocky Hill, NJ, USA) and 4 

ng/mL heparin (Sigma-Aldrich). Primary tumorspheres were seeded at a density of 

1 x 104 cells/mL in 100 mm ultralow attachment plates (Corning, NY, USA) for 5 

consecutive days, and 2 mL of medium was added every third day. To culture 

secondary tumorspheres, primary tumorspheres were gently collected and 

dissociated into a single-cell suspension using 40 µm strainer. Single cells were 

counted and then seeded again for another 5 days with addition of 2 mL medium 

every third day. Using the same experimental method, tertiary mammospheres were 

generated from secondary mammospheres. The number of mammospheres formed 

(> 100 µm) was counted at indicated times under a microscope.  

 

Fractionation of cytosolic and nuclear extracts 

Cells were washed with ice-cold PBS, scraped in 1 mL PBS and centrifuged at 7,000 

g for 15 min at 4 ℃. Pellets were suspended in 50 μL of hypotonic buffer A [10mM 
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HEPES (pH 7.8), 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitiol (DTT), 0.2 

mM phenylmethylsulfonyl fluoride (PMSF) for 15 min on ice, and 1 μL of 10% 

Nonidet P-40 solution was added for 5 min. The mixture was then centrifuged at 

12,000 g for 7 min. The supernatant was collected as a cytosolic fraction. The pellets 

were washed with hypotonic buffer and were resuspended in hypertonic buffer C [20 

mM HEPES (pH 7.8), 20% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 

0.5 mM DTT, 0.2mM PMSF] for 30 min on ice and centrifuged at 12,000 g for 7 

min. The supernatant containing nuclear proteins was collected and stored at -70 ℃ 

after determination of the protein concentration by the Bradford method using the 

Bio-Rad protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA). 

 

Western blot analysis. 

Whole cell lysate was prepared by scapping the cells in RIPA lysis buffer [150 mM 

NaCl, 0.5% Triton x 100, 50 mM Tri-HCl (pH 7.4), 25 mM NaF, 20 mM EGTA, 1 

mM DTT, 1 mM Na3VO4, 0.1 mM PMSF] for 15 min on ice followed by 

centrifugation at 13000 g for 15 min. The supernatant containing proteins was 

collected and stored at -70℃. For Western blot analysis, the protein concentration 

of whole cell lysates was measured by using the BCA protein assay kit (Pierce, 

Rockford, IL, USA). Lysates from cells were separated by running through 8-12% 
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sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel and transferred to the 

polyvinylidene difluoride (PVDF) membranes (Gelman Laboratory, Ann Arbor, MI, 

USA). The blots were blocked with 5% non-fat dry milk/TBST (Tris-buffered saline 

buffer containing 0.1% Tween-20) for 1 h at room temperature. The membranes were 

incubated with the respective primary antibody diluted in TBST overnight 4℃. Blots 

were rinsed three times with TBST at 10-min intervals followed by incubation with 

respective horseradish peroxidase conjugated secondary antibodies (rabbit, mouse 

or goat) in TBST for 1 h at room temperature. The blots were washed again three 

times with TBST. The band images in Western blotting were visualized with an 

enhanced chemiluminescent (ECL) detection kit (Amersham Pharmacia Biotech, 

Buckinghamshire, UK) and quantified with the LAS-4000 Image Analyzer (Fujifilm, 

Tokyo, Japan).  

 

Reverse transcription-polymerase chain reaction (RT-PCR). 

Total RNA was isolated from each cell by using TRIzol® reagent (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer’s protocol. To generate the 

cDNA from RNA, 1 µg of total RNA was reverse transcribed with murine leukemia 

virus reverse transcriptase (Promega, Madison, WI, USA) for 50 min at 42°C and 

again for 15 min at 72°C. About 1 μL of cDNA was amplified with a PCR mixture 
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(HS Prime Taq 2X Premix, Daejeon, South Korea) in sequential reactions. The 

primers used for each RT-PCR reactions are as follows : CAV-1, 5’-ATG TCT GGG 

GGC AAA TAC GTA-3’ and 5’–TTG GAA CTT GAA ATT GGC ACC A-3’;  

NRF2, 5’-ACT GGT TGG GGT CTT CTG TG-3’ and 5’-CGG TAT GCA ACA GGA 

CAT TG-3’; HO-1, 5’-TAC ACA TCC AAG CCG AGA AT-3’ and 5’-GTT CCT 

CTG TCA GCA TCA CC-3’; GAPDH, 5’-AAG GTC GGA GTC AAC GGA TTT-3’ 

and 5’-GCA GTG AGG GTC TCT CTC T-3’ (forward and reverse, respectively). 

Amplification products were analyzed by 1.5-2% agarose gel electrophoresis, 

followed by staining with SYBR Green (Invitrogen, Carlsbad, CA, USA) and 

photographed using fluorescence in LAS-4000 (Fujifilm, Tokyo, Japan). 

 

Transient transfection of siRNA 

MDA-MB-231 cells were seeded at a density of 1 x 105 cells/mL in 100 mm dish in 

complete growth media. Cells were transfected with 25 nM of specific or control 

siRNA oligonucleotides using Lipofectamine RNAiMAX according to 

manufacturer’s instruction (Invitrogen). The sense and antisense strands of Cav-1 

and Nrf2 siRNA used are as follows (forward and reverse, respectively): Cav-1; 5’ -

AGA CGA GCU GAG CGA GAA GCA UU3’ (forward) and 5’ -UGC UUC UCG 

CUC AGC UCG UCU UU-3’ (reverse) Nrf2; 5’-
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AAGAGUAUGAGCUGGAAAAAC-3’ and 5’-

GUUUUUCCAGCUCAUACUCUU-3’. siRNA oligonucleotides targeting for Cav-

1 and Nrf2 were purchased from Genolution Pharmaceuticals (Seoul, South Korea). 

 

Transient transfection of plasmid 

Transient transfection of plasmid encoding native Cav-1 was performed by 

Lipofectamine®  2000 reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. After 36-h transfection, cells were harvested or cultured 

to generate according to purpose of the experiment.- 

 

Immunocytochemical analysis 

Cells were plated on the 8-well chamber slide (0.5 x cells/well) and fixed in 95% 

methanol for 10 min at -20℃. After rinse with PBS containing 0.1% Tween 20 

(PBST), cells were incubated in 0.2% Triton X-100 in PBS for 5 min. After three 

washing steps with PBST, cells were blocked for 2 h in fresh blocking buffer [PBST 

(pH 7.4) containing 5% bovine serum albumin (BSA)]. Dilution (1:100) of primary 

antibody was made in PBST with 1% BSA, and cells were incubated overnight at 

4℃. After three washing steps with PBST, the cells were incubated with a diluted 

(1:1000) TRITC-conjugated anti-mouse or FITC-conjugated anti-rabbit IgG 
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secondary antibody in PBST with 1% BSA at room temperature for 1 h. Cells were 

also stained with 4',6-diamidino-2-phenylindole (DAPI) and rinsed with PBST. 

Stained cells were analyzed under a confocal microscope (Leica Microsystems, 

Heidelberg, Germany) and photographed.  

 

Immunoprecipitation 

Cells were lysed in 250 mM sucrose, 50 mM Tris-HCl (pH 8.0), 25 mM KCl, 5 mM 

MgCl2, 1 mM EDTA, 2 μM NaF, 2 μM sodium orthovanadate, 1 mM PMSF and 10 

mM N-ethylmaleimide. Total protein (500 μg) was subjected to immunoprecipitation 

by shaking with Cav-1 primary antibody at 4℃ for 24 h followed by the addition of 

20 μL of 25% protein G-agarose bead slurry (Santa Cruz Biotechnology, Inc.; Santa 

Cruz, CA, USA) and additional shaking for 2 h at 4℃. After centrifugation at 10,000 

g for 1 min, immunoprecipitated beads were collected by discarding the supernatant 

and washed with cell lysis buffer. After final wash, immunoprecipitate was 

resuspended in 50 μL of 2X SDS electrophoresis sample buffer and boiled for 5 min. 

Forty five μL of supernatant from each sample was loaded on SDS-PAGE. The 

ubiquitinated Nrf2 was visualized by antibody against ubiquitin. 
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Statistical analysis 

Data were represented as means of ± standard deviation [10] at least three 

independent experiments. Statistical significance was determined by Student’s t-test 

and a p-value of less than 0.05 was considered to be statistically significant. 
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4. Results 

Interactions between Cav-1 and Nrf2  

To investigate the relationship between Cav-1 and Nrf2, we used MCF7 and 

MDA-MB-231 human breast cancer cells, which express relatively low and high 

levels of both proteins, respectively (Fig. 3-1A). Immunoprecipitation analysis 

demonstrated that siRNA-dependent knockdown of Cav-1 decreased the Cav-1 and 

Nrf2 interaction in MDA-MB-231 cells (Fig. 3-1B, right panels), whereas co-

overexpression of Cav-1 and Nrf2 eventually increased their interactions in MCF-7 

cells (Fig. 3-1B, left panels). To further explore the association between Cav-1 and 

Nrf2 could be involved in the stemness of breast cancer cells, I enriched for stemness 

characteristics of breast cancer cells, by culturing MDA-MB-231 cells as spheroids. 

Tumorspheres derived from MDA-MB-231 breast cancer cells exhibited much lower 

levels of Cav-1 with concomitant increases in Nrf2 accumulation, compared with 

adherent cells (Fig. 3-1C, left panels). Further, the interaction between Cav-1 and 

Nrf2 was found to be decreased in tumorspheres (Fig. 3-1C, right panels). 

 

 

 

 



 

９９ 

Regulation of Nrf2 activity by Cav-1 

To explore whether the interaction between Cav-1 and Nrf2 affects Nrf2 

signaling, endogenous Cav-1 expression was blocked by small interfering RNA 

(siRNA) in MDA-MB-231 cells. We found that Cav-1 knockdown increased the 

expression of Nrf2 and HO-1 as well as their mRNA transcripts (Fig. 3-2A). 

Consistent with these findings, overexpression of Cav-1 inhibited the expression of 

Nrf2 and HO-1 in MCF-7 cells at both transcriptional and translational levels (Fig. 

3-2B). These data, taken all together, suggest that Cav-1 inhibits Nrf2 signaling in 

breast cancer through direct interaction with this transcription factor. 

 

Cav-1 inhibits translocation of Nrf2 to the nucleus 

In another experiment, the association between Cav-1 and Nrf2 was 

investigated in subcellular fractions. As shown in Fig. 3-3A and 3B, Nrf2 was 

significantly accumulated in the nucleus of MDA-MB-231 cells after treatment with 

Cav-1 siRNA. Nrf2 is degraded by the 26S proteasome system after multiple 

ubiquitylation [19]. Silencing of Cav-1 caused a decrease in Nrf2 ubiquitination in 

MDA-MB-231 cells (Fig. 3-3C). Immunofluorescence studies demonstrated Nrf2 

enriched predominantly in the nucleus of tumorspheres, which have low expression 

of Cav-1 (Fig. 3-4A). In contrast, Cav-1 overexpression in MCF-7 tumorspheres, 
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abolished nuclear accumulation of Nrf2 in the nucleus (Fig. 3-4B). Out results 

indicate that Cav-1 inhibits the translocation of Nrf2 to the nucleus, which might 

facilitate the ubiquitination of Nrf2. 

 

Nrf2 suppressed expression of Bmi-1, stem-like and EMT markers induced by 

Cav-1 

Self-renewal is one of the representative characteristics of CSCs which 

accounts for the regeneration of the tumor [20]. Bmi-1 is the critical proteins 

involved in regulation of self-renewal signaling [21, 22], and Oct3/4 and Sox2 

regulate self-renewal and tumorigenicity of stem-like cells [23, 24]. Moreover, EMT 

is essential for generation of cancer stem cells [25, 26]. In our previous study, loss 

of Cav-1 promotes breast cancer stemness by acquiring EMT and stem-like traits. 

The underlying molecular mechanisms by which Cav-1 and interacting molecules 

regulates manifestation and maintenance of CSC properties remain to be fully 

understood. Because Cav-1 inhibits Nrf2 nuclear translocation, we speculated that 

the ability of Cav-1 to inhibit Nrf2 dependent signaling might promote stemness. As 

shown in Fig. 3-5, Cav-1 knockdown increased the expression of stemness signaling 

molecules, such as Bmi-1, Sox2, Oct3/4, and EMT markers, Snail and N-cadherin, 
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which was decreased by siRNA silencing of Nrf2. Thus, loss of Cav-1 promotes 

stemness in breast cancer by activating Nrf2. 
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Fig. 3-1. Interaction between Cav-1 and Nrf2 in breast cancer cells. (A) The 

expression levels of Cav-1 and Nrf2 in breast cancer MDA-MB-231 and MCF-7 and 

cells were measured by Western blot analysis. (B) MDA-MB-231 cells were 

transfected with control siRNA or Cav-1 siRNA, and MCF-7 cells were transiently 

co-transfected with empty (MOCK) or GFP-tagged-Cav-1 or Myc-tagged-Nrf2 

vector for 36 h. Immunoprecipitates with anti-Cav-1 antibody were immunoblotted 

for Nrf2. (C) MDA-MB-231 cells were cultured on ultra-low attachment plates for 

5 days to generate primary tumorspheres, and then were dissociated into single cell 

suspension to generate secondary tumorspheres for 5 days. Using the same 

experimental method, tertiary tumorspheres were generated from secondary 
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tumorspheres. The expression of Cav-1 and Nrf2 was measured by Western blot 

analysis (left). Cav-1 immunoprecipitates were immunoblotted for Nrf2. 
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Fig. 3-2. Role of Cav-1 in regulation of Nrf2 activity. (A) MDA-MB-231 cells 

were transfected with control siRNA or Cav-1 siRNA for 36 h. The mRNA and 

protein levels of Nrf2 and HO-1 were determined by RT-PCR and Western blot 

analysis, respectively. The values are means ± SD (n = 3). (B) RT-PCR and Western 

blot analysis of Nrf2 and HO-1 in MCF-7 cells that were transfected with empty 

(MOCK) or GFP-tagged-Cav-1 vector for 36 h. GAPDH and β-actin were used as a 

loading control.  
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Fig. 3-3. Cav-1 and Nrf2 interaction in cytosol and nucleus. MDA-MB-231 cells 

were transfected with control siRNA or Cav-1 siRNA for 36 h. (A) The cytoplasmic 

and nuclear fractions were isolated as described in the Materials and methods. Both 

fractions were subjected for Western blot analysis of Cav-1 and Nrf2. The values are 

expressed as means ± SD (n = 3). (B) Immunocytochemical analysis was performed 

using antibody against Nrf2. Nuclei were identified by propidium iodide (PI) 

staining. (C) To detect the ubiquitination of Nrf2, cells were immunoprecipitated 

with anti-Cav-1 antibody, followed by Western blot analysis with anti-ubiquitin 

antibody. 
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Fig. 3-4. Distribution of Cav-1 and Nrf2 in tumorspheres derived from human 

breast cancer cells. Immunocytochemical analysis was performed using antibodies 

against Cav-1 and Nrf2. Representative images were visualized under a microscope.  

(A) MDA-MB-231 and MDA-MB-468 cells were cultured on ultra-low attachment 

plates for 5 days to generate primary tumorspheres, and then were dissociated into 
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single cell suspension to generate secondary tumorspheres for 5 days. Using the same 

experimental method, tertiary tumorspheres were generated from secondary 

tumorspheres. (B) MCF-7 cells were transiently transfected with empty (MOCK) or 

GFP-tagged-Cav-1 vector for 36 h, and then tertiary MCF-7 tumorspheres were 

generated. Conditions for tertiary tumorspehres are same as described in the legend 

to (A).  
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Fig. 3-5. Effects of Cav-1-mediated Nrf2 on manifestation of stem-like trait in 

MDA-MB-231 cells. MDA-MB-231 cells were transfected with control siRNA or 

Cav-1 siRNA, or co-transfected with Cav-1 siRNA and Nrf2 siRNA for 36 h. The 

protein levels of Cav-1, Nrf2, HO-1, Bmi-1, Sox2, Oct3/4, and EMT markers (Snail, 

N-cadherin) were determined by Western blot analysis.  
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Fig. 3-6. Schematic representation of the role of Cav-1 and Nrf2 in regulating 

stem-like traits in breast cancer cells. Cav-1 functions as a endogenous inhibitor 

of Nrf2, thereby suppressing its activity and attenuating stem-like traits. Cav-1 

binds to Nrf2 and enhances its degradation in cytosol through ubiquitination. The 

reduction of the intracellular accumulation of Nrf2 by Cav-1 leads to a decrease in 

stemness-related gene expression. When degradation of Cav-1 occurs through the 

ubiquitin-proteasomal degradation, Nrf2 is dissociated from the Cav-1 complex. The 

liberated Nrf2 accumulates in the nucleus and enhances the expression of stemness-

related genes, which promote CSC-like phenotypes. 
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5. Discussion  

In this study, I provided new evidence showing that Cav-1 inhibits manifestation of 

stem-like traits in breast cancer cells through direct binding with Nrf2. CSCs are 

defined as subset of cancer cells with self-renewal capacity. CSCs are responsible 

for tumor progression, metastasis and recurrence. Therefore, the regulation of CSCs 

is considered a fundamental approach to control the aggressiveness of tumors [27]. 

There are various intrinsic and extrinsic factors involved in controlling the stemness 

of cancer cells [28, 29]. The intrinsic factors include tumor suppressor proteins, 

oncoproteins, and epigenetic mutation, whereas the extrinsic factors include 

microenvironmental mediators, cytokines, and paracrines.  

Cav-1 is an oncogenic membrane protein associated with cholesterol distribution, 

endocytosis, extracellular matrix organization, and various cellular signaling, 

especially in cancer metabolism [30, 31]. Therefore, Cav-1 has been proposed as 

potential therapeutic target for disrupting tumor progression and metastasis. Cav-1 

acts as a scaffolding protein by interacting with and modulating the activity of 

caveolae-signaling molecules, such as H-Ras, Src family tyrosine kinases and eNOS 

[4, 32, 33]. In most cases, these caveolin interaction activities have an inhibitory 

effect, leading to inactivation of the signaling molecules and modulation of 

downstream signal transduction.  
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Nrf2 has been reported to interact with Cav-1 [17, 18], Nrf2 is a key 

transcription factor that regulates an adaptive stress response. Li and colleagues have 

reported the inhibitory effect of Cav-1 in Nrf2-mediated signaling [18]. Volonte et 

al. have demonstrated that Cav-1-mediated sequestration of Nrf2 promotes 

premature senescence by preventing excessive antioxidative signaling [17]. In the 

present study, I elucidated the function and underlying molecular mechanism of the 

Cav-1 and Nrf2 interaction which contributes to breast cancer stemness. In our 

previous study, the stability of Cav-1 was found to be controlled by Src-mediated 

phosphorylation, ubiquitination and degradation. After Cav-1 is degraded, Nrf2 is 

dissociated from Cav-1 complex, and the free Nrf2 accumulated in the nucleus.  

Several studies reported that self-renewal is a critical for the maintenance of the 

CSC-like phenotype [34]. Among the stemness-associated factors, Bmi-1, Oct3/4 

and Sox2 are of prime interest. Bmi-1 is the central protein involved in regulation of 

self-renewal signaling [21, 22], and Oct3/4 and Sox2 regulate self-renewal and 

tumorigenicity of stem-like cells [23, 24]. It has been reported that Bmi-1 is a self-

renewal regulator in CSCs [35]. Kreso et al. [36] reported that the immunodeficient 

mice transplanted with Bmi-1 knockdown human colorectal cancer cells showed the 

reduced tumor growth as compared to those harboring the functional Bmi gene. 

Moreover, Sox-2 plays a crucial role in self-renewal activity mediated by epidermal 
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growth factor–receptor in pancreatic CSCs, and its overexpression enhances the 

proportion of breast CSCs by activating the Wnt signaling pathway [37, 38]. 

Furthermore, EMT is essential for generation of CSCs [25, 26]. Morel et al. showed 

that stem-like and tumorigenic properties of the cancer cells were driven by EMT 

[39]. In this context, self-renewal and EMT markers are considered the prominent 

factors in maintenance of the CSC-like phenotype. Further, Cav-1 knockdown 

exhibited the increased stemness signaling molecules, which was decreased by Nrf2 

siRNA, indicating that Cav-1 regulates stem-like properties through Nrf2-mediated 

signaling.  

Taken together, Cav-1 interacts with Nrf2 in breast cancer and inhibits Nrf2 

nuclear translocation, thereby suppressing CSC-like properties. Therefore, Cav-1 is 

likely to function as a spontaneous inhibitor of Nrf2, purging stemness capacity 

of breast CSCs. 
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1. Abstract 

While targeting cancer stem cells (CSCs) has arisen as an essential aspect, dietary 

phytochemicals with anticancer properties are promising candidates and have 

selective impact on CSCs. Resveratrol has been reported to exert chemopreventive 

and anti-carcinogenic effects on various cancers. In this study, I determined the effect 

of resveratrol on manifestation of breast cancer stem-like properties and explored the 

underlying molecular mechanisms, especially Cav-1-mediated signaling. 

Resveratrol inhibited cell viability in both MDA-MB-231 and MDA-MB-231 

tumorspehres. Moreover, resveratrol reduced the tumorsphere forming ability and 

the proportion of CD44high and CD24low cells. Mechanically, the expression of self-

renewal signaling molecules and EMT markers was reduced by treatment with 

resveratrol. Notably, resveratrol induced expression of Caveolin-1 in tumor spheres. 

Further, resveratrol-induced down-regulation of self-renewal and EMT markers was 

abrogated by knockdown of Cav-1. Taken together, these findings suggest that 

resveratrol inhibits the manifestation of breast cancer stem cell-like properties 

through suppression of Cav-1-mediated self-renewal signaling and EMT. 

 

Keywords: Resveratrol; Caveolin-1; breast cancer stemness; self-renewal 
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2. Introduction 

Cancer stem cells (CSCs), which is a small subset of tumor cells, are responsible for 

tumor-forming and self-renewing within cancer tissues [1]. Considering the tumor 

resistance to conventional therapeutic treatment, CSCs have attracted considerable 

attention for the development of new therapeutic strategies [2]. Among approved 

anticancer agents, almost one-third are either natural products or their derivatives [3], 

primarily from plants, seeds, and microorganisms [4].  

Accumulating data have suggested that polyphenolic compounds, such as 

resveratrol, curcumin, and epigallocathechin gallate, exert anticarcinogenic effects 

by inhibiting tumor progression and metastasis and by inducing CSCs suppression 

[5-8]. Among the polyphenols, resveratrol (trans-3,4’,5 trigydroxystilbene) has been 

extensively investigated with regards to biological properties including antioxidant, 

anti-inflammation, and antitumor capacity. Notably, resveratrol had the inhibitory 

effects on the invasion and metastasis of tumor cells through the EMT process [9, 

10]. Furthermore, resveratrol inhibited self-renewal and invasive abilities of certain 

CSCs [11, 12]. Nonetheless, the underlying mechanism by which resveratrol 

regulates the signal transduction pathways involved in maintenance of breast CSCs 

and manifestation of their characteristics still remains to be largely explored. 
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Self-renewal is one of the essential features of the CSCs to maintain the 

proliferating capacities [13]. Bmi-1 and Notch-1 are known as representative 

regulators of self-renewal signaling [14, 15]. It is noticeable that CSCs are highly 

enriched with Bmi-1 and co expressed with Sox2, Oct3/4 and Nanog, which also  

play a role in the maintenance of CSCs [16, 17]. Several studies have 

demonstrated that induction of EMT in transformed epithelial cell was shown to 

culminate in endowing cells with acquiring stem-like traits, leading to tumor 

growth, invasiveness and metastasis [18, 19]. Based on these studies, self-renewal 

signaling molecules and EMT markers are widely used to identify the CSCs.  

Caveolin-1 (Cav-1) is the major component of caveolae, which is flask-shaped 

invaginations present at the plasma membrane in a variety of cell types. Caveolae 

act as signaling platforms, serve as concentrating points for numerous signaling 

molecules, and regulate flux through many distinct signaling cascades [20]. Cav-1 

regulates a variety of cellular events that include cellular transformation, 

tumorigenesis, angiogenesis, and cell metastasis [21-23]. Recently, it has been 

reported that Cav-1 is indispensable for regulation of CSCs [24]. In this study, I 

examined the effect of resveratrol on breast cancer stemness, especially in the 

context of its modulation of Cav-1 signaling. 
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3. Materials and methods  

Reagent and antibodies 

Dulbecco’s modified Eagle’s medium (DMEM), Dulbecco’s modified Eagle 

Medium Nutrient Mixture F-12 (DMEM/F-12), and fetal bovine serum (FBS) were 

purchased from Gibco BRL (Grand Island, NY, USA). TRIzol® was obtained from 

Invitrogen (Carlsbad, CA, USA). Resveratrol was purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Primary antibodies for Bmi-1, Notch-1 and Sox-2 were 

purchased from Cell Signaling Technology (Danvers, MA, USA). Antibodies against 

Cav-1, Oct 3/4, Snail, and β-actin were obtained from Santa Cruz (Santa Cruz, CA, 

USA). Antibodies against Twist1, N-cadherin, CD24 and CD44 were purchased from 

BD Biosciences (Bedford, MA, USA). The bicinchoninic acid (BCA) protein assay 

reagent was a product of Pierce Biotechnology (Rockfold, IL, USA).  

 

Cell culture 

The human breast cancer cell lines MDA-MB-231 were obtained from the Korean 

Cell Line Bank (Seoul, South Korea). MDA-MB-231 cells were maintained in 

DMEM. Culture media were supplemented with 10% FBS and 1% antibiotics, and 

cells were grown at 37℃ with 5% CO2 / 95 % air. 
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Tumorsphere culture  

For tumorsphere formation from the adherent cells, single cells were cultured in a 

serum free DMEM/F12 medium supplemented with B27 (GIBCO), 20 ng/mL 

epidermal growth factor (EGF; Sigma-Aldrich, St. Louis, MO, USA), 20 ng/mL 

basic fibroblast growth factor (b-FGF; PeproTech, Rocky Hill, NJ, USA) and 4 

ng/mL heparin (Sigma-Aldrich). Primary tumorspheres were seeded at a density of 

1 x 104 cells/mL in 100 mm ultralow attachment plates (Corning, NY, USA) for 5 

consecutive days, and 2 mL of medium was added every third day. To culture 

secondary tumorspheres, primary tumorspheres were gently collected and 

dissociated into a single-cell suspension using 40 µm strainer. Single cells were 

counted and then seeded again for another 5 days with addition of 2 mL medium 

every third day. Using the same experimental method, tertiary mammospheres were 

generated from secondary mammospheres. The number of mammospheres formed 

(> 100 µm) was counted at indicated times under a microscope.  

 

Measurement of cell viability 

MDA-MB-231 cells and MDA-MB-231 tumorspheres were plated at a density of 

1×105 cells/mL in 48-well plates and the cell viability was determined by the 

conventional MTT reduction assay. After 24 h incubation with resveratrol, cells were 
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treated with the MTT solution (final concentration 0.5 mg/mL) for 3 h at 37 ℃. The 

dark blue formazan crystals that formed in intact cells were solubilized by DMSO, 

and absorbance at 570 nm was measured with a microplate reader (Molecular 

devices, Sunnyvale, CA, USA). Results were expressed at the percentage of MTT 

reduction obtained in the treated cells, assuming that the absorbance of control cells 

was 100 %. 

 

Cell migration assay 

Cell migration was determined using the Culture-Inserts (2×0.22 cm2; Ibidi, 

Regensburg, Germany). To create a wound gap, 100 μL of 1×105 cancer cells were 

seeded on the Culture-Inserts, which were gently removed using sterile tweezers 

following an overnight incubation. Cells were then exposed to resveratrol (50 μM) 

for 24 h. The progression of wound closure was monitored, and distance between 

gaps was measured under the microscope (Nikon,Tokyo, Japan). All assays were 

performed in triplicate. 

 

Flow cytometry analysis 

Cells were collected, washed with phosphate-buffered saline (PBS), and dissociated 

with Accutase solution (Sigma-Aldrich). Cells were then counted and washed with 
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PBS containing 2% FBS and 0.1% Tween-20. Cells were stained with CD24-PE and 

CD44-APC for 30 min at 4°C. After incubation, cells were collected and washed 

with PBS again. Cells were dissociated into single cells by using 40 µm strainer, and 

then the population of CD44high/CD24low cells was measured using BD FACSCalibur 

(Becton Dickinson Biosciences, San Jose, USA).  

 

Western blot analysis. 

Whole cell lysate was prepared by scapping the cells in RIPA lysis buffer [150 mM 

NaCl, 0.5 % Triton x 100, 50 mM Tri-HCl (pH 7.4), 25 mM NaF, 20 mM EGTA, 1 

mM dithiothreitol, 1 mM Na3VO4, 0.1 mM phenylmethane sulfonyl fluoride (PMSF)] 

for 15 min on ice followed by centrifugation at 13,000 g for 15 min. The supernatant 

containing proteins was collected and stored at -70 ℃. For Western blot analysis, 

the protein concentration of whole cell lysates was measured by the using the BCA 

protein assay kit (Pierce, Rockford, IL, USA). Lysates from cells were separated by 

running through 8-12 % SDS-PAGE gel and transferred to the polyvinylidene 

difluoride (PVDF) membrane (Gelman Laboratory, Ann Arbor, MI, USA). The blots 

were blocked with 5 % non-fat dry milk/TBST (Tris-buffered saline buffer 

containing 0.1% Tween-20) for 1 h at room temperature. The membranes were 

incubated with the respective primary antibody diluted in TBST overnight 4℃. Blots 
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were rinsed three times with TBST at 10-min intervals followed by incubation with 

respective horseradish peroxidase conjugated secondary antibodies (rabbit, mouse 

or goat) in TBST for 1 h at room temperature. The blots were washed again three 

times with TBST. The band intensities in Western blotting were visualized with an 

enhanced chemiluminescent (ECL)detection kit (Amersham Pharmacia Biotech, 

Buckinghamshire, UK) and quantified with the LAS-4000 Image Analyzer (Fujifilm, 

Tokyo, Japan).  

 

Transient transfection of siRNA 

MDA-MB-231 tumorspheres were seeded at a density of 1 x 105 cells/mL in 100 mm 

dish in complete growth media. Cav-1 siRNA (25 nM) was transfected into MDA-

MB-231 tumorspheres with lipofectamine RNAiMAX (Invitrogen) reagent 

according to the manufacturer’s instructions. The target sequence for human Cav-1 

siRNA was 5’ -AGA CGA GCU GAG CGA GAA GCA UU3’ (forward) and 5’ -

UGC UUC UCG CUC AGC UCG UCU UU-3’ (reverse). siRNA oligonucleotide 

targeting for Cav-1 was purchased from Genolution Pharmaceuticals (Seoul, South 

Korea). 
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Statistical analysis 

Data were represented as means of ± standard deviation (SD) at least three 

independent experiments. Statistical significance was determined by Student’s t-test 

and a p-value of less than 0.05 was considered to be statistically significant. 
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4. Results 

Resveratrol reduced the cell viability and migration of human breast cancer cells  

Among the various methods that enable to enrich for stemness of cancer cells 

lines, tumorspheres culture has been predominantly used. I generated tumorsphers 

from human breast cancer MDA-MB-231 cells [25, 26]. To investigate the biological 

function of resveratrol, I examined the effects of resveratrol on the viability and 

migration capacity. As illustrated in Fig. 4-1A, resveratrol significantly decreased 

the viability of adherent and tumorsphere MDA-MB-231 cells. Moreover, a wound-

healing assay showed the inhibitory effects of resveratrol on migration of breast 

cancer MDA-MB-231 cells (Fig. 4-1B).  

 

Resveratrol attenuated stemness of breast cancer cells 

I further explored the effects of resveratrol on manifestation of stemness 

properties of breast cancer cells. The mammosphere formation assay is widely used 

to identify stem cells based on self-renewal activity [27, 28]. As shown in Fig. 4-2A, 

resveratrol significantly decreased the number and the size of MDA-MB-231 

tumorspheres in a concentration-dependent manner. These results indicate that 

resveratrol could inhibit self-renewal ability of stem-like breast cancer cells. 

Moreover, the different cell populations within a cancer can be identified according 
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to the signature of proteins expressed on the surface of a particular cell. For example, 

CD44high/CD24low breast stem-like cancer cells possess capacity to promote 

tumorigenesis in breast cancer models [29]. the proportion of CD44high/CD24low cell 

population was decreased by resveratrol treatment (Fig. 4-2B). 

 

Resveratrol reduces the expression of self-renewal signaling molecules and EMT 

markers in breast cancer cells 

Self-renewal is the predominant property of CSCs that accounts for the 

regeneration of tumor [30]. It has been reported that Bmi-1 and Notch-1 are 

representative regulators of self-renewal signaling [31, 32]. Sox-2 and Oct3/4 are 

also essential for maintaining self-renewal of tumor-initiating cells [33]. As shown 

in Fig. 4-3A, resveratrol treatment resulted in the alleviated expression of Bmi-1 and 

Notch-1 with concomitant downregulation of Sox2 and Oct 3/4. According to the 

studies on the link among EMT, CSC, and the metastasis of cancer cells, induction 

of EMT in transformed epithelial cells was shown to culminate in endowing cells 

with stem-like traits [18, 19]. Resveratrol attenuated the expression of Snail, Twist1 

and N-cadherin, well-known EMT markers (Fig. 4-3B). These findings suggest that 

resveratrol is likely to modulate stem-like traits of breast cancer cells through 

inhibition of self-renewal signaling and EMT.  
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Resveratrol inhibits Cav-1-mediated stemness in MDA-MB-231 tumorspheres 

Recently, Cav-1 and related signaling molecules have been suggested as a 

critical regulator of CSCs [24, 34]. In our previous studies, loss of Cav-1 promotes 

stemness properties in breast cancer cells through self-renewal signaling and EMT 

phenotype. Therefore, to verify the molecular mechanism for the inhibition of 

stemness properties of resveratrol, its effects on the expression of Cav-1 in MDA-

MB-231 tumorspheres were examined. As shown in Fig. 4-4A, treatment with 

resveratrol restored the expression of Cav-1 which was constitutively down-

regulated in MDA-MB-231 tumorspheres. However, the expression of Cav-1 in 

adherent cells was not altered by resveratrol treatment under the same experimental 

conditions. To validate whether the inhibitory effect of resveratrol on breast cancer 

stemness is mediated by upregulating Cav-1, MDA-MD-231 tumorspheres were 

transfected with transiently Cav-1 siRNA. Consistent with the above findings, 

MDA-MB-231 tumorspheres transfected with non-specific siRNA exhibited the 

increased protein expression of Bmi-1, Sox2, Oct3/4, and EMT markers upon 

resveratrol treatment. However, such effect of resveratrol on the expression of the 

aforementioned proteins was attenuated by Cav-1 siRNA transfection (Fig. 4-4B). 

These results support the notion that resveratrol impedes Cav-1-mediated stemness 

signaling in breast tumorspheres. 
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Fig. 4-1. Effects of resveratrol on viability and migration of breast cancer cells. 

(A) The cell viability was examined by the MTT assay. Cells were treated with 

resveratrol (50 or 100 μM) or vehicle for 48 h. The cells were then incubated with 

MTT solution (0.5 mg/mL) for 2 h, and the absorbance at 570 nm was read using a 

microplate reader. The results are shown as the mean ± S.D. of triplicates. For 

tumorsphere culture, cells were cultured in an ultra-low attachment plate to generate 

primary tumorspheres. After 5 days, primary tumorspheres were counted, collected 

and replated under the same conditions to form secondary tumorspheres. Using the 
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same experimental method, tertiary mammospheres were generated from secondary 

mammospheres. (B) For the wound healing assay, MDA-MB-231 cells were treated 

with resveratrol for 48 h and were then plated into culture-insert (Ibidi). After 48 h 

incubation, cell migration was assessed by measuring the wound size under a 

microscope. 
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Fig. 4-2. Inhibitory effects of resveratrol on tumorsphere formation and 

manifestation of breast CSC properties. (A) Cells were cultured on ultra-low 

attachment plates for 5 days to generate primary tumorspheres, and then were 

dissociated into single cell suspension to generate secondary tumorspheres for 5 days. 

At the tertiary tumorspheres states, cells were cultured in a 96-well ultra-low 

attachment surface plate, treated with resveratrol (25 or 50 μM) for 5 days. 

Alterations in the number, the size and the shape of mammospheres were examined 

by phase-contrast microscopy. Representative images were visualized under a 

microscope. Scale bar = 100 µm. The values are presented as means ± SD. (B) 

Proportions of CD44 high and CD24low cells were determined by flow cytometry in 
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the MDA-MB 231 cells treated with resveratrol (25 or 50 μM) for 48 h. The cells 

were stained with anti-CD44-APC and anti-CD24-PE antibodies. The values are 

expressed as means ± SD (n = 3). 
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Fig. 4-3. Effects of resveratrol on expression of self-renewal signaling and EMT 

markers in breast cancer cells. MDA-MB-231 cells were cultured with or without 

resveratrol at indicated concentrations for 48 h. Western blot analysis was performed 

to measure the expression of (A) self-renewal markers, Bmi-1, Notch-1, Sox2, and 

Oct 3/4 and also (B) EMT markers, Snail, Twist and N-cadherin. β-actin was used as 

a loading control. 
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Fig. 4-4. Role of Cav-1 in inhibition by resveratrol of expression of signaling 

molecules involved in breast stem-like traits. MDA-MB-231 cells were cultured 

on ultra-low attachment plates for 5 days to generate primary tumorspheres, and then 

were dissociated into single cell suspension to generate secondary tumorspheres for 

5 days. Using the same experimental method, tertiary tumorspheres were generated 

from secondary tumorspheres. (A) The expression level of Cav-1 was measured by 

Western blotting in adherent and tumorspheres treated with or without resveratrol 

(50 μM) (B) MDA-MB-231 tumorsphres transfected with non-specific or Cav-1 

siRNA, followed by resveratrol treatment. Western blot analysis was performed to 

measure the expression of self-renewal signaling and EMT marker proteins as well 

as Cav-1. β-actin was used as a loading control. 
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Fig. 4-5. Schematic representation of a proposed mechanism underlying the 

inhibitory effects of resveratrol on stem-like traits of breast cancer modulated 

by Cav-1. 
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5. Discussion 

Cancer stem cells (CSCs) confer resistance to conventional chemotherapy, which 

often leads to recurrence in many different types of malignancies [2]. Therefore, 

targeting CSCs has been considered as one of the promising strategies for the 

development of next-generation anticancer drugs. Accumulating data suggest that 

phytochemicals, chemical compounds produced from natural sources, have the 

ability to damage CSCs and prevent tumor invasion and metastasis [4, 35]. 

Resveratrol is a polyphenolic compound extracted from plants, including grapes, 

mulberries, and peanuts. Several studies have suggested that resveratrol has diverse 

pharmacological activity activities, such as antioxidant, anti-inflammatory, 

antibacterial and anticancer against breast, prostate, skin, and colon [36, 37]. 

Resveratrol represses the growth of colorectal cancer cells through inhibition of Wnt 

signaling [38]. Resveratrol also impedes stemness in pancreatic cancer by inhibiting 

pluripotency maintaining factors and EMT [39]. Although there are a number of 

studies demonstrating the prominent efficacy of resveratrol in suppressing 

proliferation or growth of cancer cells, its effects on oncogenic potential of CSCs 

remains largely unknown.  

Self-renewal capability is crucial for the maintenance of the CSC-like 

phenotype [13]. Several signal transduction pathways and their constituents, such as 
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Wnt, Notch, Hedgehog, Bmi-1, PI3K/AKT and IL6, are the important factors 

involved in regulations of self-renewal signaling [13]. It has been reported that Notch 

has emerged as a key regulator involving stem cell maintenance, cell-fate 

specification, and differentiation [40]. It has been reported that knockdown of 

Notch-1 enhances chemosensitivity and inhibits growth of human breast cancer 

[41]. In addition, Bmi-1 has been shown to be a key regulator of the self-renewal 

of many normal and cancer stem cells. Bmi-1 is overexpressed in breast cancer 

cells, regulating EMT and metastasis of cancer cells [42]. Moreover, transcription 

factors, Oct4, Nanog, and Sox2 play critical roles in maintaining the pluripotence 

and self-renewal characteristics of CSCs. Knockdown of Sox2 attenuated self-

renewal capacity, and chemoresistance through ABCG2 suppression in head and 

neck squamous cell carcinoma [43]. Furthermore, EMT is associated with metastasis 

formation as well as with generation and maintenance of CSCs [18, 44]. Morel et al., 

showed that stem and tumorigenic characters of the cells were driven by EMT [45]. 

In this context, self-renewal and EMT markers are considered the prominent factors 

in maintenance of the CSC-like phenotype.  

Several recent studies have indicated that caveolin-1, a membrane transporter 

protein, is involved in mediating cancer invasion, metastasis and stem cell signal 
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transduction [46-48]. Cav-1 regulates self-renewal and invasive abilities in various 

cancer stem cells such as lung [49], breast [34], and pancreas [50].  

Cav-1 expression is repressed in tumor spheres, which may account for the 

dormancy of CSCs. In this study, I found that resveratrol impeded stem-like traits of 

breast cancer through upregulation of Cav-1. The reduced Cav-1 protein expression 

in breast CSC state appears to be due to its destabilization through ubiquitin-

proteasome degradation [51]. It has been known that Src-mediated phosphorylation 

of Cav-1 at the tyrosine 14 residue facilitates the proteasomal degradation of Cav-1. 

Further studies will be necessary whether resveratrol-induced restoration of Cav-1 

in tumorspheres in breast cancer is mediated by suppressing the Src 

expression/activity. 
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CONCLUSION 

 

A small subpopulation of cancer cells, termed cancer stem cells (CSCs), have been 

proposed as a mechanism underlying chemo-resistance, tumor recurrence and 

metastasis. Therefore, ultimate cancer therapy is to develop an efficient strategy 

to eradicate CSCs through regulating signaling molecules. Cav-1 is a key 

regulator of cell signaling. Cav-1, which mediate cancer-relevant signaling 

transduction, has been proposed as potential therapeutic targets for disrupting tumor 

progression and metastasis.  

This study showed that loss of Cav-1 led to the activation of signaling 

cascades, with stem-like traits, such as increased sphere formations and 

tumorigenicity. Reduced Cav-1 levels were attributable to its destabilization through 

ubiquitin-proteasome degradation. Hence, Cav-1 destabilization by Src-mediated 

phosphorylation may play a pivotal role in manifestation and maintenance of 

stemness in breast cancer cells. 

Cav-1 might act as scaffolding proteins by directly interacting with and 

modulating the activity of signaling molecules. Here, Cav-1 interacted with Nrf2,  

suppressed the activity of Nrf2 and promoted proteasomal degradation under normal 

condition. When degradation of Cav-1 occurs through the ubiquitin-proteasomal 
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degradation, Nrf2 dissociated from Cav-1 and translocated to the nucleus, induced 

stemness properties. Therefore, Cav-1 functions as a spontaneous inhibitor of Nrf2, 

thereby suppressing its activity and attenuating subsequent stem-like traits. 

It is reported that the use of naturally occurring compounds, especially 

phytochemicals, has gained enormous attentions because of a wide range of safety 

profile, ability to target multiple pathways in CSCs and their signaling pathways. 

Resveratrol, belongs to the group of polyphenols present in pigmented vegetables 

and fruits, causes an inhibitory effect on stem-like traits. Resveratrol inhibits the 

manifestation of breast cancer stem cell-like properties through suppression of Cav-

1-mediated self-renewal signaling and EMT. 

Taken together, reduced Cav-1 depends on its destabilization by Src through 

ubiquitin-proteasome degradation. After degradation of Cav-1, Nrf2 is dissociated 

from the Cav-1 complex. The liberated Nrf2 accumulates in the nucleus, and 

enhances the expression of stemness-related genes, which promote CSC-like traits. 

Resveratrol has an inhibitory effects on Cav-1-mediated CSC-like properties, which 

accounts for targeting CSCs in terms of suppression of cell migration, growth and 

signaling. This study herein indicates that Cav-1 acts as a pivotal regulator in  

manifestation and maintenance of stemness in breast cancer cells. 
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국  문  초  록 

 

암줄기세포 (Cancer stem cell)는 종양의 개시 (initiation), 전이 

(metastasis), 그리고 재발 (recurrence)에 있어 중요한 역할을 한다. 

최근 연구 동향을 살펴보면, 암의 진행에 있어서 암줄기세포의 복잡한 

생리학적 기능을 이해하고, 이들의 발생 기전을 조절하는 치료법 개발이 

강조되고 있다. 본 연구에서는 그 발생 기전을 조절하는 조절인자 

(modulator)로서 Caveolin-1 (Cav-1)을 선정하였다. Cav-1은 세포막 

단백질인 Caveolae 를 구성하는 주요 단백질로써, 세포내 콜레스테롤 

항상성 유지 (cholesterol homeostasis), 분자 수송 (vesicle 

trafficking), 암의 진행 (tumor progression) 및 신호 전달 (signal 

transduction) 등 다양한 기능에 관여한다. 그러나 Cav-1 의 

암줄기세포에 대한 분자기전에 대한 연구는 미흡한 실정이다. 이에 본 

연구에서는 암줄기세포의 발생기전에 있어서 Cav-1 의 역할에 대해 

알아 보고자 하였다. 먼저, 줄기세포 배양방법으로 잘 알려진 sphere-

forming culture system 을 통해 배양된 유방암 줄기세포 

(tumorsphere MDA-MB-231)에서 Cav-1 의 발현이 낮아지는 것을 

확인하였다. 유방암세포 MDA-MB-231 에 small interfering RNA 

(siRNA) 기법을 통해 Cav-1 을 억제하였을 때, 줄기세포에서 많이 
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나타나는 특성인 자가재생 (self-renewal)과 epithelial-mesenchymal 

transition (EMT)의 표현형 (phenotype)이 증가하고, 더불어 

구체형성능 (tumorsphere forming capacity)이 증가하는 것을 

확인하였다. 구체형성 세포 (tumorsphere cell)에서 Cav-1 의 발현이 

낮아지는 것은 유비퀴틴화에 의한 단백질 분해 조절 기전임을 

확인하였다. Cav-1 의 활성에는 tyrosine 14 번 잔기가 주로 역할을 

하고 있다는 문헌 정보를 토대로, 특정 부위 돌연변이 (site-directed 

mutagenesis)를 통해 tyrosine 14 번을 phenylalanine 으로 치환하였을 

경우, 자가재생능과 EMT 표현형이 감소되는 것을 통해, 줄기세포능을 

유지하는데 있어서 Cav-1 의 tyrosine 14 잔기가 매우 중요한 역할을 

하는 것을 확인하였다. 또한 Cav-1 이 다른 분자와 상호간의 직접적인 

결합을 통해 신호 전달에 기여한다는 보고를 바탕으로 그 후보물질로서 

Nrf2 를 선정하여, 실제 이들이 유방암 세포에서 결합을 이루고 있음을 

확인하였고, tumorsphere cell 에서 Cav-1 의 단백질 안정화가 

감소되면서 Cav-1 과 결합되어 있던 Nrf2 가 핵 안으로 이동되어 

줄기세포능을 증가시키는 것을 관찰하였다.  

최근 암줄기세포를 타겟으로 하는 암의 치료 및 예방을 위해 비교적 

독성이 약한 식물 유래 화합물 (phytochemicals)을 이용한 연구가 

많이 이루어 지고 있다. Resveratrol 은 그 가운데 대표적인 물질 중 
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하나로, 포도, 건과류 및 장과류 (berries) 등에 다량 함유되어 있는 

폴리페놀 성분 물질로 항산화 효과, 심혈관계질환 예방효과, 항암효과, 

염증관련 질환 예방 효과를 가진 것으로 보고되고 있다. Resveratrol 을 

처리하였을 때, 유방암세포의 구체형성능과 자가재생, EMT 표현형이 

감소하고, Cav-1 의 발현은 증가하는 것을 확인하였다. 이때 증가한 

Cav-1 을 siRNA 를 이용하여 억제시키면, 감소하였던 줄기세포능이 

다시 증가함을 확인하였다. 이와 같은 결과를 바탕으로 resveratrol 이 

Cav-1 을 매개로 한 경로 조절을 통해 암줄기세포적 성격을 억제하여, 

향후 암줄기세포를 타겟으로 하는 새로운 치료법의 접근이 가능할 

것으로 사료된다.   
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