5 research outputs found

    μ΄ˆλ―Έμ„Έ 회둜 섀계λ₯Ό μœ„ν•œ 인터컀λ„₯트의 타이밍 뢄석 및 λ””μžμΈ λ£° μœ„λ°˜ 예츑

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·컴퓨터곡학뢀, 2021. 2. κΉ€νƒœν™˜.타이밍 뢄석 및 λ””μžμΈ λ£° μœ„λ°˜ μ œκ±°λŠ” λ°˜λ„μ²΄ μΉ© 제쑰λ₯Ό μœ„ν•œ 마슀크 μ œμž‘ 전에 μ™„λ£Œλ˜μ–΄μ•Ό ν•  ν•„μˆ˜ 과정이닀. κ·ΈλŸ¬λ‚˜ νŠΈλžœμ§€μŠ€ν„°μ™€ 인터컀λ„₯트의 변이가 μ¦κ°€ν•˜κ³  있고 λ””μžμΈ λ£° μ—­μ‹œ λ³΅μž‘ν•΄μ§€κ³  있기 λ•Œλ¬Έμ— 타이밍 뢄석 및 λ””μžμΈ λ£° μœ„λ°˜ μ œκ±°λŠ” μ΄ˆλ―Έμ„Έ νšŒλ‘œμ—μ„œ 더 μ–΄λ €μ›Œμ§€κ³  μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ΄ˆλ―Έμ„Έ 섀계λ₯Ό μœ„ν•œ 두가지 문제인 타이밍 뢄석과 λ””μžμΈ λ£° μœ„λ°˜μ— λŒ€ν•΄ 닀룬닀. 첫번째둜 곡정 μ½”λ„ˆμ—μ„œ 타이밍 뢄석은 μ‹€λ¦¬μ½˜μœΌλ‘œ μ œμž‘λœ 회둜의 μ„±λŠ₯을 μ •ν™•νžˆ μ˜ˆμΈ‘ν•˜μ§€ λͺ»ν•œλ‹€. κ·Έ μ΄μœ λŠ” 곡정 μ½”λ„ˆμ—μ„œ κ°€μž₯ 느린 타이밍 κ²½λ‘œκ°€ λͺ¨λ“  곡정 μ‘°κ±΄μ—μ„œλ„ κ°€μž₯ 느린 것은 μ•„λ‹ˆκΈ° λ•Œλ¬Έμ΄λ‹€. κ²Œλ‹€κ°€ μΉ© λ‚΄μ˜ μž„κ³„ κ²½λ‘œμ—μ„œ 인터컀λ„₯νŠΈμ— μ˜ν•œ 지연 μ‹œκ°„μ΄ 전체 지연 μ‹œκ°„μ—μ„œμ˜ 영ν–₯이 μ¦κ°€ν•˜κ³  있고, 10λ‚˜λ…Έ μ΄ν•˜ κ³΅μ •μ—μ„œλŠ” 20%λ₯Ό μ΄ˆκ³Όν•˜κ³  μžˆλ‹€. 즉, μ‹€λ¦¬μ½˜μœΌλ‘œ μ œμž‘λœ 회둜의 μ„±λŠ₯을 μ •ν™•νžˆ μ˜ˆμΈ‘ν•˜κΈ° μœ„ν•΄μ„œλŠ” λŒ€ν‘œ νšŒλ‘œκ°€ νŠΈλžœμ§€μŠ€ν„°μ˜ 변이 λΏλ§Œμ•„λ‹ˆλΌ 인터컀λ„₯트의 변이도 λ°˜μ˜ν•΄μ•Όν•œλ‹€. 인터컀λ„₯트λ₯Ό κ΅¬μ„±ν•˜λŠ” κΈˆμ†μ΄ 10μΈ΅ 이상 μ‚¬μš©λ˜κ³  있고, 각 측을 κ΅¬μ„±ν•˜λŠ” κΈˆμ†μ˜ μ €ν•­κ³Ό μΊνŒ¨μ‹œν„΄μŠ€μ™€ λΉ„μ•„ 저항이 λͺ¨λ‘ 회둜 지연 μ‹œκ°„μ— 영ν–₯을 μ£ΌκΈ° λ•Œλ¬Έμ— λŒ€ν‘œ 회둜λ₯Ό μ°ΎλŠ” λ¬Έμ œλŠ” 차원이 맀우 높은 μ˜μ—­μ—μ„œ 졜적의 ν•΄λ₯Ό μ°ΎλŠ” 방법이 ν•„μš”ν•˜λ‹€. 이λ₯Ό μœ„ν•΄ 인터컀λ„₯트λ₯Ό μ œμž‘ν•˜λŠ” 곡정(λ°± μ—”λ“œ 였브 라인)의 변이λ₯Ό λ°˜μ˜ν•œ λŒ€ν‘œ 회둜λ₯Ό μƒμ„±ν•˜λŠ” 방법을 μ œμ•ˆν•˜μ˜€λ‹€. 곡정 변이가 μ—†μ„λ•Œ κ°€μž₯ 느린 타이밍 κ²½λ‘œμ— μ‚¬μš©λœ κ²Œμ΄νŠΈμ™€ λΌμš°νŒ… νŒ¨ν„΄μ„ λ³€κ²½ν•˜λ©΄μ„œ μ μ§„μ μœΌλ‘œ νƒμƒ‰ν•˜λŠ” 방법이닀. ꡬ체적으둜, λ³Έ λ…Όλ¬Έμ—μ„œ μ œμ•ˆν•˜λŠ” ν•©μ„± ν”„λ ˆμž„μ›Œν¬λŠ” λ‹€μŒμ˜ μƒˆλ‘œμš΄ κΈ°μˆ λ“€μ„ ν†΅ν•©ν•˜μ˜€λ‹€: (1) λΌμš°νŒ…μ„ κ΅¬μ„±ν•˜λŠ” μ—¬λŸ¬ κΈˆμ† μΈ΅κ³Ό λΉ„μ•„λ₯Ό μΆ”μΆœν•˜κ³  탐색 μ‹œκ°„ κ°μ†Œλ₯Ό μœ„ν•΄ μœ μ‚¬ν•œ ꡬ성듀을 같은 λ²”μ£Όλ‘œ λΆ„λ₯˜ν•˜μ˜€λ‹€. (2) λΉ λ₯΄κ³  μ •ν™•ν•œ 타이밍 뢄석을 μœ„ν•˜μ—¬ μ—¬λŸ¬ κΈˆμ† μΈ΅κ³Ό λΉ„μ•„λ“€μ˜ 변이λ₯Ό μˆ˜μ‹ν™”ν•˜μ˜€λ‹€. (3) ν™•μž₯성을 κ³ λ €ν•˜μ—¬ 일반적인 링 μ˜€μ‹€λ ˆμ΄ν„°λ‘œ λŒ€ν‘œνšŒλ‘œλ₯Ό νƒμƒ‰ν•˜μ˜€λ‹€. λ‘λ²ˆμ§Έλ‘œ λ””μžμΈ 룰의 λ³΅μž‘λ„κ°€ μ¦κ°€ν•˜κ³  있고, 이둜 인해 ν‘œμ€€ μ…€λ“€μ˜ 인터컀λ„₯트λ₯Ό ν†΅ν•œ 연결을 μ§„ν–‰ν•˜λŠ” λ™μ•ˆ λ””μžμΈ λ£° μœ„λ°˜μ΄ μ¦κ°€ν•˜κ³  μžˆλ‹€. κ²Œλ‹€κ°€ ν‘œμ€€ μ…€μ˜ 크기가 계속 μž‘μ•„μ§€λ©΄μ„œ μ…€λ“€μ˜ 연결은 점점 μ–΄λ €μ›Œμ§€κ³  μžˆλ‹€. κΈ°μ‘΄μ—λŠ” 회둜 λ‚΄ λͺ¨λ“  ν‘œμ€€ 셀을 μ—°κ²°ν•˜λŠ”λ° ν•„μš”ν•œ νŠΈλž™ 수, κ°€λŠ₯ν•œ νŠΈλž™ 수, 이듀 κ°„μ˜ 차이λ₯Ό μ΄μš©ν•˜μ—¬ μ—°κ²° κ°€λŠ₯성을 νŒλ‹¨ν•˜κ³ , λ””μžμΈ λ£° μœ„λ°˜μ΄ λ°œμƒν•˜μ§€ μ•Šλ„λ‘ μ…€ 배치λ₯Ό μ΅œμ ν™”ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ κΈ°μ‘΄ 방법은 μ΅œμ‹  κ³΅μ •μ—μ„œλŠ” μ •ν™•ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ— 더 λ§Žμ€ 정보λ₯Ό μ΄μš©ν•œ νšŒλ‘œλ‚΄ λͺ¨λ“  ν‘œμ€€ μ…€ μ‚¬μ΄μ˜ μ—°κ²° κ°€λŠ₯성을 μ˜ˆμΈ‘ν•˜λŠ” 방법이 ν•„μš”ν•˜λ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 기계 ν•™μŠ΅μ„ 톡해 λ””μžμΈ λ£° μœ„λ°˜μ΄ λ°œμƒν•˜λŠ” μ˜μ—­ 및 개수λ₯Ό μ˜ˆμΈ‘ν•˜κ³  이λ₯Ό 쀄이기 μœ„ν•΄ ν‘œμ€€ μ…€μ˜ 배치λ₯Ό λ°”κΎΈλŠ” 방법을 μ œμ•ˆν•˜μ˜€λ‹€. λ””μžμΈ λ£° μœ„λ°˜ μ˜μ—­μ€ 이진 λΆ„λ₯˜λ‘œ μ˜ˆμΈ‘ν•˜μ˜€κ³  ν‘œμ€€ μ…€μ˜ λ°°μΉ˜λŠ” λ””μžμΈ λ£° μœ„λ°˜ 개수λ₯Ό μ΅œμ†Œν™”ν•˜λŠ” λ°©ν–₯으둜 μ΅œμ ν™”λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” ν”„λ ˆμž„μ›Œν¬λŠ” λ‹€μŒμ˜ 세가지 기술둜 κ΅¬μ„±λ˜μ—ˆλ‹€: (1) 회둜 λ ˆμ΄μ•„μ›ƒμ„ μ—¬λŸ¬ 개의 μ •μ‚¬κ°ν˜• 격자둜 λ‚˜λˆ„κ³  각 κ²©μžμ—μ„œ λΌμš°νŒ…μ„ μ˜ˆμΈ‘ν•  수 μžˆλŠ” μš”μ†Œλ“€μ„ μΆ”μΆœν•œλ‹€. (2) 각 κ²©μžμ—μ„œ λ””μžμΈ λ£° μœ„λ°˜μ΄ μžˆλŠ”μ§€ μ—¬λΆ€λ₯Ό νŒλ‹¨ν•˜λŠ” 이진 λΆ„λ₯˜λ₯Ό μˆ˜ν–‰ν•œλ‹€. (3) λ©”νƒ€νœ΄λ¦¬μŠ€ν‹± μ΅œμ ν™” λ˜λŠ” λ² μ΄μ§€μ•ˆ μ΅œμ ν™”λ₯Ό μ΄μš©ν•˜μ—¬ 전체 λ””μžμΈ λ£° μœ„λ°˜ κ°œμˆ˜κ°€ κ°μ†Œν•˜λ„λ‘ 각 κ²©μžμ— μžˆλŠ” ν‘œμ€€ 셀을 움직인닀.Timing analysis and clearing design rule violations are the essential steps for taping out a chip. However, they keep getting harder in deep sub-micron circuits because the variations of transistors and interconnects have been increasing and design rules have become more complex. This dissertation addresses two problems on timing analysis and design rule violations for synthesizing deep sub-micron circuits. Firstly, timing analysis in process corners can not capture post-Si performance accurately because the slowest path in the process corner is not always the slowest one in the post-Si instances. In addition, the proportion of interconnect delay in the critical path on a chip is increasing and becomes over 20% in sub-10nm technologies, which means in order to capture post-Si performance accurately, the representative critical path circuit should reflect not only FEOL (front-end-of-line) but also BEOL (backend-of-line) variations. Since the number of BEOL metal layers exceeds ten and the layers have variation on resistance and capacitance intermixed with resistance variation on vias between them, a very high dimensional design space exploration is necessary to synthesize a representative critical path circuit which is able to provide an accurate performance prediction. To cope with this, I propose a BEOL-aware methodology of synthesizing a representative critical path circuit, which is able to incrementally explore, starting from an initial path circuit on the post-Si target circuit, routing patterns (i.e., BEOL reconfiguring) as well as gate resizing on the path circuit. Precisely, the synthesis framework of critical path circuit integrates a set of novel techniques: (1) extracting and classifying BEOL configurations for lightening design space complexity, (2) formulating BEOL random variables for fast and accurate timing analysis, and (3) exploring alternative (ring oscillator) circuit structures for extending the applicability of this work. Secondly, the complexity of design rules has been increasing and results in more design rule violations during routing. In addition, the size of standard cell keeps decreasing and it makes routing harder. In the conventional P&R flow, the routability of pre-routed layout is predicted by routing congestion obtained from global routing, and then placement is optimized not to cause design rule violations. But it turned out to be inaccurate in advanced technology nodes so that it is necessary to predict routability with more features. I propose a methodology of predicting the hotspots of design rule violations (DRVs) using machine learning with placement related features and the conventional routing congestion, and perturbating placed cells to reduce the number of DRVs. Precisely, the hotspots are predicted by a pre-trained binary classification model and placement perturbation is performed by global optimization methods to minimize the number of DRVs predicted by a pre-trained regression model. To do this, the framework is composed of three techniques: (1) dividing the circuit layout into multiple rectangular grids and extracting features such as pin density, cell density, global routing results (demand, capacity and overflow), and more in the placement phase, (2) predicting if each grid has DRVs using a binary classification model, and (3) perturbating the placed standard cells in the hotspots to minimize the number of DRVs predicted by a regression model.1 Introduction 1 1.1 Representative Critical Path Circuit . . . . . . . . . . . . . . . . . . . 1 1.2 Prediction of Design Rule Violations and Placement Perturbation . . . 5 1.3 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 7 2 Methodology for Synthesizing Representative Critical Path Circuits reflecting BEOL Timing Variation 9 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Definitions and Overall Flow . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Techniques for BEOL-Aware RCP Generation . . . . . . . . . . . . . 17 2.3.1 Clustering BEOL Configurations . . . . . . . . . . . . . . . . 17 2.3.2 Formulating Statistical BEOL Random Variables . . . . . . . 18 2.3.3 Delay Modeling . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Exploring Ring Oscillator Circuit Structures . . . . . . . . . . 24 2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Further Study on Variations . . . . . . . . . . . . . . . . . . . . . . . 37 3 Methodology for Reducing Routing Failures through Enhanced Prediction on Design Rule Violations in Placement 39 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Techniques for Reducing Routing Failures . . . . . . . . . . . . . . . 43 3.3.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . 43 3.3.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.4 Placement Perturbation . . . . . . . . . . . . . . . . . . . . . 47 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.2 Hotspot Prediction . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.4 Placement Perturbation . . . . . . . . . . . . . . . . . . . . . 57 4 Conclusions 61 4.1 Synthesis of Representative Critical Path Circuits reflecting BEOL Timing Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Reduction of Routing Failures through Enhanced Prediction on Design Rule Violations in Placement . . . . . . . . . . . . . . . . . . . . . . 62 Abstract (In Korean) 69Docto

    A Case-control Study of Sasang Constitution and Relative Risk of Stroke

    No full text
    역학톡계학과/석사[ν•œκΈ€]μ „ 세계적인 좔세인 인ꡬ 노령화와 이에 따라 μ¦κ°€ν•˜λŠ” λ‡Œμ‘Έμ€‘μ€ μ€‘μš”ν•œ 보건문제둜 λŒ€λ‘λ˜κ³  μžˆλ‹€. λ‡Œμ‘Έμ€‘μ€ μ‚¬λžŒμ˜ μ²΄μ§ˆμ— 따라 차이가 있으며, λ‡Œμ‘Έμ€‘μ˜ λ°œμƒλ„ 체질적 λΆˆκ· ν˜•μ—μ„œ κ·Έ 원인을 찾을 수 μžˆλ‹€.이 μ—°κ΅¬λŠ” μ‚¬μƒμ²΄μ§ˆκ²€μ‚¬μ§€λ‘œ λΆ„λ₯˜λœ μ²΄μ§ˆμ— 따라 λ‡Œμ‘Έμ€‘μ˜ λ°œμƒμœ„ν—˜μ— 차이가 μžˆλŠ”κ°€λ₯Ό μ•Œμ•„λ³΄κ³ , μ‚¬μƒμ²΄μ§ˆμ„ ν¬ν•¨ν•œ λ‡Œμ‘Έμ€‘ λ°œλ³‘μœ„ν—˜μ„ μ˜ˆμΈ‘ν•  수 μžˆλŠ” νšŒκ·€λͺ¨ν˜•κ³Ό λ‡Œμ‘Έμ€‘ μœ„ν—˜κ΅°μ„ 쑰기에 νŒŒμ•…ν•  수 μžˆλŠ” 졜적의 μ˜μ‚¬κ²°μ • λͺ¨ν˜•μ„ κ°œλ°œν•˜λŠ”λ° μžˆλ‹€.연ꡬ방법은 λ‡Œμ‘Έμ€‘ ν™˜μžλ“±λ‘μ‚¬μ—…μ— ν¬ν•¨λ˜μ–΄ μ‚¬μƒμ²΄μ§ˆμ„€λ¬Έκ²€μ‚¬λ₯Ό μ‹œν–‰ν•œ ν™˜μžκ΅°κ³Ό 건강인 λŒ€μ‘°κ΅°μ„ 1:1 λ‹¨μˆœ λ¬΄μž‘μœ„ μΈ΅ν™”μΆ”μΆœν•˜μ—¬ μˆ˜ν–‰ν•œ ν™˜μžλŒ€μ‘°κ΅° 연ꡬ이닀. μ—°κ΅¬μžλ£ŒλŠ” 연ꡬ μ°Έμ—¬λ₯Ό 자발적으둜 λ™μ˜ν•œ ν™˜μžλ₯Ό λŒ€μƒμœΌλ‘œ μ„œλ©΄ λ™μ˜μ„œλ₯Ό λ°›κ³  증둀기둝지λ₯Ό ν‘œμ€€μž‘μ—…μ§€μΉ¨μ„œμ— μ˜κ±°ν•˜μ—¬ μž‘μ„±ν•˜μ—¬ ν™˜μžκ΅°μ˜ 자료λ₯Ό μ·¨λ“ν•˜μ˜€λ‹€. ν™˜μžκ΅°μ€ μ„œμšΈ, κ²½μΈμ§€μ—­μ˜ 3개 λŒ€ν•™λΆ€μ†λ³‘μ›μ— μž…μ›ν•˜μ—¬ 생애 처음으둜 λ‡Œμ‘Έμ€‘μœΌλ‘œ 진단받은 λ°œλ³‘ 2μ£Ό(14일)μ΄λ‚΄μ˜ κΈ‰μ„±κΈ° λ‡Œμ‘Έμ€‘ ν™˜μžλ₯Ό λŒ€μƒμœΌλ‘œ ν•˜μ˜€λ‹€. λŒ€μ‘°κ΅°μ€ 경기도 μ†Œμž¬ λŒ€ν•™λΆ€μ†λ³‘μ›μ— 검진을 μœ„ν•˜μ—¬ λ°©λ¬Έν•˜μ—¬ μ‚¬μƒμ²΄μ§ˆκ²€μ‚¬λ₯Ό ν¬ν•¨ν•œ 쒅합검진을 μ‹œν–‰ν•œ μ‚¬λžŒμ€‘ κ±΄κ°•μƒμ˜ 이상을 λŠλΌκ±°λ‚˜ μ˜μ‚¬μ˜ ꢌ유둜 검사λ₯Ό μ‹œν–‰ν•œ μ‚¬λžŒμ„ μ œμ™Έν•˜κ³ , κ²€μ§„μ‚¬μœ κ°€ μ •κΈ°μ μœΌλ‘œ 검사 λ°›κΈ° λ•Œλ¬Έμ΄κ±°λ‚˜ 직μž₯의 단체검진 ν˜Ήμ€ κ°€μ‘± 및 μΉœμ§€μ˜ ꢌ유 λ•Œλ¬Έμ΄λΌκ³  λ‹΅ν•œ μ‚¬λžŒλ“€λ‘œ ν•˜μ˜€λ‹€. 검진결과 ν˜Ήμ€ 검진후 λ‡Œμ‘Έμ€‘ν™˜μžλ‘œ ν™•μΈλœ κ²½μš°λŠ” μ œμ™Έν•˜μ˜€λ‹€.μ—°κ΅¬λŒ€μƒμžλŠ” ν™˜μžκ΅° 331λͺ…, λŒ€μ‘°κ΅° 331λͺ…μœΌλ‘œ 총 662λͺ…이며, μˆ˜μ§‘λœ 자료의 뢄석은 λ‡Œμ‘Έμ€‘ λ°œμƒμœ„ν—˜μš”μΈλ“€μ˜ λ‹¨μΌλ³€λŸ‰ λΆ„μ„μœΌλ‘œ μ§ˆμ λ³€μˆ˜μ— λŒ€ν•΄μ„œλŠ” μΉ΄μ΄μ œκ³±κ²€μ • λ˜λŠ” Fisher's exact testλ₯Ό μ‹œν–‰ν•˜κ³ , μ–‘μ λ³€μˆ˜μ— λŒ€ν•΄μ„œλŠ” 독립 t검정을 μ‹œν–‰ν•˜μ˜€λ‹€. μ‚¬μƒμ²΄μ§ˆκ³Ό λ‡Œμ‘Έμ€‘ λ°œμƒμœ„ν—˜μš”μΈμ˜ 뢄석은 λ‘œμ§€μŠ€ν‹± νšŒκ·€λΆ„μ„μ„ μ‹œν–‰ν•˜μ—¬ λΉ„κ΅μœ„ν—˜λ„λ₯Ό κ΅¬ν•˜κ³ , κ΅ν˜Έμž‘μš©μ„ ν™•μΈν•˜μ˜€λ‹€. Hosmer-Lemeshow 검정값을 μ΄μš©ν•˜μ—¬ μ ν•©ν•œ νšŒκ·€λͺ¨ν˜•μ„ κ΅¬μΆ•ν•˜κ³ , λ˜ν•œ CART(Classification and regression tree) μ•Œκ³ λ¦¬μ¦˜μ„ μ΄μš©ν•œ μ˜μ‚¬κ²°μ •λ‚˜λ¬΄λΆ„μ„μ„ ν†΅ν•˜μ—¬ λ‡Œμ‘Έμ€‘ λ°œμƒμ„ κ²°μ •ν•˜λŠ” 톡계학적 λΆ„λ₯˜ λͺ¨ν˜•μ„ κ΅¬μΆ•ν•˜μ˜€λ‹€.λ‘œμ§€μŠ€ν‹±νšŒκ·€λͺ¨ν˜•μ„ ν†΅ν•˜μ—¬ μ—°λ Ήκ³Ό 성별을 ν†΅μ œν•œ μƒνƒœμ—μ„œ μ‚¬μƒμ²΄μ§ˆλΆ„λ₯˜μ— λ”°λ₯Έ λ‡Œμ‘Έμ€‘ λ°œμƒ λΉ„κ΅μœ„ν—˜λ„λŠ” νƒœμŒμΈμ— λΉ„ν•˜μ—¬ μ†Œμ–‘μΈμΌ 경우 λ‡Œμ‘Έμ€‘ λ°œμƒ λΉ„κ΅μœ„ν—˜λ„κ°€ 1.75λ°° λ†’μ•˜μœΌλ©° ν†΅κ³„ν•™μ μœΌλ‘œ μœ μ˜ν•˜μ˜€λ‹€(OR=1.75, 95% CI 1.23-2.49). ν•˜μ§€λ§Œ κ³Όκ±° λΉ„λ§Œλ„μ™€ ν—ˆλ¦¬λ‘˜λ ˆ, κ³ ν˜ˆμ••κ³Ό λ‹Ήλ‡¨μ˜ κ³Όκ±°λ ₯, 과거의 μŒμ£Όμ™€ 흑연 등을 κ³ λ €ν•˜λ©΄ λ”μš± 쒋은 λͺ¨ν˜•μ΄ 되며, μ΄λ•Œμ˜ νšŒκ·€λͺ¨ν˜•μ—μ„œ ꡬ해진 νƒœμŒμΈμ— λΉ„ν•˜μ—¬ μ†Œμ–‘μΈμΌ 경우의 λ‡Œμ‘Έμ€‘ λ°œμƒ λΉ„κ΅μœ„ν—˜λ„λŠ” 6.34λ°°μ΄μ—ˆμœΌλ©°(OR=6.34, 95% CI 3.08-13.04), λͺ¨λΈμ˜ 적합도λ₯Ό λ³΄λŠ” Hosmer & Lemeshow ν…ŒμŠ€νŠΈ 결과도 μ ν•©ν•˜μ˜€λ‹€(X2=3.63, P-value=0.89).CARTμ•Œκ³ λ¦¬μ¦˜μ˜ μ˜μ‚¬ κ²°μ •λ‚˜λ¬΄ λͺ¨ν˜•μ„ 톡해 λ‡Œμ‘Έμ€‘ λ°œμƒμ„ κ²°μ •ν•˜λŠ” 톡계학적 λΆ„λ₯˜ λͺ¨ν˜•μ„ κ΅¬μΆ•ν•œ κ²°κ³Ό κ°€μž₯ μš°μ„ μ μœΌλ‘œ κ΄€μ—¬ν•˜λŠ” λ³€μˆ˜λŠ” μ‹¬ν˜ˆκ΄€μ§ˆν™˜ μœ„ν—˜μš”μΈμ— κ΄€ν•œ κ³Όκ±°λ ₯ 유무(κ³ ν˜ˆμ••, κ³ μ§€ν˜ˆμ¦, 당뇨병, ν—ˆν˜ˆμ„±μ‹¬μ§ˆν™˜, μΌκ³Όμ„±λ‡Œν—ˆν˜ˆλ°œμž‘μ€‘ ν•˜λ‚˜λΌλ„ μžˆλŠ” 경우)μ˜€μœΌλ©°, κ³Όκ±°λ ₯이 μ—†λŠ” κ΅°μ—μ„œλŠ” μ†Œμ–‘μΈμ΄λƒ 그렇지 μ•ŠλŠλƒλ‘œ κ°€μž₯ 크게 λŒ€λ³„λ˜μ—ˆμœΌλ©°, μ†ŒμŒμΈκ³Ό νƒœμŒμΈμ—μ„œλŠ” μŒμ£Όμ—¬λΆ€κ°€ κ·Έ λ‹€μŒ κ΄€μ—¬ν•˜λŠ” λΆ„λ₯˜λ³€μˆ˜μ˜€κ³ , μ†Œμ–‘μΈμ—μ„œλŠ” κ³Όκ±° κ·œμΉ™μ μΈ μš΄λ™μ—¬λΆ€κ°€ κ·Έ λ‹€μŒ κ΄€μ—¬ν•˜λŠ” λΆ„λ₯˜λ³€μˆ˜μ΄μ—ˆλ‹€. CART μ˜μ‚¬κ²°μ •λ‚˜λ¬΄λͺ¨ν˜•μ˜ μ˜€λΆ„λ₯˜μœ¨μ€ 0.274μ΄μ—ˆλ‹€.λ³Έ 연ꡬλ₯Ό ν†΅ν•˜μ—¬ μ‚¬μƒμ²΄μ§ˆμ— 따라 λ‡Œμ‘Έμ€‘ λ°œλ³‘μœ„ν—˜μ˜ 차이가 μžˆμŒμ„ μ•Œμ•˜κ³ , λ‹€λ₯Έ μ‹¬ν˜ˆκ΄€μ§ˆν™˜ μœ„ν—˜μΈμžλ₯Ό ν•¨κ»˜ 가지고 μžˆλŠ” 경우 κ΅ν˜Έμž‘μš©μœΌλ‘œ μœ„ν—˜λ„κ°€ 크게 μ¦κ°€ν•˜λ©°, μ‚¬μƒμ²΄μ§ˆμ„ ν¬ν•¨ν•œ λ‡Œμ‘Έμ€‘ 예츑λͺ¨ν˜•μ„ κ°œλ°œν•  수 μžˆλ‹€λŠ” κ°€λŠ₯성을 λ³Έ 것은 μ—°κ΅¬μ˜ 의의라고 ν•  수 μžˆλ‹€. [영문]Aging population is a global trend, and increasing cases of stroke is becoming an important public health issue. Stroke may be different by constitution of a person, and the cause of stroke may be found in constitutional imbalance.The objectives of this case-control study were to investigate whether the relative risk of stroke can be different depending on Sasang constitutions classified by Sasang constitution questionnaire, to grasp interaction effects between Sasang constitution and the other risk factors, and to build the logistic regression model which can predict the risk factors of stroke including Sasang constitution and the best decision model which can detect risky group of stroke at early stage.This study was accomplished by comparing the patient group who are registered with 'storke patients registration enterprise' and filled out the Sasang constitution questionnaire, and the healthy comparison group by simple random extraction method. The data of patient group was attained by a Case Report Form based on Standard Operating Procedures, aimed to survey patients with Informed Consent, who volunteered to participate in this study.In this case, the group of patients with strokes are those whom are diagnosed, first time in their life, as acute strokes within 2 weeks(14 days) from the outbreak of illness. The comparison group are limited only among those who visited the hospital and conducted the general examination including the Sasang constitution exam and answered the reasons for taking a medical examination are a periodical check, a group-check from work or an inducement of member of family. Those who did the examination due to simple feeling of illness in health condition or an inducement of a doctor were excluded. Those who are diagnosed as a stroke with a medical examination result or after a checking-up are excluded.From October 2005 through March 2007 (18 months), the total number of subject is 662; 331 cases of stroke patients group and 331 of healthy control group. The statistical analysis was accomplished by conducting Chi-square test or Fisher's exact test on the quality variable for the univariate analysis of risk factor of stroke and conducting independent t-test for the quantity variable.The analysis between Sasang constitution and the risk factor of stroke was accomplished by conducting Logistic regression analysis in order to get the odds ratio and confirming the interaction effects. The suitable regression model was built by using the Hosmer and Lemeshow's goodness of fit test, and the best statistical classification model which decides a stroke was established by decision tree analysis using the CART algorithm.The main results of this study is as follows;In a condition that age and gender were controled by logistic regression analysis, the relative risk of stroke by Sasang constitution classification was obtained; Soyanginβ€˜s risk ratio was 1.75 times higher than Taeumin's, and it was statistically significant (OR=1.75, 95% CI 1.23-2.49).However, consideration of body mass index(BMI), waist circumference, past history of hypertension and diabetes, history of drinking and smoking makes even better model. According to that model, Soyanginβ€˜s risk ratio of stroke goes up 6.34 times higher than Taeuminβ€˜s (OR=6.34, 95% CI 3.08-13.04), and the result of Hosmer & Lemeshow goodness of fit test which determines the suitable degree of the model was appropriate (X2=3.63, P-value=0.89).According to decision tree analysis of CART algolithm, the most overriding variable was the history of risk factor of cardiovascular disease (one of followings is included ; hypertension, hypercholesterolemia, diabetes, ischemic heart disease, and transient ischemic attack). And, among the group without past history, they were divided the most if they were Soyangin or not. The next overriding variable was drinking history among Soeumin and Tarumin. Among Soyangin, the next overriding variable was regular exercise or not. The misclassification rate of CART algolithm was 0.274 though.By the result of this study, we found out the risk of stroke can be different depending on Sasang constitution, and the risk highly rises due to interaction effects with risk factor of cardiovascular disease, and most importantly, finding a possibility to develop the specific predicting model for stroke including Sasang constitution is significant object of this study.ope

    역전사-μ€‘ν•©νš¨μ†Œμ—°μ‡„λ°˜μ‘(RT-PCR)을 이용 ν˜ˆμ²­μœΌλ‘œλΆ€ν„° HIV-1 Viral RNA 검사에 κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λ³΄κ±΄λŒ€ν•™μ› :보건학과 인ꡬ학전곡,1997.Maste
    corecore