24 research outputs found

    Electrochemical Process of Lysine and DMPC Biomimetic Membrane

    Get PDF
    本论文运用电化学循环伏安、原位红外光谱、电化学石英晶体微天平和表面等离子体共振等技术研究了赖氨酸在金电极表面的吸附和氧化,以及对苯二酚在DMPC仿生膜上的电化学行为。主要结果如下: 1.为了建立EC-SPR系统装置,用于电化学过程的研究,我们将金纳米粒子单层自组装与化学镀金技术相结合成功地用于湿化学法制备SPR响应基片,克服了真空溅射法制备的SPR镀金片的局限。 2.检测到碱性介质中赖氨酸在低电位区间(-0.95V~-0.80V,vsSCE)即可发生C-C键断裂,-CH2NH2解离生成表面吸附态的CN-。同时赖氨酸阴离子的羧基侧还可通过两个氧原子与金电极表面相互作用。在-0.8至0.0V区...The adsorption and oxidation of lysine on Au electrodes in alkaline solutions , and the electrochemical behavior of p-dihydroxybenzene in DMPC biomimetic membrane were studied using cyclic voltammetry (CV), in situ FTIR spectroscopy (in situ FTIRS), electrochemical quartz crystal microbalance (EQCM) and electrochemical surface plasmon resonance (EC-SPR). The main results are listed below. 1. We ...学位:理学硕士院系专业:化学化工学院化学系_物理化学(含化学物理)学号:1912005130187

    独活挥发油对N-脂肪酰基乙醇胺水解酶的抑制作用及抗炎作用研究

    Get PDF
    目的:研究独活挥发油对内源性大麻素水解酶N-脂肪酰基乙醇胺水解酶(N-acylethanolamine-hydrolyzing acidamidase,NAAA)水解活性的影响以及对脂多糖(LPS)诱导的小鼠巨噬细胞RAW264.7炎症反应模型的抗炎作用。方法:采用水蒸气蒸馏法提取独活挥发油,GC-MS检测化学成分;采用LC-MS检测NAAA水解活性;采用LPS诱导RAW264.7细胞建立细胞炎症反应模型;采用LC-MS检测细胞内棕榈酸乙醇胺(N-palmitoylethanolamine,PEA)水平;采用实时定量PCR检测肿瘤坏子因子-α(TNF-α)、诱导型一氧化氮合酶(iNOS)和白细胞介素-6(IL-6)mRNA表达;采用酶联免疫吸附法(ELISA)检测TNF-α含量;采用Griess法检测一氧化氮(NO)含量。结果:独活挥发油可抑制NAAA水解活性,升高LPS诱导的RAW264.7细胞内PEA水平;独活挥发油可下调LPS诱导的RAW264.7细胞炎症因子TNF-α,iNOS,IL-6 mRNA表达;独活挥发油可抑制LPS诱导的RAW264.7细胞TNF-α和NO释放。结论:独活挥发油能够抑制NAAA水解活性,升高细胞内PEA水平,降低炎症因子表达,具有一定的抗炎作用

    Electrochemical behavior of p-dihydroxybenzene in DMPC biomimetic membrane

    Get PDF
    在金电极上构筑一种双肉豆蔻磷脂酰胆碱(DMPC)仿生浇铸膜。经椭圆偏振仪和电化学方法测量证实, DMPC仿生膜是较为致密的多层膜,同时对苯二酚能够透过DMPC仿生膜到达金电极表面进行氧化反应。结果表明,对苯二酚不仅可在脂质膜中进行电子转移,而且是一种重要的生物分子。反应在仿生环境内进行,也为研究生物小分子在真正的生物体内的反应提供有益的帮助。本文探讨对苯二酚在仿生膜修饰电极上的电化学行为,为生物膜中的电子转移过程提供了十分重要的信息。The casting method to form dimyristoyl phosphatidyl choline(DMPC)mimetic biomembrane on an Au electrode is proposed.The results of ellipsometer and electrochemical methods confirmed that the film is a compact membrane that can block the electron transferring process,p-Dihydroxybenzene can reach the electrode surface and occur redox reactions by passing through transient defects in individual bilayers.Such defects occur in biomembranes and are accentuated by relatively small electric fields.The electrochemical behavior of p-dihydroxybenzene in this membrane was also investigated,p-Dihydroxybenzene is biologically important molecule because of its function of transferring electrons in lipid layers.This reaction occur in the bionic environment,which provide the useful help to study the real reaction of small molecules in the biological organisms.Studies on the electrochemical behavior of p-dihydroxybenzene in the DMPC biomimetic membrane provide useful information for elucidating biological electron transfer processes concerning lipid layers.国家自然科学基金项目(20833005,20873116)。~

    Estimation of individual income tax noncompliance in Taiwan: evidence from unaudited tax returns with various income categories

    No full text
    租稅逃漏在租稅領域一直是許多人關注的議題,也是制定租稅政策時必須要考慮到的問題,本研究利用財政資訊中心民國94年至102年之綜合所得稅資料,使用間接推估法,利用納稅人捐贈支出推估其真實所得,觀察真實所得與申報所得之差異以推估所得短漏報情形。因本研究可以掌握歷年資料,在計算捐贈價格時使用前期價格,以避免內生性問題。實證結果顯示,歷年短漏報情形最為嚴重之所得為執行業務、利息、租賃與權利金及財產交易所得,由歷年各類所得短漏報變動趨勢可觀察到,逃漏稅程度隨時間逐漸下降,為財政部推動「電子申報繳稅作業」與「個人財產資料勾稽系統電子化」相互配合之成果,隨著資訊科技之進步,國稅局能更完整掌握納稅人所得資料,降低逃漏稅情形的發生

    Influence of Amplitude-related Perfusion Parameters in the Parotid Glands by Non-fat-saturated Dynamic Contrast-enhanced Magnetic Resonance Imaging

    No full text
    目的: 探討因脂肪飽和技術的施用與否,所造成腮腺動態對比增強微灌流磁振造影參數差異之成因。 方法: 本研究實驗分為三部分: 一、分析兩組臨床病患(脂肪飽和技術與非脂肪飽和技術各18人)腮腺的動態對比增強微灌流磁振造影參數;二、製作三組不同脂肪比例的假體,每組各分為六種對比劑濃度,各用脂肪飽和技術與非脂肪飽和技術擷取影像分析;三、招募九名健康受試者,各接受兩種不同微灌流造影掃描。 將使用脂肪飽和技術及非脂肪飽和技術兩種方法的微灌流參數利用T檢定比較兩組之間差異,並利用線性迴歸觀察脂肪含量與參數之間的關係,統計結果最後用Bonferroni修正多重比較。 結果: 病患資料統計分析顯示,非使用脂肪飽和技術的病人,A(5.08±2.95 a.u.)、PE (34.44±12.48%)以及斜率(1.08±0.60%/s)三個參數,顯著低於使用脂肪飽和技術的病人(8.90±4.03 a.u., 74.55±13.79%, 以及1.79±0.85%/s)。仿體實驗結果顯示信號增強的比例正比於對比劑的濃度,並且非使用脂肪飽和技術的影像信號增強比例顯著低於使用脂肪飽和技術。受試者也是在非使用脂肪飽和技術的參數顯著的低於使用脂肪飽和技術。脂肪飽和技術造成的參數顯著差異,則可以利用圈選脂肪含量較少的組織,做為標準化的基準強度來降低差異。 結論: 富含脂肪的組織如腮腺,動態對比增強微灌流磁振造影特徵會受到脂肪含量影響,使用脂肪飽和技術的可以降低脂肪含量對於參數的影響。選擇脂肪含量較少的組織,做為標準化的基準強度也可以降低影響。Purpose: To investigate the discrepancy of perfusion parameters of the parotid gland acquired by fat-saturated (FS) versus non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Materials and Methods: Approved by a local institutional review board with written informed consent obtained, this study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired using NFS (18 patients) or FS scans (18 patients). Second, a phantom study simulated the signal enhancements in the presence of Gd contrast agent at 6 different concentrations and 3 different fat contents. Finally, a prospective study recruited 9 healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. T tests and linear regression analysis were used for statistical analysis with Bonferroni correction applied for multiple comparisons. Results: Patients undergoing NFS DCE-MR scan showed significantly lower parameter A (5.08±2.95 a.u.), peak enhancement (PE) (34.44±12.48%), and slope (1.08±0.60%/s) as compared to 8.90±4.03 a.u., 74.55±13.79%, and 1.79±0.85%/s, respectively, in those with FS scan (all P<0.0167). Phantom study showed that the relative signal enhancement was proportional to the dose of gadolinium contrast agent and was higher in FS scan than in NFS scan. Volunteer study showed significantly lower parameter A (6.75±2.38 a.u.), PE (42.12±14.87%), and slope (1.43±0.54%/s) in NFS scan as compared to 17.63±8.56 a.u., 104.22±25.15%, and 3.68±1.67%/s, respectively, in those with FS scan (all P<0.005). These perfusion parameter differences were remedied by using skeletal muscles and pure water as reference on in vivo and phantom studies, respectively. Conclusion: DCE-MRI perfusion characterization is affected by the use of FS on fat-containing tissues such as parotid glands. The use of fat saturation is important to reduce the influence of parotid fat content on perfusion quantification. The selection of a relatively fat-free tissue as baseline is a simple and effective method to reduce bias from fat content in DCE MRI of the parotid glands

    Evaluation of the mercury adsorption from WFGD wastewater in coal-fired power plant using sulfur-containing activated carbon

    No full text
    由於世界各國對於火力發電的依賴性仍然相當高,燃煤電廠之汞排放議題一直以來備受大眾關注。在許多空污控制技術中,濕式煙氣脫硫系統(WFGD)是一個可有效去除汞並同時去除酸性氣體的設備。但因為水中含有還原性物質,例如亞硫酸根離子,最初被WFGD系統所捕捉的Hg2+會再還原並以元素汞的型態再釋放進入大氣中,導致WFGD脫汞效率的降低,造成二次汙染。 含硫活性碳具有高比表面積和表面官能基,對於吸附氣相或水相中的汞都有極高的去除效率。有鑑於此,本研究利用批次式實驗,經由實廠WFGD廢水中加入含硫粒狀活性碳進行實驗,測量液相中殘留汞含量,並控制溫度、pH、含硫活性碳劑量、初始汞濃度及SO32-濃度以觀察活性碳之吸附效果並同步探討等溫吸附及吸附動力模式。研究結果顯示,含硫活性碳比表面積為736.7 m2/ g,含硫量為4.6 wt%,其活性碳內微孔隙結構之比表面積較多,有利於活性碳吸附效率。不同pH值下,活性碳之吸附量隨pH上升而下降。而等溫吸附模擬結果顯示在比較低的汞濃度下實驗結果較符合線性等溫吸附模式。在氣態汞逸散連續監測結果發現,當添加SO32- = 5-100 mM時,氣態汞逸散有明顯上升的趨勢,此結果符合文獻所提HSO3-容易導致Hg0再還原。然而當SO32-濃度持續提升至200 mM及300 mM時,氣態汞的產生則有下降的趨勢,可能的原因為Hg(SO3)22-錯合物產生,導致Hg0再還原的情形降低。另外,動力吸附模式結果指出擬二階模式結果較符合實驗所得數據。而熱力學的參數計算後得到△H°= -19.14 kJ/mole、△S°= -0.037 kJ/mole、△G≒-30 kJ/mole,表示利用含硫活性碳吸附廢水中的汞是自發性和放熱性的吸附反應。Because thermal power generation is still extensively used globally, mercury (Hg) emissions from coal-fired power plants have been of greatest concerns to public. Among the available technologies for avoiding flue gas emissions, Wet Flue Gas Desulfurization (WFGD) has received considerable attention due to its capability to remove SO2 and Hg simultaneously. Under certain circumstances, however, oxidized mercury (Hg2+) captured by the WFGD system might be reduced by the reducing compounds, such as sulfites, and reemitted to the atmosphere in the form of Hg0 that causes secondary pollution and results in the lower efficiency of Hg removal by WFGD. Activated carbon (AC) containing sulfur is highly effective in adsorption of gaseous and aqueous Hg pollutants because of its suitable physical and chemical properties. In this study, a series of designed batch experiments were conducted to obtain the optimal adsorption conditions for removing the aqueous Hg from WFGD wastewater by using a sulfur-containing activated carbon (SAC). The test variables included temperature, pH value, SAC dosage, initial Hg2+ concentration, and the SO32- concentrations of WFGD wastewater. The adsorption isotherms and kinetics were subsequently obtained and better understood by using theoretical and empirical simulation models. The total surface area and sulfur content of SAC was measured to be 736.7 m2/g and 4.6%, respectively. The high microporosity of SAC made the adsorbent suitable for the adsorption of Hg. The experimental results indicated that the Hg adsorption capacity of SAC decreased with increasing pH value. Furthermore, Hg adsorption capacity was better fitted with linear adsorption isotherm model, which is mainly due to the low Hg concentration range tested in this study. By measuring the gaseous Hg concentration, the reemission of gaseous Hg was found to ascend with increasing the SO32- concentration from 5 to 100 mM, which may be resulted from Hg0 formation from Hg2+ reduction due to the presence of HSO3-. However, the reemission of reduced Hg was markedly decreased as increasing SO32- addition from 100 to 300 mM, which may stem from the formation of Hg(SO3)22- stably present in aqueous phase. Kinetic simulation showed that the fitting by pseudo-second order equation possessed a higher R2 compared to that by pseudo-first order equation. Thermodynamic parameter calculation concluded that △H°= -19.14 kJ/mole, △S°= -0.037 kJ/mole, and △G≒-30 kJ/mole. These analytical results indicate that Hg adsorption by SAC is thermodynamically spontaneous and exothermic

    Gradient-echo EPI distortions correction using a over-sampling low-ky pulse sequence and k-space energy spectrum analysis

    No full text
    本文提出一個修正平面回訊影像磁場不均勻幾何扭曲的修正方法。這個方法分析頻率空間的能量頻譜計算能量在頻率空間的位移,得到位移表示圖像,並由能量位移和磁場梯度的相關性求得磁場梯度分布圖,可以由磁場梯度分布圖算出磁場分布圖。利用磁場分布圖所提供的磁場資訊來修正影像。但是這個方法在計算磁場分布圖的時候沒有辦法取得磁場的偏移量,並且在積分近似的過程中,會有誤差累積的產生。 在取樣的過程中,利用重複取樣中間低頻部分頻率空間的方法,得到兩張低頻的影像,在兩次取樣中影像相位的改變可計算出低解析度的磁場分布圖。以此低解析度的磁場分布圖為參考值,來修正磁場梯度map的積分近似,這個方法可以計算出磁場的偏移量和修正誤差的累積,得到較為準確的磁場分布圖。實驗結果顯示,平面回訊影像的幾何扭曲的修正結果良好。The geometric distortion in echo-planar imaging (EPI) and its correction are systematically investigated in this thesis. EPI is one of the fastest MRI acquisition pulse sequence and is widely used for dynamic studies. However, in the presence of the field inhomogeneities, the EPI k-space energy peaks are displaced, which result in geometric distortions in the reconstructed images. Here we use the k-space energy spectrum analysis to calculate the k-space energy displacement in EPI. The calculated k-space energy displacement map can be converted to the field inhomogeneity map, which can then be applied to correct the EPI distortions using a phase modulation post-processing procedure. The EPI data corrected with the previously developed k-space energy spectrum based method, however, may have residual distortions due to an unknown B0 reference and the accumulated errors during the integration procedure. To further improve the accuracy and reliability of EPI distortion correction, we propose to combine the k-space energy spectrum analysis and an altered EPI acquisition strategy, in which the central part of the k-space is double sampled. In this approach, the B0 reference can be obtained from the embedded low-resolution double-TE data. In addition, the error accumulation in the integration procedure can be minimized. Experimental results show that the new method can effectively remove EPI geometric distortions.1 Introduction 7 1.1 Echo Panner Imaging and Its Sequence . . . . . . . . . . . . . . . . . 7 1.2 Geometrical distortion in EPI . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Distortion CorrectionMethods . . . . . . . . . . . . . . . . . . . . . . 11 2 K-space Energy Spectrum Analysis 14 2.1 Echo-shifting effect in EPI . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 k-space energy spectrum analysis and displacement map of k-space echo-shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Cuppen’s partial Fourier reconstruction method . . . . . . . . 17 2.2.2 k-space energy spectrum analysis method . . . . . . . . . . . . 20 2.3 Relationship between echo-shifting and susceptibility field gradient . . 21 2.4 Calculation of susceptibility field gradient . . . . . . . . . . . . . . . 22 2.5 ΔB0 field map estimation . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Modification of k-space data acquisition trajectory 30 3.1 Reference B0 field map . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 k-space energy spectrum analysis . . . . . . . . . . . . . . . . . . . . 33 3.3 B0 field map estimation . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Correction of the distorted image . . . . . . . . . . . . . . . . . . . . 37 4 Numerical Simulation and Phantom Study 38 4.1 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 PhantomStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Discussion and conclusion 44 5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.1 Errors accumulation . . . . . . . . . . . . . . . . . . . . . . . 44 5.1.2 Degree of k-space echo-shifting . . . . . . . . . . . . . . . . . . 45 5.1.3 The time spacing between two samples . . . . . . . . . . . . . 45 5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    corecore