128 research outputs found

    Studies of Possible QGP Estimators in proton-proton Collisions

    No full text
    This thesis presents studies of three different Quark-Gluon Plasma estimators in proton-proton collisions using what is currently believed to be quark-gluon plasma observables; radial flow, elliptic flow and strangeness enhancement. The three tested estimators were Transverse Spherocity, an altered version of Transverse Spherocity where all p_T was put to one, and a newly developed estimator called Mid-Forward. The first part involved simulation studies where the estimators were tested using different settings within the Rope Hadronization framework in PYTHIA. The aim for this thesis was to find an estimator working for all three observables. However, this was not achieved as the results from the simulation study indicated that both spherocity estimators work well for the radial flow observable but not for elliptic flow, while the mid-forward estimator did not perform well for radial flow, it was the best candidate when measuring elliptic flow. Therefore the mid-forward estimator was selected for the data analysis of elliptic flow using two particle correlations. These results did not agree with what was observed in the results from the simulation studies, which could be due to low statistics in the data analysis.Forskning inom partikelfysik grundar sig i att försöka förstĂ„ naturens lagar vilket har givit oss insikt i den fundamentala strukturen av materia. Man trodde lĂ€nge att atomen var den minsta byggsten av materian runt omkring oss (dĂ€r atom kommer frĂ„n grekiskans ĂĄtomos och betyder odelbar), men forskning visade att detta inte stĂ€mde. En förenklad modell Ă€r att atomen bestĂ„r av elektroner som kretsar runt en atomkĂ€rna, dĂ€r kĂ€rnan kan delas upp i atomer och neutroner som i sin tur bestĂ„r av kvarkar och gluoner. VĂ„r nuvarande kunskap om den fundamentala strukturen av materia Ă€r samlad i den sĂ„ kallade Standard Modellen av partikelfysik som ger en matematisk beskrivning av elementarpartiklar och deras vĂ€xelverkan. Elementarpartiklarna som ingĂ„r i Standard Modellen delas in i tvĂ„ grupper; fermioner och bosoner, dĂ€r fermioner Ă€r de partiklar som utgör all materia och bosoner Ă€r de kraft-förmedlande partiklarna som vĂ€xelverkar mellan fermionerna. I Standard Modellen ingĂ„r Ă€ven tre fundamentala krafter; den starka, den svaga och den elektromagnetiska kraften. Den starka kraften Ă€r, som kanske förstĂ„s av namnet, den starkaste av de tre krafterna och Ă€r den som hĂ„ller ihop elementarpartiklarna och dĂ„ bildar större partiklar som kallas hadroner. Exempel pĂ„ hadroner Ă€r protonen och neutronen. Bosonen som förmedlar den starka kraften kallas gluon och har, till skillnad frĂ„n fotonen som Ă€r den kraft-förmedlande bosonen för den elektromagnetiska kraften, inte bara en elektrisk laddning utan Ă€ven fĂ€rgladdning. Även kvarkar har fĂ€rgladdning. Gluonens fĂ€rgladdning medför att gluonen kan vĂ€xelverka med sig sjĂ€lv som i sin tur ger upphov till att kvarkar inte kan existera fritt utan att de alltid Ă€r sammansatta i fĂ€rg-neutrala hadroner. Det har dock lĂ€nge funnits teorier om att vid extremt höga temperaturer och/eller partikel densiteter sĂ„ “smĂ€lter” hadronerna till ett tillstĂ„nd dĂ€r kvarkar och gluoner Ă€r nĂ€stan fria. Detta tillstĂ„nd kallas Kvark-Gluon Plasma, och man tror att denna plasma existerade under de första micro-sekunderna efter Big-Bang nĂ€r Universum var extremt varmt och hade hög tĂ€thet. Man tror Ă€ven att plasman idag existerar i kĂ€rnan av neutronstjĂ€rnor pĂ„ grund av den höga densiteten dĂ€r. Idag kan de höga temperatur - och densitet - tillstĂ„nden som krĂ€vs för att skapa plasman uppnĂ„s i laboratoriemiljö med hjĂ€lp av partikelacceleratorer dĂ€r man kan kollidera tunga joner i höga energier. Ett exempel pĂ„ ett sĂ„dant experiment Ă€r ALICE experimentet som Ă€r ett av fyra experiment vid LHC (Large Hadron Collider) pĂ„ CERN i GenĂšve. DĂ€r har man lyckats att komma upp i en temperatur pĂ„ ca 740 MeV vilket motsvarar 1.5 miljarder gĂ„nger varmare Ă€n solens yta. Plasman som skapas i laboratoriemiljö har en livstid pĂ„ endast 10−2210^{-22} sekunder innan kvarkarna och gluonerna förenas och bildar hadroner igen. Denna korta livstid gör det omöjligt att direkt studera plasman och man fĂ„r dĂ€rför studera olika karaktĂ€ristiska signaturer av de partiklar (hadroner) som man kan detektera. Man har lĂ€nge trott att plasman endast kan skapas vi energi-densiteten som uppnĂ„s vid tung-jons kollisioner, dvs kollisioner mellan t.ex. bly eller guld joner, men detta har man nyligen börjat ifrĂ„gasĂ€tta dĂ„ man observerat kvark-gluon plasma signaturer vid kollisioner mellan proton och bly, och proton-proton. För att undersöka detta behövs inte bara mer data (mer statistik) utan Ă€ven nya typer av mĂ€tningar som Ă€r kĂ€nsligare för den underliggande fysiken. Ett exempel pĂ„ en sĂ„dan mĂ€tning som anvĂ€nds nu Ă€r Transverse Spherocity. Den delar upp proton-proton kollisioner i olika kategorier beroende pĂ„ kollisions formen i det transversa planet. Det har dock nyligen visat sig att Transverse Spherocity fungerar bra för nĂ„gra plasma signaturer sĂ„ som radial flow, men att den kanske inte alls fungerar för andra signaturer sĂ„ som elliptic flow. MĂ„l för denna uppsatsen Ă€r dĂ€rför att komma pĂ„ och testa alternativa mĂ€tningsmetoder för kvark-gluon plasman. Det första steget var att testa och utveckla de nya ideerna pĂ„ simulerad data med olika modeller för att utifrĂ„n det vĂ€lja ut nĂ„gra signaturer och metoder och testa dem pĂ„ data frĂ„n ALICE för att se hur metoderna fungerar för de olika signaturerna. Om nĂ„gon utav metoderna skulle fungera för de olika plasma signaturerna sĂ„ hade det kunnat leda till en bĂ€ttre förstĂ„else av de kollektiva effekter som man har observerat i de mindre kollisions systemen. Om det Ă€ven visar sig att dessa effekter beror pĂ„ ett medium som expanderar har skapats i de smĂ„ systemen (sĂ„ som i de större tung-jons systemen) sĂ„ kan detta innebĂ€ra att de större systemen kan tolkas som en förlĂ€ngning av de smĂ„ systemen. Dessa slutsatser hade varit banbrytande och betytt att man hade fĂ„tt tĂ€nka om nĂ€r det kommer till vĂ„r kunskap om den starka kraften och tung-jons fysiken

    Separation of Hard and Soft Production in High Multiplicity pp Collisions using Transverse Spherocity

    No full text
    A big question at LHC is if the Quark-Gluon Plasma is produced in small systems such as pp and p-Pb collisions. A general problem in small systems is that possible medium effects are small and can be obscured by hard collisions such as jet production. In this project the goal is to use a new method, the Transverse Spherocity, to subdivide proton-proton events into soft and hard classes. The hope is that one in this way can select soft pp-collisions where the medium effects are enhanced and the hard processes are suppressed.Partikel fysik, Àmnet som har för avsikt att förklara de allra minsta bestÄndsdelarna i vÄrt universum. Forskning inom partikel fysik Àr viktig för att fÄ en djupare förstÄelse om kvantkromodynamiken (teorin om den starka vÀxelverkan som Àr en av de fundamentala krafterna) men Àven utanför partikelfysiken som till exempel inom kosmologi eftersom att det antas att ett par micro-sekunder efter Big Bang sÄ bestod universum av nÀstan fria fundamentala partiklar, kvarkar och gluoner i en sÄ kallad kvark-gluonplasma. Under de första micro-sekunderna efter Big Bang var energidensiteten extremt hög och det Àr endast under dessa förhÄllanden som kvarkar och gluoner kan frigöra sig frÄn deras annars sammansatta stabila tillstÄnd som hadroner (exempel pÄ hadroner Àr protoner och neutroner) dÀr de hÄlls ihop med hjÀlp av den starka vÀxelverkan mellan varandra. Det Àr detta tillstÄnd av materia, dÄ kvarkar och gluoner rör sig fritt under den höga energidensiteten, som kallas kvark-gluonplasma. Den höga energidensiteten gÄr att uppnÄ experimentellt genom att accelerera tunga atomkÀrnor och lÄta dem kollidera med varandra. Detta gör man bland annat vid ALICE experimentet pÄ CERN i GenÚve. DÀr har man, för en kort stund, kunnat Äterskapa kvark-gluonplasman genom att kollidera bly-kÀrnor eller bly-kÀrnor och protoner med varandra. DÀremot har man Ànnu inte lyckats upptÀcka kvark-gluonplasma vid proton-proton kollisioner och det Àr dÀrför av intresse att studera dessa för att se om plasman Àven skapas i dessa smÄ system. SmÄ system i det hÀr fallet syftar pÄ proton-proton kollisioner dÄ de Àr, i förhÄllande till blykÀrnor, smÄ. I de smÄ systemen Àr det svÄrt att se effekterna frÄn den potentiella plasman pÄ grund av att dessa Àr vÀldigt smÄ jÀmfört med effekterna frÄn bland annat jets. DÀrför har man kommit pÄ en lösning som förhoppningsvis gör det möjligt att lÀttare se kvark-gluonplasmans effekter. Denna lösning Àr en metod som kallas Transverse Spherocity Method. Transverse spherocity metoden gör ett urval frÄn den insamlade datan för att fÄ ut mer information genom att titta pÄ formen av varje hÀndelse, dÀr hÀndelse, i det hÀr fallet, syftar pÄ nÀr tvÄ partiklar eller atomkÀrnor kolliderar och nya partiklar bildas. Mer specifikt anvÀnds metoden för att kategorisera hÀndelserna utifrÄn den geometriska spridningen av den transversella rörelsemÀngden av de laddade partiklarna som skapats i kollisionen. HÀndelserna kategoriseras som antingen en isotropisk eller en jet-liknande hÀndelse, dÀr isotropisk i det hÀr fallet motsvarar effekter frÄn potentiell kvark-gluonplasma. Transverse spherocity metoden har testats pÄ simulerad data och det var nu av intresse att testa metoden pÄ riktig data och det visade sig att metoden gjorde det lÀttare att urskilja de olika effekterna och visade pÄ att det sannerligen fanns potentiella effekter frÄn kvark-gluonplasma i proton-proton kollisioner

    New constraints of QCD matter from improved Bayesian parameter estimation with the latest LHC data

    No full text
    Transport properties of the matter created in heavy-ion collisions, the quark-gluon plasma (QGP), contain essential information about quantum chromodynamics (QCD). In this talk, we present our latest study in inferring the transport properties of QGP by an improved Bayesian analysis using the CERN Large Hadron Collider Pb-Pb data. The uncertainties of the extracted properties are reduced by adding new observables sensitive to specific shear and bulk viscosity, reflecting mostly nonlinear hydrodynamic responses. The analysis also reveals that higher-order harmonic flows and their correlations have a higher sensitivity to the transport properties than other observables. This observation shows the necessity of accurate measurements of these observables including heavy quarks in the future.nonPeerReviewe

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction

    Measurement of the production and elliptic flow of (anti)nuclei in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    Measurements of (anti)deuteron and (anti)3He production in the rapidity range |y|< 0.5 as a function of the transverse momentum and event multiplicity in Xe−Xe collisions at a center-of-mass energy per nucleon−nucleon pair of sNN−−−√ = 5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model (SHM) and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe−Xe collisions and shows features similar to those already observed in Pb−Pb collisions, i.e., the mass ordering at low transverse momentum and the meson−baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe−Xe collisions. The extracted chemical freeze-out temperature Tchem = (154.2 ± 1.1) MeV in Xe−Xe collisions is similar to that observed in Pb−Pb collisions and close to the crossover temperature predicted by lattice QCD calculations

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0cÂŻÂŻÂŻÂŻÂŻÂŻ) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of ℩0c baryon production and branching-fraction ratio BR(℩0c → ℩−e+Îœe)/BR(℩0c → ℊ−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon ℩0c is measured for the first time via its semileptonic decay into ℩−e+Îœe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(℩0c → ℩−e+Îœe)/BR(℩0c → ℊ−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    No full text
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson K0S and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s√=5.02 TeV and s√=13 TeV using the ALICE detector at the LHC. The per-trigger yields of K0S and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/K0S yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to K0S is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The K0S and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of K0S and Ξ±

    K∗^{*}(892)±^{\pm} resonance production in Pb−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe production of K∗^*(892)±^\pm meson resonance is measured at midrapidity (∣y∣8|y|8 GeV/cc, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium
    • 

    corecore