

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Timing Analysis on Interconnects and
Prediction on Design Rule Violations

for Synthesizing Deep Sub-micron
Circuits

초미세회로설계를위한인터커넥트의타이밍분석및
디자인룰위반예측

BY

CHANGHO HAN

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Timing Analysis on Interconnects and
Prediction on Design Rule Violations

for Synthesizing Deep Sub-micron
Circuits

초미세회로설계를위한인터커넥트의타이밍분석및
디자인룰위반예측

BY

CHANGHO HAN

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

Timing analysis and clearing design rule violations are the essential steps for taping

out a chip. However, they keep getting harder in deep sub-micron circuits because the

variations of transistors and interconnects have been increasing and design rules have

become more complex. This dissertation addresses two problems on timing analysis

and design rule violations for synthesizing deep sub-micron circuits.

Firstly, timing analysis in process corners can not capture post-Si performance ac-

curately because the slowest path in the process corner is not always the slowest one

in the post-Si instances. In addition, the proportion of interconnect delay in the critical

path on a chip is increasing and becomes over 20% in sub-10nm technologies, which

means in order to capture post-Si performance accurately, the representative critical

path circuit should reflect not only FEOL (front-end-of-line) but also BEOL (back-

end-of-line) variations. Since the number of BEOL metal layers exceeds ten and the

layers have variation on resistance and capacitance intermixed with resistance variation

on vias between them, a very high dimensional design space exploration is necessary

to synthesize a representative critical path circuit which is able to provide an accurate

performance prediction. To cope with this, I propose a BEOL-aware methodology of

synthesizing a representative critical path circuit, which is able to incrementally ex-

plore, starting from an initial path circuit on the post-Si target circuit, routing patterns

(i.e., BEOL reconfiguring) as well as gate resizing on the path circuit. Precisely, the

synthesis framework of critical path circuit integrates a set of novel techniques: (1) ex-

tracting and classifying BEOL configurations for lightening design space complexity,

(2) formulating BEOL random variables for fast and accurate timing analysis, and (3)

exploring alternative (ring oscillator) circuit structures for extending the applicability

of this work.

Secondly, the complexity of design rules has been increasing and results in more

i

design rule violations during routing. In addition, the size of standard cell keeps de-

creasing and it makes routing harder. In the conventional P&R flow, the routability of

pre-routed layout is predicted by routing congestion obtained from global routing, and

then placement is optimized not to cause design rule violations. But it turned out to

be inaccurate in advanced technology nodes so that it is necessary to predict routabil-

ity with more features. I propose a methodology of predicting the hotspots of design

rule violations (DRVs) using machine learning with placement related features and the

conventional routing congestion, and perturbating placed cells to reduce the number

of DRVs. Precisely, the hotspots are predicted by a pre-trained binary classification

model and placement perturbation is performed by global optimization methods to

minimize the number of DRVs predicted by a pre-trained regression model. To do

this, the framework is composed of three techniques: (1) dividing the circuit layout

into multiple rectangular grids and extracting features such as pin density, cell density,

global routing results (demand, capacity and overflow), and more in the placement

phase, (2) predicting if each grid has DRVs using a binary classification model, and

(3) perturbating the placed standard cells in the hotspots to minimize the number of

DRVs predicted by a regression model.

keywords: Representative critical path, circuit delay prediction, process variation,

BEOL, design rule violation, machine learning, placement perturbation, metaheuristic,

Bayesian optimization

student number: 2001-21599

ii

Contents

Abstract i

Contents iii

List of Tables v

List of Figures vii

1 Introduction 1

1.1 Representative Critical Path Circuit 1

1.2 Prediction of Design Rule Violations and Placement Perturbation . . . 5

1.3 Contributions of This Dissertation 7

2 Methodology for Synthesizing Representative Critical Path Circuits re-

flecting BEOL Timing Variation 9

2.1 Motivation . 9

2.2 Definitions and Overall Flow . 12

2.3 Techniques for BEOL-Aware RCP Generation 17

2.3.1 Clustering BEOL Configurations 17

2.3.2 Formulating Statistical BEOL Random Variables 18

2.3.3 Delay Modeling . 22

2.3.4 Exploring Ring Oscillator Circuit Structures 24

2.4 Experimental Results . 25

iii

2.5 Further Study on Variations . 37

3 Methodology for Reducing Routing Failures through Enhanced Predic-

tion on Design Rule Violations in Placement 39

3.1 Motivation . 39

3.2 Overall Flow . 42

3.3 Techniques for Reducing Routing Failures 43

3.3.1 Binary Classification . 43

3.3.2 Regression . 45

3.3.3 Optimization . 46

3.3.4 Placement Perturbation . 48

3.4 Experiments . 52

3.4.1 Experiments Setup . 52

3.4.2 Hotspot Prediction . 52

3.4.3 Regression . 56

3.4.4 Placement Perturbation . 58

4 Conclusions 62

4.1 Synthesis of Representative Critical Path Circuits reflecting BEOL

Timing Variation . 62

4.2 Reduction of Routing Failures through Enhanced Prediction on Design

Rule Violations in Placement . 63

Abstract (In Korean) 69

iv

List of Tables

2.1 BEOL configuration in a table form corresponding to BEOL2 in Fig. 2.2. 13

2.2 Statistical netlist. 22

2.3 Target circuits. 26

2.4 Summary of critical paths of target circuits. 26

2.5 Comparison of the values of correlation coefficient (ρ) under maxi-

mum prediction error constraint (εmax ≤ εbound) among the initial

critical path replica (CPR) and rcp circuits produced by [3] consider-

ing FEOL variation only and my RCP-exp considering BEOL as well

as FEOL variations. The constraint for Case1, Case2 and Case3 are

0.8εbound, 1.0εbound and 1.2εbound respectively. Case 4 is to minimize

the maximum prediction error. 28

2.6 Comparison of the values of maximum prediction error of Case 2. . . 29

2.7 Yield improvement by critical path replica (CPR), rcp circuits pro-

duced by [3] and my RCP-exp when the required delay is µ+0.5σ of

each circuit delay and voltage binning is applied. 32

v

2.8 Comparison of the values of correlation coefficient (ρ) under maxi-

mum prediction error constraint (εmax ≤ εbound) among the initial

critical path replica (CPR) and ring oscillators produced by my RCP-

exp considering BEOL as well as FEOL variations. The constraint for

Case1, Case2 and Case3 are 0.8εbound, 1.0εbound and 1.2εbound respec-

tively. Case 4 is to minimize the maximum prediction error. 34

2.9 The BEOL configuration and correlation coefficient value of the best

rcp circuits produced by Case2 in RCP-exp for various combinations

of gate sizes and Fan-out types for target circuit MEM CTRL. 36

2.10 The best rcp ring oscillator structures synthesized by my RCP-exp. . 37

3.1 Target circuits and the training data. The numbers in the training data

indicate the initial utilization. 53

3.2 Comparison results of machine learning models in binary classifica-

tion tasks. In all circuits, XGBoost outperforms multi-layer perceptron. 54

3.3 Summary of hotspot prediction results. 55

3.4 Comparison results of machine learning models in regression tasks. In

all circuits, XGBoost outperforms multi-layer perceptron. 56

3.5 Comparison results of solution spaces. In all circuits, reduced solution

spaces have better results than original solution spaces. 59

3.6 Placement perturbation results using particle swarm optimization. Pre-

dicted #DRVs are reduced by -18.6% on average and the routed #DRVs

are reduced by -18.9% on average 60

3.7 Placement perturbation results using Bayesian optimization. Predicted

#DRVs are reduced by -16.2% on average and the routed #DRVs are

reduced by -22.2% on average . 61

vi

List of Figures

1.1 Changes of delay of critical path replica (CPR) and near-critical path

at nominal and process variation conditions. 2

1.2 Transistor and interconnect delay of an inverter driving 150 units of

contacted gate pitch of wire length and fan-out of 3. At 5-nm node

technology, the contribution by interconnect becomes as significant as

that by the devices [5]. 3

1.3 Growth in DRC rules [17]. 5

2.1 Monte Carlo simulation results by varying the values of FEOL and

BEOL parameters. (a) Scatter plot of performance prediction by using

rcp(mem ctrl) produced by gate sizing [3] (b) Scatter plot of per-

formance prediction by using rcp(mem ctrl) produced by randomly

tuning BEOL configurations as well as gate sizing. 11

2.2 An example of critical path consisting of three BEOLs, showing the

routing details of BEOL2. 12

2.3 An example of BEOL reconfiguring for BEOL2. If there are n dis-

tinct BEOL configurations in B such that the left and right end cells

are BUF X4 and INV X3, exactly n BEOL reconfigurations will be

performed for BEOL2. 13

2.4 An example of gate resizing for BUF X4 in Fig 2.2. (a) Upsizing. (b)

Downsizing. 14

vii

2.5 Physical parameters affecting resistance (R) and capacitance (C) of

BEOL metal. 19

2.6 Flowchart for generating BEOL RC random variables. 21

2.7 (a) Physical parameters vs. effective parameter ηe at three RC corners

Nominal, Cmax and Cmin. (b) The scatted plot of random variables

R and C. 21

2.8 Stage delay is sum of gate delay and interconnect delay. 23

2.9 Scatter plot of delay error calculated by the model for 500 MC samples. 24

2.10 The proposed ring oscillator (RO) structures which can be used as an

initial rcp(Ctarget), independently of target circuits. 25

2.11 The changes of correlation coefficient (ρ) and maximum prediction

error (ε) for rcp(mem ctrl) which is iteratively refined by the con-

ventional method [3] and RCP-exp. 29

2.12 Monte Carlo simulation results. (a) Critical path replica (CPR) in MEM CTRL.

(b) rcp(mem ctrl) produced by [3]. (c) rcp(mem ctrl) produced by

RCP-exp. 30

2.13 Green dots indicate the post-Si instances whose RCP delay is lower

than the required delay while red dots indicate the post-Si instances

whose RCP delay exceeds the required delay. (a) Critical path replica

(CPR) in MEM CTRL when voltage binning is not applied. (b) rcp(mem ctrl)

by [3] when voltage binning is not applied. (c) rcp(mem ctrl) by

RCP-exp when voltage binning is not applied. (d) Critical path replica

(CPR) in MEM CTRL when voltage binning is applied. (e) rcp(mem ctrl)

by [3] when voltage binning is applied. (f) rcp(mem ctrl) by RCP-

exp when voltage binning is applied. 31

2.14 Runtime reduction by the technique in Sec. 2.3.1, in which BEOL con-

figurations are reduced by controlling ∆limit value. 33

viii

2.15 The changes of correlation coefficients as the value of K varies. The

curves show that at most top 200 slowest paths suffice to get the best

correlation coefficient. 33

2.16 Monte Carlo simulation results. (a) Critical path replica (CPR) in MEM CTRL.

(b) rcp(mem ctrl) produced by Case4 in RCP-exp. 35

2.17 The representative RO structure for MEM CTRL produced by Case2 in

RCP-exp. 36

2.18 Monte Carlo simulation results under process and voltage variations.

(a) Critical path replica (CPR) in AC97 CTRL under process varia-

tions. (b) Critical path replica (CPR) in AC97 CTRL under process and

voltage variations. (c) rcp(ac97 ctrl) by RCP-exp under process and

voltage variations. 38

3.1 Runtime of physical design using a sub-block of CPU which is com-

posed of 360,000 gates. 40

3.2 Comparison of conventional P&R flow and proposed P&R flow. . . . 43

3.3 Comparison of conventional flow and proposed placement perturba-

tion flow. The proposed flow is composed of two steps such as hotspot

prediction and placement perturbation of cells in the hotspots. 44

3.4 The training procedure for the binary classification. 45

3.5 The training procedure for the regression of the number of DRVs. . . 46

3.6 The procedure of particle swarm optimization. 47

3.7 Placement in local window is expressed by white spaces between cells. 48

3.8 There are 165 cases to make 8 by adding 4 numbers. 49

3.9 The solution space is reduced from 165 to 18. 50

3.10 Placement perturbation in entire layout. Once the hotspots are deter-

mined, the cells in the hotspots can be moved in the reduced solution

space. 52

ix

3.11 Regression results of 49 circuit layouts. There are 7 circuits and each

circuit has 7 different utilization values. 57

3.12 Initial utilization vs. DRVs. (a) scatter plot of DRVs of 7 circuits when

filtering is not applied (b) scatter plot of DRVs of 7 circuits when fil-

tering is applied . 57

3.13 Placement perturbation result of VGA LCD. The predicted DRVs are

reduced by particle swarm optimization and Bayesian optimization. . 58

x

Chapter 1

Introduction

1.1 Representative Critical Path Circuit

Due to the scaling down of transistors and interconnects, process variations are getting

large and cause manufactured chips to expose a wide range of speed. Converting the

fraction of too slow chips into good ones by adjusting their supply voltage, called volt-

age binning, is commonly applied in industry [1, 2]. In order to measure the maximum

frequency of the chip, it takes a considerable time and it is not feasible in a limited

time because we have to check whether the circuit is working with lots of test vectors

at 2.50GHz, 2.51GHz, 2.52GHz and so on. Thus, the delay of representative circuit

on a chip such as critical path replica or ring oscillator, which can be measured in a

minute, is used to predict the delay of the post-Si target circuit. However, if the gap

between the delays of the representative critical path circuit and the target post-Si chip

is large, the chip shall be assigned to a wrong bin, resulting in a parametric yield loss.

Consequently, it is highly important to install a representative critical path circuit on

the target circuit such that its delay prediction error should be as minimal as possible.

Since the maximum frequency, Fmax, of a target circuit is determined by the slow-

est path on the circuit, the critical path replica (CPR), which corresponds to the slowest

path at nominal parameter values, is a widely acceptable candidate of representative

1

critical path circuit [3]. However, the CPR delay is not always the slowest one for every

instance of target circuit due to process variation. As shown in Fig. 1.1, in which the

blue and red dots indicate the delay of CPR and the delay of some near-critical path,

respectively, the near-critical path is not the slowest one at nominal process condition

while it becomes the slowest one at a certain process condition, as indicated by green

rectangle.

Circuit delay

C
PR

 d
el

ay

Delay of critical path replica (CPR)

Delay of near-critical path

Process variation

Path delay distribution at nominal process condition

Path delay distribution at a certain process variation

Figure 1.1: Changes of delay of critical path replica (CPR) and near-critical path at

nominal and process variation conditions.

More importantly, the proportion of BEOL delay in the critical path occupies over

20% in sub-10nm technologies as shown in Fig. 1.2 and the number of metal layers in-

creases, counting over ten layers [4, 5]. The fact that the metal layers are not so strongly

correlated each other makes an accurate prediction of circuit performance hard, even

causing circuit failure as Chiang et al. point out the potential impacting non-trivial

BEOL contribution [6]. For instance, since the clock and data paths entail different

BEOL configurations, their delays expose different characteristics by the BEOL vari-

ation, which may cause hold-time failure although there exists no hold-time violation

under conventional BEOL corners based sign-off that assumes all BEOL layers move

together to the same corner. Specifically, if the clock path is composed of upper metal

layers in RCmax corner while the data path is composed of lower metal layers in

RCmin corner, it may enable the data path to be faster than the clock path, causing

hold-time failure.

2

1

52%

36%

26%

22%

5 7 10 14

Gate delay
Wire delay

N
or

m
al

iz
ed

 d
el

ay

Technology node [nm]

Figure 1.2: Transistor and interconnect delay of an inverter driving 150 units of con-

tacted gate pitch of wire length and fan-out of 3. At 5-nm node technology, the contri-

bution by interconnect becomes as significant as that by the devices [5].

If we can monitor FEOL process shift and BEOL resistance/capacitance (RC) on

a chip, we can find the critical path delay through applying the variation to multiple

candidates of critical path. FEOL process shift can be monitored by the pass-gate based

process monitors [7]. Since special inverter structures with pass transistor are more

sensitive to transistor variation than NAND and NOR gates, ring oscillators using the

special inverter structures are suitable for monitoring FEOL process shift like TT, FF,

SS, FS, and SF.

On the other hand, there is no easy way to accurately monitor the resistance and

capacitance of metal and via layers on a chip. Even though resistance and capacitance

of BEOL layers can be measured using TEGs in scribe line, the measured values are

totally different from that of resistance and capacitance on the chip because the pattern

densities are not identical and CMP (chemical mechanical polishing) process makes

the metal height on the chip differ from that in scribe line [8]. There exists an approach

3

to monitor BEOL RC by using ring oscillators: Liu, Law, and Li proposed a test

structure to extract resistance and capacitance of BEOL load from the frequency and

Ieff values of ring oscillator at three modes (in-phase, out-of-phase, and quiet modes)

[9]. It predicts RC of 1W1S metal reasonably well, but the prediction for 1W2S metal

has large errors, i.e., 51% for resistance and 15% for capacitance. In addition, as the

variation sources are diverse and some of them are hard to monitor, a new methodology

to synthesize a representative critical path circuit for accurately capturing the chip

performance is required.

Prior works on monitoring circuit performance have been done by either synthesiz-

ing a representative critical path circuit or a ring oscillator. Note that in case where the

delay of critical path circuit is hundred picoseconds level, a signal generator and time-

to-digital converter are needed [10] whereas in case where the delay of ring oscillator

is a few GHz frequency, it can be lowered by frequency divider to KHz level [11]. Re-

garding synthesizing a representative critical path (RCP) circuit, Liu and Sapatnekar

proposed an iterative gate sizing method to fine tune the nominal critical path circuit

[3]. Since it is synthesized with 90nm technology, BEOL delay variation is expected

to be much lower than FEOL delay variation. For synthesizing a ring oscillator, it pro-

vides advantages such as small area, easy to design, and easy to measure the charac-

teristics like frequency and IDDQ (quiescent supply current). Chan et al. attempted to

synthesize design-dependent ring oscillators [12], in which multiple design-dependent

ring oscillators with BEOL load were designed while the BEOL load was taken from

the wire-length distribution of nets in critical paths. Even though the method consid-

ers BEOL load in monitoring circuit performance, it does not take into account the

configurations of multiple metal and via layers in the BEOL load formulation.

To the best of my knowledge, no conventional methods have synthesized represen-

tative critical path or ring oscillator circuit by taking into account the process variation

on multiple BEOL layers. This work overcomes this limitation.

4

1.2 Prediction of Design Rule Violations and Placement Per-

turbation

Physical design is a process to generate a physical layout from circuit netlists. It is

composed of several steps such as importing design, floorplan, powerplan, placement,

clock tree synthesis, routing and chip finish. The objectives of physical design are to

clear design rule violations (DRVs) and meet the constraints like timing and power.

Because design rules are the geometric constraints not to cause open or short of pat-

terns in transistors and interconnects, the design rule violations should be cleared for

taping out a chip. However, there are tens of thousands of design rules in advanced

technologies as shown in Fig. 1.3 and routing resources are not enough because the

height of standard cell has been reduced and it becomes 6 tracks in 5nm technology.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

18
0n

m
13

0n
m

90
nm

65
nm

45
/4

0n
m

32
/2

8n
m

22
/2

0n
m

16
/1

4n
m

10
nm

D
R

C
 R

ul
e

(L
og

)

Average DRC Rules

Figure 1.3: Growth in DRC rules [17].

The lack of pin access point in the standard cell makes the routing harder and

causes lots of design rule violations. Prediction of routability in placement phase can

help to reduce the number of DRVs in routed layout by avoiding the placement which

5

will cause DRVs. In order to predict the routability, the commercial P&R tools use

routing congestion by calculating capacity, demand and overflow in each global rout-

ing cell but it turned out to be inaccurate and incomplete in advanced technologies [18].

The routing congestion map in pre-routed layout is totally different from the map of

DRVs in routed layout. Thus, it is necessary to predict routability with more features.

Some noticeable works using machine learning have been reported. They intro-

duced features determined by placed cells such as pin density, pin proximity, cell den-

sity and so on. The placement related features as well as routing congestion are used

to train machine learning model and the hotspots including design rule violations are

predicted by the model. They focused on improving the prediction accuracy with vari-

ous machine learning algorithm and features. Chan et al. trained the machine learning

model using SVM (Support Vector Machine) with RBF (Radial Basis Function) ker-

nel with placement-derived parameters such as pin density, minimum proximity of

any pair of pins, number of complex cells, sum of incoming and outgoing hyperedges,

number of buried nets, arithmetic and geometric mean values of placement-base Rent

parameter, the worst signal transition time of all pins at the worst corner and the small-

est values of the worst negative slack of setup time of any pin within the grid [18].

Tabrizi et al. used RUSBoost for imbalanced data classification that combines data

sample and boosting because the number of hotspots including DRVs is much less

than that of non-hotspots and they are imbalanced data [19]. Islam et al. introduced

random forest algorithm to predict design rule violations [20]. Yu et al. changed the

pin patterns into image and CNN (Convolutional Neural Network) is used to train the

model [21]. Liang et al. proposed customized CNN to improve the prediction accuracy

[22].

The next step of routability prediction is to reduce the number of design rule viola-

tions using placement optimization. Chan et al. proposed machine learning predictor-

guided routability optimization algorithm [23]. White spaces are calculated in local

windows around hotspots and cells are moved incrementally to redistribute white

6

space. Yu et al. proposed machine learning model-guided placement [24]. The trained

model is adopted to inference the DRV probabilities using the image of pins in place-

ment cells and gives more space between cells until the probability is less than pre-

defined threshold value. However, pin patterns are not the only one to result in design

rule violations. Kahng et al. proposed mesh like placement and perturbations by two

neighbor-swap moves to measure routing capacity [25]. Even though the pin shapes

for all placements are exactly same, the number of design rule violations increases as

the swapping number increases. It means that it is not enough to predict routability us-

ing only placement related features. The routing related features like capacity, demand

and overflow should be considered to predict the routability. However, it takes time to

extract the routing related features and dynamic programming based approach to ex-

plore all cases is not feasible. Thus, global optimization algorithms should be applied

to this problem because the optimum value can be obtained from some samples.

This work presents machine learning guided placement perturbation for routing

congested circuits. Placement related features and routing related features are com-

bined to predict the routability, and the number of design rule violations is reduced by

placement perturbation with global optimization algorithms in a limited time.

1.3 Contributions of This Dissertation

In this dissertation, synthesis of representative critical path circuits and prediction of

design rule violations are studied, which brings better yield and reduced chip area.

In Chapter 2, I propose a BEOL-aware methodology of synthesizing a representa-

tive critical path circuit which is able to incrementally explore, starting from an initial

path circuit on the post-Si target circuit, routing patterns (i.e., BEOL reconfiguring) as

well as gate resizing on the path circuit, devising the following novel techniques: (1)

extracting and classifying BEOL configurations for lightening design space complex-

ity, (2) formulating BEOL random variables for fast and accurate timing analysis, and

7

(3) exploring alternative (ring oscillator) circuit structures for extending the applica-

bility of my work. In short, through experiments with industry circuits, it is shown that

the synthesis framework is able to reduce the prediction error by 54% and 19% on av-

erage over that using the conventional critical path replica and using the conventional

method exploiting gate sizing only, respectively.

In Chapter 3, I propose a methodology to predict the hotspots which include design

rule violations using machine learning and reduce the number of design rule violations

using placement perturbation of standard cells in the hotspots. Conventional prediction

method by using local routing congestion has its limitation of low prediction accuracy.

Thus, recent machine learning based researches used more features to predict hotspots

for the better accuracy. After predicting the hotspots, a method to reduce the number

of design rule violations should be applied but there is no concrete method. I propose a

method to predict and reduce the design rule violations by combining three techniques

such as binary classification, regression and global optimization. The framework which

is composed of hotspots prediction and placement perturbation reduces the number of

design rule violations by 22% on average.

8

Chapter 2

Methodology for Synthesizing Representative Critical

Path Circuits reflecting BEOL Timing Variation

2.1 Motivation

Because the maximum frequency or delay of post-Si circuit instances can’t be mea-

sured in a limited time, a representative critical path circuit is necessary for the voltage

binning.

Let S = {C1, · · · , Cm} be the set of all post-Si circuit instances of a target circuit

Ctarget with a representative critical path circuit denoted as rcp(Ctarget), and rcp(Ci)

be the circuit instance corresponding to rcp(Ctarget) in Ci ∈ S.

Then, the performance prediction error, εi, on Ci ∈ S is defined as

ε(Ci) = |delay(rcp(Ci))− delay(Ci)|/delay(Ci) (2.1)

where delay(rcp(Ci)) represents the delay of the representative path in circuit instance

Ci and delay(Ci) indicates the longest path delay in Ci.

Then, since it is practically impossible to find the exact value of delay(Ci) for

every circuit instance in S in a limited time, I predict it by measuring delay(rcp(Ci)).

Thus, it is very important to synthesize rcp(Ctarget) such that ε(Ci) for every Ci ∈ S

9

should be as small as possible. Two metrics commonly used to evaluate the quality

of circuit rcp(Ctarget) are the maximum prediction error (εmax) and the correlation

coefficient (ρ) between delay(rcp(Ci)) and delay(Ci), as formally expressed as

εmax = max{ε(C1), ε(C2), · · · , ε(Cm)} (2.2)

ρ =
E[(δ(rcp)− µδ(rcp))(δ(c)− µδ(c))]

σδ(rcp) · σδ(c)
(2.3)

where δ(rcp) and δ(c) are the set of the delay values on circuits rcp(C1), · · · , rcp(Cm)

and the set of the longest delay values on circuit instances C1, · · · , Cm in S, respec-

tively. µ and σ indicate the average and standard deviation of each of the sets δ(rcp)

and δ(c).

By performing Monte Carlo simulation on target circuit Ctarget and its represen-

tative critical path circuit rcp, reflecting process variation, it is possible to predict the

values of εmax and correlation coefficient ρ. Thus, the key challenge is to synthesize

rcp(Ctarget) such that the value of ρ is as high as possible while the value of εmax is

as small as possible or is below a certain limit.

One noticeable work is that Liu and Sapatnekar [3] proposed to generate circuit

rcp(Ctarget) by iteratively tuning the size of every gate namely considering FEOL

variation on the critical path replica in Ctarget, in which they tried to maximize the

value of correlation coefficient ρ. To see how much the method is effective in a deep

submicron technology, I applied the method to circuit MEM CTRL that is a design

component in OpenCores [15], on which I performed synthesis, placement, and rout-

ing at 3GHz with 7nm technology of partner foundry. The critical path replica taken

from MEM CTRL is composed of 25 (gate-to-gate) stages and the interconnect delay

occupies 8.9% of the critical path delay when all parameters are set to nominal values.

I ran Monte Carlo simulation with 1,000 samples (i.e., equivalently 1,000 post-Si

circuit instances) for the representative circuit rcp(MEM CTRL) synthesized by [3] by

varying the values of FEOL and BEOL parameters. Fig. 2.1(a) shows the scatter plot

10

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

2.34%

ρ=0.987

(a)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

1.10%

ρ=0.995

(b)

Figure 2.1: Monte Carlo simulation results by varying the values of FEOL and

BEOL parameters. (a) Scatter plot of performance prediction by using rcp(mem ctrl)

produced by gate sizing [3] (b) Scatter plot of performance prediction by using

rcp(mem ctrl) produced by randomly tuning BEOL configurations as well as gate

sizing.

of the delay pairs of the 1000 circuit instances of target circuit MEM CTRL and the

rcp(MEM CTRL), from which it is taken that εmax = 2.34% and ρ = 0.987. On the

other hand, Fig. 2.1(b) shows the scatter plot of delay pairs of another 1000 circuit

instances of the target circuit MEM CTRL and the rcp(MEM CTRL synthesized by con-

sidering BEOL and FEOL variations, from which it is taken that εmax = 1.10% and

ρ = 0.995. Clearly, the improvement implies that tuning both of the gate size and in-

terconnect on the critical path replica considering FEOL and BEOL variations is very

necessary for accurate performance prediction of post-Si circuits in deep submicron

technologies. In the following, I propose a systematic methodology of synthesizing a

representative critical path circuit of Ctarget such that the value of correlation coeffi-

cient ρ is maximized while constraining the εmax value to a certain bound.

11

2.2 Definitions and Overall Flow

This section describes the overall flow of generating a representative critical path cir-

cuit rcp(Ctarget) together with defining BEOL configuration, BEOL reconfiguring,

and gate resizing, which are the essential ingredients for generating rcp(Ctarget).

Definition 1. BEOL configuration from gi (a driving logic cell) to gi+1 (one of its

driven cells) is defined to the ordered sequence of metal/via layer numbers with metal

length information corresponding to the detailed routing between gi and gi+1.

Fig. 2.2 shows a simple critical path from flip-flop f1 to flip-flop f2 which consists

of three BEOL configurations BEOL1, BEOL2, and BEOL3, showing routing details

of BEOL2. I collect BEOL configurations on a set of critical and near-critical routing

paths in a table form as shown in Table 2.1 where for example, M2 : 5 indicates

metal-2 layer with length of 5um and V 2 indicates via-2 layer.

Let B(Ctarget) be the set of all BEOL configurations extracted from top K slowest

(flip-flop to flop-flop) paths1 in Ctarget to which the placement and routing have al-

ready been applied. I prepare B(Ctarget), which I call BEOL configuration library, as

a pre-processing step in the framework of synthesizing rcp(Ctarget).

Q X4 DD Q

BEOL2

M2: 2umM2: 2umM2: 5um
V2 V2

M3: 3um
V2 V2
M3: 2um

V2
M3: 3um

V3

M2: 2um
V2
M3
V3

M4: 4um

BEOL1 BEOL2 BEOL3X3

Figure 2.2: An example of critical path consisting of three BEOLs, showing the routing

details of BEOL2.

Definition 2. BEOL reconfiguring on rcp(Ctarget) in Ctarget refers to an incremen-

1K is set to 1000 in this work.

12

Table 2.1: BEOL configuration in a table form corresponding to BEOL2 in Fig. 2.2.

Driving cell : Driven cell Routing details

M2:5 V2 M3:3 V2 M2:2 V2

BUF X4 : INV X3 M3:2 V2 M2:2 V2 M3:3 V3

M4:4 V3 M3:0 V2 M2:2

tally updated circuit of rcp(Ctarget) in a way that one of BEOLs in rcp(Ctarget) is

replaced with a BEOL with the same type and size of driving and driven cells in BEOL

library B. I use RBEOL to represent the set of all possible BEOL reconfigurings on

rcp(Ctarget).

Fig. 2.3 shows a critical path on which BEOL2 is tried to be reconfigured using n

alternatives BEOL2-1, BEOL2-2, · · · , BEOL2-n, one at a time.

Q DD Q

BEOL2-1

BEOL2-n

M2: 4um
V2

M2: 2um
V2

M3: 12um

M2: 5um
V2

M3: 5um
V3

M2: 3um
V2

M3: 2um
V3

M4: 4um

X4BEOL1 BEOL2 BEOL3X3

BEOL2-2

M2: 5um
V2

M2: 2um
V2

M3: 11um

Figure 2.3: An example of BEOL reconfiguring for BEOL2. If there are n distinct

BEOL configurations in B such that the left and right end cells are BUF X4 and

INV X3, exactly n BEOL reconfigurations will be performed for BEOL2.

13

Definition 3. Gate resizing on rcp(Ctarget) in Ctarget refers to an incrementally up-

dated circuit of rcp(Ctarget) in a way that one of gate cells in rcp(Ctarget) is replaced

with one-level upsized or downsized cell of the same type in the cell library. I use

RFEOL to indicate the set of all possible gate resizings on rcp(Ctarget).

Fig. 2.4 shows a critical path where BUF X4 is attempted to be upsized or down-

sized. Note that when the left end cell (BUF X4) is resizing to produce an alternative

rcp(Ctarget), the right end cell (INV) remains intact, and vice versa.

Q DD QX5BEOL1 BEOL2 BEOL3X3

(a)

Q DD QX3BEOL1 BEOL2 BEOL3X3

(b)

Figure 2.4: An example of gate resizing for BUF X4 in Fig 2.2. (a) Upsizing. (b)

Downsizing.

Given a layout of target circuit Ctarget, the proposed exploration algorithm, called

RCP-exp, is to synthesize a representative critical path circuit rcp(Ctarget) which

leads to the highest ρ value in Eq.2.3 while εmax in Eq.2.2 does not exceed εbound.

Precisely, as a pre-processing step, RCP-exp builds a BEOL configuration library

from the layout of Ctarget, and tentatively assumes a critical path replica in Ctarget as

rcp(Ctarget). Then, in the main step, RCP-exp improves the ρ value of rcp(Ctarget)

while satisfying the εmax constraint by iteratively tuning the gate cells and routing

paths on rcp(Ctarget) through performing gate up/down sizing and BEOL reconfigur-

ing. The pseudo-code in Algorithm 1 shows the algorithmic flow of my RCP-exp.

14

Algorithm 1 RCP-exp: The Proposed Algorithmic Flow of Synthesizing Repre-

sentative Critical Path rcp(Ctarget)
Input: Ctarget with layout information, K, T , εbound

Output: rcp(Ctarget)

// Pre-processing step

1: Build BEOL configuration library B from top K slowest paths in Ctarget;

2: Update BEOL configuration library B; // Sec. 2.3.1

3: if (initial rcp from Ctarget) then

4: Set rcp(Ctarget) = a critical path replica in Ctarget;

5: else

6: Set rcp(Ctarget) = a ring oscillator of NAND gates in T stages; // Sec. 2.3.4

// Main step: tuning FEOL and BEOL

7: while (1) do

8: Apply Monte Carlo simulation to rcp(Ctarget); // Sec. 2.3.2

9: Compute ρ of rcp(Ctarget);

10: Set ρbest = ρ;

11: ExtractRBEOL from rcp(Ctarget) and B;

12: ExtractRFEOL from rcp(Ctarget) and cell library L;

13: Apply Monte Carlo simulation to every c ∈ A = RBEOL ∪RFEOL;

14: Compute ρ and εmax values of every c ∈ A;

15: Select a circuit c′ ∈ A with the largest ρ and εmax ≤ εbound;

16: if (c′ 6= φ and ρ > ρbest) then

17: Set rcp(Ctarget) = c′;

18: else

19: Exit-loop

20: Return (rcp(Ctarget), ρbest)

15

For the pre-processing step in Algorithm 1, top K slowest paths are selected from

Ctarget by using static timing analysis at nominal condition. I extract BEOL config-

urations of K paths by using a script in P&R tool to create a BEOL configuration

library B composed of pairs of driving and driven cells with the routing details, as

illustrated in Table 1. In order to reduce the design space complexity, I resized BEOL

configuration library B by applying the designation-and-removal process discussed in

Sec. 2.3.1. The library size is adjusted by ∆limit. I use two options for initial setting of

rcp(Ctarget): (1) the first option is to take an initial rcp from Ctarget. Precisely, I set

the slowest path i.e. the critical path replica to the initial rcp(Ctarget); (2) the second

option is to set a ring oscillator composed of NAND gates to the initial rcp(Ctarget).

For the main step in Algorithm 1, the while-loop starts from the initial rcp(Ctarget)

obtained from the pre-processing step. A statistical netlist of rcp(Ctarget) is generated

and is run by MonteCarlo simulation with BEOL RC random variables and Vth vari-

ation of transistors described in Sec. 2.3.2. Since SPICE simulation is too slow, it is

not affordable to run MonteCarlo simulation with SPICE, taking over 14 hours to run

the simulation with SPICE on even a single path of 25 stages with 10,000 samples.

Instead, by using statistical timing analysis, I generate a model of path delay and run

MonteCarlo simulation on that model. (It runs about 1,000 times faster than that of

using SPICE simulation.)

I compute the correlation coefficient ρ of rcp(Ctarget), which is then set to the

value of ρbest, followed by performing the five sub-tasks (line: 11 - 19). (line: 11)

I extract BEOL configurations in rcp(Ctarget). (Example of BEOL configuration is

illustrated in Figure 4.) I also extract, from BEOL library, BEOL configurations to

be reconfigured, as illustrated in Figure 5; (line: 12) I take cells like BUF X4 and

INV X3 from rcp(Ctarget) and cells to be resized like BUF X3, BUF X5 for BUF X4

from cell library L; (line: 13) I perform Monte Carlo simulation on every combina-

tion of RBEOL and RFEOL; (line: 14-15) I compute the correlation coefficients and

prediction errors, from which I choose the path circuit (c′) with the largest correlation

16

coefficient under the prediction error constraint. (line: 16 - 19) if the correlation co-

efficient is larger than the current best one, rcp(Ctarget) is reset to c′ and I repeat the

loop. Otherwise, I terminate the loop and return rcp(Ctarget) and ρbest.

The time complexity of the while-loop in RCP-exp is bounded by O(|A| · M)

where A = RBEOL ∪ RFEOL and M is the number of Monte Carlo simulations for

each circuit instance inA. Thus, to reduce the time complexity, it is essential (task 1) to

reduce the size ofRBEOL and (task 2) to apply the simulation on corner cases as many

as possible. In addition, to extend the applicability of RCP-exp, it is necessary (task

3) to explore more general representative circuit structures independently of Ctarget.

The following section provides the details of my solutions to the three tasks.

2.3 Techniques for BEOL-Aware RCP Generation

This section describes three techniques for BEOL-aware RCP generation. The first one

is clustering BEOL configurations, the objective of which is to reduce time complexity

by removing similarly behaviored configurations and maintaining a small-sized con-

figuration for each cluster. The second one is formulating statistical BEOL random

variables. I propose a method of generating random variables from the variation of

physical parameters like width, height, and space on each metal layer. The random

variables of resistance and capacitance are used to run Monte Carlo simulation. The

last one proposes a method of exploring ring oscillator circuit structure for rcp. It is an

alternative option to synthesize rcp by tuning gate size and BEOL configurations on a

rather simple structure.

2.3.1 Clustering BEOL Configurations

For a pair of BEOL configurationsBi andBj in libraryB, I define a difference measure

∆(Bi, Bj):

17

∆(Bi, Bj) =α ·
∑
k∈L
|l(metal(k,Bi)− l(metal(k,Bj)|+

(1− α) · |n via(Bi)− n via(Bj)|
(2.4)

where l(metal(k, ·) and n via(·) represent the total length of the metals in layer-k and

the total number of vias in the corresponding BEOL configuration, respectively. L is

the set of metal layers and α is a weighting factor in between 0 and 1.

For example, for the BEOLs in Fig 2.3, when α = 0.9, ∆(BEOL2-1, BEOL2-2) =

0.9(|(4 + 2)− (5 + 2)| + |12− 11|) + 0.1(|2− 2|) = 1.8 while ∆(BEOL2-1, BEOL2-n)

= 0.9(|(4 + 2) − (5 + 3)| + |12 − (5 + 2)| + |0 − 4|) + 0.1(|2 − 4|) = 9.9 + 0.2 =

10.1. Thus, based on the ∆(·, ·) value, BEOL2-1 prefers clustering with BEOL2-2 to

clustering BEOL2-n.

I apply a greedy method to group BEOL configurations in B: Randomly designate a

BEOL configuration (sayBi) from B and then remove all BEOL configurations whose

∆(Bi, ·) values are less than a certain limit ∆limit; Iteratively, process the designation-

and-removal process until no removal can be found in B.

2.3.2 Formulating Statistical BEOL Random Variables

I develop a method of generating statistical random variables for BEOL resistance (R)

and capacitance (C) from variation of physical parameters. As shown in Fig. 2.5, a

metal layer involves six physical parameters w, h, dl, dr, tu, and td, from which R

and C values on a metal of unit-length can be calculated by field solver, even it takes

a long computation time.

BEOL typically has five corners Nominal, Cmax, Cmin, RCmax, and RCmin.

(For simplicity, this work uses Nominal, Cmax, and Cmin.) I associate the corners

with physical parameters by formulating them into second-order polynomials: for

Nominal, I set all parameters to their nominal values; for Cmax, C is assigned to

the largest value and R is assigned to the smallest value, as a result, w and h each has

18

the statistical maximum values i.e., µ+3σ while dl, dr, tu, and td each has the statis-

tical minimum values i.e., µ-3σ; for Cmin, its physical parameter values become the

opposite values of that in Cmax.

tu

dl dr

td

w
h

M4

M3

M2

Figure 2.5: Physical parameters affecting resistance (R) and capacitance (C) of BEOL

metal.

To be precise, I am required to formulate the capacitance on the left-hand, right-

hand, upper, and lower sides of a metal. For example, the capacitance Cleft can be

expressed by γleft, dl, and h while the resistance R is simply by w and h as shown:

Cleft = ηleft
h

dl
(2.5)

R =
γ

w · h
(2.6)

in which η and γ indicate the dielectric permittivity and metal resistivity, respectively.

I introduce effective parameters ηe,left and γe, and formulate them using the values

of R, C, and physical parameters at RC corners. More precisely, if ηe,left is a function,

f(·), of dl and h, and γe is a function, g(·), of w and h, Cleft and R can be expressed

19

in terms of w, h, and dl as

ηe,left = f
(dl
h

)
(2.7)

Cleft = ηe,left
h

dl
= f

(dl
h

) h
dl

(2.8)

γe = g (w · h) (2.9)

R =
γe
w · h

=
g (w · h)

w · h
(2.10)

I formulate ηe,left and γe into second-order polynomial regressions:

ηe,left = β2

(dl
h

)2
+ β1

(dl
h

)
+ β0 (2.11)

γe = β′2 (w · h)2 + β′1 (w · h) + β′0 (2.12)

Then, Cleft and R can be expressed in terms of physical parameters:

Cleft = β2

(dl
h

)
+ β1 + β0

(dl
h

)−1
(2.13)

R = β′2 (w · h) + β′1 + β′0 (w · h)−1 (2.14)

Cright, Ctop, and Cbottom can be similarly formulated in terms of physical parameters.

Like this, I can produce all the five polynomials forR, Cleft, Cright, Ctop, and Cbottom

on each metal layer and one polynomial for R on each via.

The flowchart for generating the six BEOL random variables forR andC is shown

in Fig. 2.6. Fig. 2.7(a) and Fig. 2.7(b) show the relation between physical parameters

and effective parameter in Eq.2.11, and the scatted plot of random variables R and C,

respectively.

I use a statistical static timing analysis on BEOL configurations using the random

variables ofR and C for corner cases. For example, Table 2.2 shows an original netlist

and the corresponding statistical netlist, in which resistance between nodes A and B is

100ohm and capacitance on A and B is 0.001F and 0.002F, respectively. I can see that

A and B are on M2 since $lvl=13 in SPEF. Thus, I can generate a statistical netlist

by multiplying random variables M2R and M2C to the resistance and capacitance

20

Resistance,
capacitance

at RC corners
Eq.5, Eq.6

Effective η, γ
Eq.11, Eq.12

Physical
parameters

at RC corners
Eq.5, Eq.6

Variations of
physical

parameters
(μ, σ)

Random numbers
N(μ, σ2)

BEOL RC random variables
Eq.13, Eq.14

Figure 2.6: Flowchart for generating BEOL RC random variables.

0.8

1

1.2

0.5 1 1.5

η e
,le

ft
[A

U
]

dl / h [AU]

BEOL RC corners
2nd order polynomial fit

(a)

0.8

1

1.2

0.5 1 1.5

C
ap

ac
ita

nc
e

[A
U

]

Resistance [AU]

Random variables
BEOL RC corners

(b)

Figure 2.7: (a) Physical parameters vs. effective parameter ηe at three RC corners

Nominal, Cmax and Cmin. (b) The scatted plot of random variables R and C.

21

Table 2.2: Statistical netlist.

R1 A B 100

Original C1 A 0 0.001

C2 B 0 0.002

// *LAYER MAP

// *13 M2

*CAP

SPEF 1 *7626 0.001

2 *7661 0.002

*RES

1 *7626 *7661 100 // $lvl=13

R1 A B 100*M2R

Statistical C1 A 0 0.001*M2C

C2 B 0 0.002*M2C

values in nominal condition. When the statistical netlist is ready, I can insert BEOL

variation and Vth variation of transistors to the statistical netlist formulation.

2.3.3 Delay Modeling

In order to get the delay distribution within process variations, I developed delay mod-

eling method. Elmore delay measure is an upper bound on the actual 50% delay of

an RC tree response [13, 14]. As the input signal rise time increases, the actual delay

approaches the Elmore delay. Therefore, the stage delay can be a function of Elmore

delay as follows.

Tstage = αTElmore (2.15)

where α is varied by the input rise time and less than 1.0.

Assuming α is a constant within process variations, I can make Tstage is a function

irrelevant to α.

22

6

Ron

Cw

0.5Rw 0.5Rw

Cg

Tgate Tint

Tstage

interconnect

Figure 2.8: Stage delay is sum of gate delay and interconnect delay.

As you can see in the Fig 2.8, Tstage is sum of Tgate and Tint. If I model the gate

as a resistance, TStage is as follows.

TStage = αRon(Cw + Cg) + αRw(0.5Cw + Cg) (2.16)

= Tgate + Tint (2.17)

Since I assume α is a constant within variations, Tgate and Tint with variations are

obtained by their nominal values and the variation parameters such as Vth, R, C and

so on.

Tgate,var
Tgate,norm

=
(Ron,var
Ron,norm

)(Cw,var + Cg,norm
Cw,norm + Cg,norm

)
(2.18)

Tint,var
Tint,norm

=
(Rw,var
Rw,norm

)(0.5Cw,var + Cg,norm
0.5Cw,norm + Cg,norm

)
(2.19)

Because the variation of gate input capacitance (Cg) is much less than that of wire

capacitance, I use the nominal value of input capacitance. Ron is a linear function of

∆Vth,n and ∆Vth,p, and the function is obtained by Tgate in five FEOL corners with

BEOL nominal values. Therefore, Tgate,var becomes a function of its nominal value,

23

∆Vth,n, ∆Vth,p and wire capacitance, and Tint becomes a function of wire resistance

and capacitance. Now, I can get the delay distribution within process variations.

I compared the delay modeling with SPICE simulation. When a critical path is

composed of 25 stages, delay modeling is about 1,200 times faster than SPICE simu-

lation. I found that the error of delay model was less than 2% as indicated in Fig 2.9.

-2

-1

0

1

2

0 100 200 300 400 500

E
rr

or
 o

f d
el

ay
 m

od
el

 [%
]

Samples

Figure 2.9: Scatter plot of delay error calculated by the model for 500 MC samples.

2.3.4 Exploring Ring Oscillator Circuit Structures

Rather than synthesizing rcp(Ctarget) starting from a critical path replica (CPR) in

Ctarget, I propose another option to use a ring oscillator as an initial rcp. I use three

simple ring oscillator structures as shown in Fig. 2.10 in which each ring oscillator

is composed of gates of the same type and size, and BEOLs of an identical BEOL

configuration.

The changes in performing RCP-exp using a ring oscillator (RO) are the follow-

ings:

1. In the pre-processing step, RCP-exp uses an RO with much fewer number of

24

Fan-out 1

Fan-out 2

Fan-out 3

BEOLBEOL BEOL

BEOLBEOL BEOL

BEOLBEOL BEOL

BEOLBEOL BEOL

BEOLBEOL BEOL

BEOLBEOL BEOL

Figure 2.10: The proposed ring oscillator (RO) structures which can be used as an

initial rcp(Ctarget), independently of target circuits.

stages (gate-to-gate), usually∼ 10 than that using CPR, usually∼ 25. Neverthe-

less. The ρ value is maintained while εmax value can be proportionally scaled.

2. The while-loop in RCP-exp will be executed three times, one for each ring

oscillator structure in Fig. 2.10.

3. RCP-exp producesRFEOL by equally up/down sizing all gates in RO at once.

4. RCP-exp producesRBEOL by uniformly replacing all BEOL configurations in

RO at once using B.

2.4 Experimental Results

I implemented my RCP-exp and the conventional method [3] in Python, and applied

them to a set of design blocks taken from OPENCORES using 7nm technology of part-

ner foundry. I performed a sequence of tasks namely synthesis, placement, routing, RC

extraction, and static timing analysis (STA) by using Synopsys Design Compiler, IC

25

Compiler-II, StarRC, and Primetime. In all experiments, I used delay modeling with

10,000 samples, from which I delete the worst 100 samples to meet 99% of delay pre-

dictions pessimism. Table 2.3 summarizes the information of the target design blocks

I tested. (I found that a considerable amount of gates in every target circuit drive just a

single pin (i.e., Fan-out 1 gates) and Fan-outs 1, 2, and 3 gates occupy around 80% of

all gates in circuits.)

Table 2.3: Target circuits.

Circuit #Inst #Net Clkp
Fan-out

1 2 3 ≥ 4

AC97 CTRL 6,150 6,178 300ps 66% 7% 6% 21%

DES PERF 12,881 13,005 310ps 47% 16% 15% 22%

MEM CTRL 4,703 4,766 380ps 56% 14% 9% 21%

PCI BRIDGE32 10,280 10,452 340ps 64% 11% 5% 20%

USB FUNCT 8,104 8,264 340ps 54% 20% 7% 19%

Table 2.4 summarizes, for each target circuit, the number of stages on the critical

path (CP) at nominal condition and the portion of BEOL interconnect delay.

Table 2.4: Summary of critical paths of target circuits.

Circuit
Critical path

#stage Portion of BEOL delay

AC97 CTRL 6 20.1%

DES PERF 12 5.5%

MEM CTRL 25 8.9%

PCI BRIDGE32 26 14.3%

USB FUNCT 22 9.4%

• Synthesizing rcp(Ctarget) using critical path replica (CPR) in Ctarget: Table 2.5

shows a comparison of the values of correlation coefficient (ρ) under maximum predic-

tion error constraint (εmax ≤ εbound) among the initial critical path replica (CPR) and

26

rcp circuits produced by [3] considering FEOL variation only and my RCP-exp con-

sidering BEOL as well as FEOL variations. The constraints in Case1, Case2 and Case3

of RCP-exp are 0.8εbound, 1.0εbound and 1.2εbound, respectively while for Case4 of

RCP-exp, minimizing the maximum prediction error is the primary objective rather

than constraint.

Note that for AC97 CTRL, the method in [3] failed to find an rcp better than CPR

for Cases 1, 2, and 4 since its CPR consists of just 6 stages, which eventually leads

to provide little room for improving rcp by performing gate resizing alone. To put it

another way, if CPR of a target circuit has a small number of stages, tuning the routing

paths on the CPR by remapping BEOL configurations is relatively more effective than

gate resizing.

Table 2.6 shows a comparison of the values of maximum prediction error. My

method is able to reduce the prediction error by 54% and 19% on average over that us-

ing the conventional critical path replica and using the conventional method exploiting

gate sizing only, respectively.

Fig. 2.11 shows the changes of correlation coefficient (ρ) and maximum prediction

error (ε) for rcp(mem ctrl), which is iteratively refined by the conventional method

[3] and RCP-exp, corresponding to Case2 in Table 2.5. It is shown that at each it-

eration, the ρ value monotonically increases while the ε value fluctuates. At the last

iteration, the ρ value arrives at the largest and the ε value at the least. The compar-

ison of the two ρ curves in Fig. 2.11(a) clearly indicate that RCP-exp considering

BEOL variation outperforms the conventional method which does not take into ac-

count BEOL variation at all. Fig. 2.12 shows the scatted plots of Monte Carlo simula-

tion samples for the initial CPR in MEM CTRL, rcp(mem ctrl) produced by [3], and

rcp(mem ctrl) by RCP-exp.

27

Ta
bl

e
2.

5:
C

om
pa

ri
so

n
of

th
e

va
lu

es
of

co
rr

el
at

io
n

co
ef

fic
ie

nt
(ρ

)
un

de
r

m
ax

im
um

pr
ed

ic
tio

n
er

ro
r

co
ns

tr
ai

nt
(ε
m
a
x
≤
ε b
o
u
n
d
)

am
on

g
th

e
in

iti
al

cr
iti

ca
lp

at
h

re
pl

ic
a

(C
PR

)
an

d
rc
p

ci
rc

ui
ts

pr
od

uc
ed

by
[3

]
co

ns
id

er
in

g
FE

O
L

va
ri

at
io

n
on

ly
an

d
m

y
R

C
P

-e
xp

co
ns

id
er

in
g

B
E

O
L

as
w

el
la

s
FE

O
L

va
ri

at
io

ns
.T

he
co

ns
tr

ai
nt

fo
r

C
as

e1
,C

as
e2

an
d

C
as

e3
ar

e
0.

8ε
bo
u
n
d
,1

.0
ε b
o
u
n
d

an
d

1.
2ε
bo
u
n
d

re
sp

ec
tiv

el
y.

C
as

e
4

is
to

m
in

im
iz

e
th

e
m

ax
im

um
pr

ed
ic

tio
n

er
ro

r.

C
ir

cu
it

C
P
R

[3
](

C
on

si
de

ri
ng

F
E

O
L

va
ri

at
io

n
on

ly
)

R
C

P
-e

xp
(C

on
si

de
ri

ng
F

E
O

L
an

d
B

E
O

L
va

ri
at

io
ns

)

(I
ni

tia
l)

C
as

e1
C

as
e2

C
as

e3
C

as
e4

C
as

e1
C

as
e2

C
as

e3
C

as
e4

ρ
ε b

o
u
n
d

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

A
C

97
C

T
R

L
0.

91
4

6.
70

%
0.

91
4

(1
.0

00
x)

0.
91

4
(1

.0
00

x)
0.

92
9

(1
.0

16
x)

0.
91

4
(1

.0
00

x)
0.

92
1

(1
.0

08
x)

0.
93

1
(1

.0
19

x)
0.

93
1

(1
.0

19
x)

0.
91

6
(1

.0
02

x)

D
E

S
P

E
R

F
0.

99
0

1.
63

%
0.

99
1

(1
.0

01
x)

0.
99

2
(1

.0
02

x)
0.

99
2

(1
.0

02
x)

0.
99

0
(1

.0
00

x)
0.

99
2

(1
.0

02
x)

0.
99

3
(1

.0
03

x)
0.

99
3

(1
.0

03
x)

0.
99

2
(1

.0
02

x)

M
E

M
C

T
R

L
0.

98
6

2.
12

%
0.

99
5

(1
.0

09
x)

0.
99

5
(1

.0
09

x)
0.

99
5

(1
.0

09
x)

0.
98

6
(1

.0
00

x)
0.

99
6

(1
.0

10
x)

0.
99

6
(1

.0
10

x)
0.

99
6

(1
.0

10
x)

0.
98

9
(1

.0
03

x)

P
C

I
B

R
ID

G
E

32
0.

98
2

2.
40

%
0.

99
0

(1
.0

08
x)

0.
99

1
(1

.0
09

x)
0.

99
1

(1
.0

09
x)

0.
98

3
(1

.0
01

x)
0.

99
4

(1
.0

12
x)

0.
99

4
(1

.0
12

x)
0.

99
2

(1
.0

10
x)

0.
98

3
(1

.0
01

x)

U
S

B
F

U
N

C
T

0.
99

1
1.

58
%

0.
99

3
(1

.0
02

x)
0.

99
3

(1
.0

02
x)

0.
99

3
(1

.0
02

x)
0.

99
1

(1
.0

00
x)

0.
99

5
(1

.0
04

x)
0.

99
5

(1
.0

04
x)

0.
99

6
(1

.0
05

x)
0.

99
3

(1
.0

02
x)

Im
pr

.
-

-
1.

00
4x

1.
00

4x
1.

00
8x

1.
00

0x
1.

00
7x

1.
01

0x
1.

00
9x

1.
00

2x

28

Table 2.6: Comparison of the values of maximum prediction error of Case 2.

Circuit

CPR [3] RCP-exp

(Initial) Case2 Case2

ρ εbound ε ε Impr. over CPR Impr. over [3]

AC97 CTRL 0.914 6.70% 6.70% 3.60% -46% -46%

DES PERF 0.990 1.63% 0.98% 0.88% -46% -10%

MEM CTRL 0.986 2.12% 0.81% 0.67% -68% -17%

PCI BRIDGE32 0.982 2.40% 1.11% 1.03% -57% -7%

USB FUNCT 0.991 1.58% 0.86% 0.75% -53% -13%

Avg. - - - - -54% -19%

0.98

0.99

1.00

0 5 10 15 20 25

C
or

re
la

tio
n

co
ef

fic
ie

nt
 (ρ

)

Iteration

[3]
RCP-exp

(a)

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25

Pr
ed

ic
tio

n
er

ro
r

[%
]

Iteration

[3]
RCP-exp

(b)

Figure 2.11: The changes of correlation coefficient (ρ) and maximum prediction error

(ε) for rcp(mem ctrl) which is iteratively refined by the conventional method [3] and

RCP-exp.

29

220

240

260

280

220 240 260 280

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

2.12%

ρ=0.986

(a)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

0.81%

ρ=0.995

(b)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

0.67%

ρ=0.996

(c)

Figure 2.12: Monte Carlo simulation results. (a) Critical path replica (CPR) in

MEM CTRL. (b) rcp(mem ctrl) produced by [3]. (c) rcp(mem ctrl) produced by

RCP-exp.

I analyzed the yield improvement by RCP-exp. Let us assume that the required

delay for MEM CTRL is 253.88ps which is the sum of mean and half of standard de-

viation (µ+0.5σ) of circuit delay, shown in Fig. 2.13. If voltage binning is not ap-

plied, the yields produced by the critical path replica, [3], and my method are 69.41%,

69.41%, and 69.41%, respectively. On the other hand, if I increase the supply voltage

to shorten the delay by 8.1% when the RCP delay exceeds 253.88ps (post-Si instances

in bin2), through analysis of the statistical distribution obtained by simulation, it is

found that the corresponding yields become 95.97%, 99.17%, and 99.40%. As a re-

sult, my method improves yield by 3.43% over the critical path replica method and

by 0.23% over the method in [3]. As the portion of BEOL delay increases, the yield

improvement would be significant. For circuit AC97 CTRL, the portion of BEOL de-

lay occupies about 20% and the correlation coefficient increases from 0.914 to 0.931.

I found through distribution analysis that it leads to yield improvement of 3.38% over

the method in [3]. The yield improvement for all the test circuits is summarized in

Table 2.7.

30

220

240

260

280

220 240 260 280

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 69.41%

(a)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 69.41%

(b)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 69.41%

(c)

220

240

260

280

220 240 260 280

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 95.97%

(d)

220

240

260

280

220 240 260 280

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 99.17%

(e)

220

240

260

280

220 240 260 280
R

C
P

de
la

y
[p

s]

Critical path delay on Ctarget [ps]

bin1

bin2

Yield : 99.40%

(f)

Figure 2.13: Green dots indicate the post-Si instances whose RCP delay is lower than

the required delay while red dots indicate the post-Si instances whose RCP delay ex-

ceeds the required delay. (a) Critical path replica (CPR) in MEM CTRL when voltage

binning is not applied. (b) rcp(mem ctrl) by [3] when voltage binning is not applied.

(c) rcp(mem ctrl) by RCP-exp when voltage binning is not applied. (d) Critical path

replica (CPR) in MEM CTRL when voltage binning is applied. (e) rcp(mem ctrl) by

[3] when voltage binning is applied. (f) rcp(mem ctrl) by RCP-exp when voltage

binning is applied.

31

Table 2.7: Yield improvement by critical path replica (CPR), rcp circuits produced by

[3] and my RCP-exp when the required delay is µ+0.5σ of each circuit delay and

voltage binning is applied.

Circuit

CPR [3] RCP-exp

(Initial) Case2 Case2

Yield Yield Yield Impr. over CPR Impr. over [3]

AC97 CTRL 95.31% 95.31% 98.69% 3.38% 3.38%

DES PERF 97.86% 98.97% 99.16% 1.30% 0.19%

MEM CTRL 95.97% 99.17% 99.40% 3.43% 0.23%

PCI BRIDGE32 95.21% 98.74% 99.11% 3.90% 0.37%

USB FUNCT 96.96% 99.43% 99.59% 2.66% 0.16%

Avg. - - - 2.93% 0.87%

As explained in Sec. 2.3.1, I reduce the size of library B by clustering the BEOL

configurations. The number of configurations is controlled by using ∆limit. When α

= 0.9 and ∆limit is enumerated from 0 to 8, the runtime is reduced up to 17% for

MEM CTRL and 53% for AC97 CTRL without worsening the correlation coefficient,

as shown in Fig. 2.14. Since for the maximum value ∆limit of 4, the corresponding

correlation coefficients are not degraded for the two testcases, I applied the ∆limit

value uniformly to all testcases.

32

0.90

0.92

0.94

0.96

0.98

1.00

0 0.5 1

C
or

re
la

tio
n

co
ef

fic
ie

nt
 (ρ

)

Runtime [AU]

ac97_ctrl
mem_ctrl

Figure 2.14: Runtime reduction by the technique in Sec. 2.3.1, in which BEOL config-

urations are reduced by controlling ∆limit value.

I also evaluated the results by changing the value of K (i.e., the number of criti-

cal paths selected from Ctarget). Initially, I set the value of K to 1000 and gradually

decrease the value as long as the correlation coefficient is not worsen. As revealed in

Fig. 2.15, the value can be down to 200.

0.90

0.92

0.94

0.96

0.98

1.00

0 500 1000

C
or

re
la

tio
n

co
ef

fic
ie

nt
 (ρ

)

K

ac97_ctrl
mem_ctrl

Figure 2.15: The changes of correlation coefficients as the value of K varies. The

curves show that at most top 200 slowest paths suffice to get the best correlation coef-

ficient.

• Synthesizing rcp(Ctarget) using ring oscillator (RO): Table 2.8 shows a compar-

33

ison of the values of correlation coefficient (ρ) under maximum prediction error con-

straint (εmax ≤ εbound) among the initial critical path replica (CPR) and rcp circuit

produced by my RCP-exp. (The constraints in Case1, Case2 and Case3 of RCP-exp

are 0.8εbound, 1.0εbound and 1.2εbound, respectively while for Case 4 of RCP-exp, min-

imizing the maximum prediction error is the primary objective rather than constraint.)

I can see that RCP-exp improves over CPRs for all target circuits except AC97 CTRL,

for which its CPR has a small number of stages and its sensitivity looks far away from

resizing NAND gates in RO.

Table 2.8: Comparison of the values of correlation coefficient (ρ) under maximum pre-

diction error constraint (εmax ≤ εbound) among the initial critical path replica (CPR)

and ring oscillators produced by my RCP-exp considering BEOL as well as FEOL

variations. The constraint for Case1, Case2 and Case3 are 0.8εbound, 1.0εbound and

1.2εbound respectively. Case 4 is to minimize the maximum prediction error.

Circuit

CPR RCP-exp (Considering FEOL and BEOL variations)

(Initial) Case1 Case2 Case3 Case4

ρ εbound ρ ρ ρ ρ

AC97 CTRL 0.914 6.70% 0.866 (0.947x) 0.868 (0.950x) 0.868 (0.950x) 0.862 (0.943x)

DES PERF 0.990 1.63% 0.994 (1.004x) 0.994 (1.004x) 0.994 (1.004x) 0.990 (1.000x)

MEM CTRL 0.986 2.12% 0.992 (1.002x) 0.992 (1.002x) 0.992 (1.002x) 0.991 (1.001x)

PCI BRIDGE32 0.982 2.40% 0.985 (0.995x) 0.985 (0.995x) 0.985 (0.995x) 0.981 (0.991x)

USB FUNCT 0.991 1.58% 0.995 (1.004x) 0.995 (1.004x) 0.995 (1.004x) 0.994 (1.003x)

Impr. - - 0.990x 0.991x 0.991x 0.988x

34

220

240

260

280

220 240 260 280

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

2.12%

ρ=0.986

(a)

220

240

260

280

220 240 260 280

R
O

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

1.19%

ρ=0.991

(b)

Figure 2.16: Monte Carlo simulation results. (a) Critical path replica (CPR) in

MEM CTRL. (b) rcp(mem ctrl) produced by Case4 in RCP-exp.

Fig. 2.16 compares the scatter plots of Monte Carlo simulations for CPR and rcp

produced by Case4 in RCP-exp for target circuit MEM CTRL. Specifically, for circuit

MEM CTRL I explored 26,196 candidates of RO based rcp where I considered 4 sizes

of NAND gate, 3 types of Fan-out, and 2,183 BEOL configurations extracted from

MEM CTRL. Table 2.9 shows the largest value of correlation coefficient under maxi-

mum error constraint produced by Case2 in RCP-exp for every RO corresponding to

the combinations of 4 gate sizes and 3 Fan-out types for target circuit MEM CTRL. (‘-’

indicates that RCP-exp could not find rcp that meets the maximum error constraint.) I

can see that the best rcp is the RO which uses the BEOL configuration labeled #1542,

NAND of size X2, and Fan-out of 1. Fig 2.17 shows the details of BEOL configuration

#1542 of the best representative RO obtained in Table 2.9. Finally, Table 2.10 sum-

marizes the best rcp (RO) structures for all target circuits, from which I can see that

the BEOL configurations in the layout of all target circuits are highly sensitive to M2,

M3, and up toM4. Furthermore, though Fan-out 1 is the majority in all target circuits,

the most appropriate Fan-outs for representative RO circuits are 2∼3.

35

Table 2.9: The BEOL configuration and correlation coefficient value of the best rcp

circuits produced by Case2 in RCP-exp for various combinations of gate sizes and

Fan-out types for target circuit MEM CTRL.

Fan-out Gate BEOL ρ εmax

CPR - - - 0.986 2.12%

1 NAND2 X1 - - -

NAND2 X2 #1542 0.992 2.01%

NAND2 X3 #1282 0.988 1.46%

NAND2 X4 - - -

RCP-exp 2 NAND2 X1 - - -

NAND2 X2 #31 0.988 1.95%

NAND2 X3 #2094 0.991 2.08%

NAND2 X4 #1103 0.991 1.74%

3 NAND2 X1 - - -

NAND2 X2 - - -

NAND2 X3 #31 0.990 1.55%

NAND2 X4 - - -

BEOL

M2 M2
V2V2

M3 M3: 1.071um
V3 V3

M4: 0.447um

X2 X2 X2BEOLBEOL BEOL

Figure 2.17: The representative RO structure for MEM CTRL produced by Case2 in

RCP-exp.

36

Table 2.10: The best rcp ring oscillator structures synthesized by my RCP-exp.

Circuit Fan-out Gate Top metal

AC97 CTRL 3 NAND2 X4 M4

DES PERF 2 NAND2 X1 M4

MEM CTRL 1 NAND2 X2 M4

PCI BRIDGE32 3 NAND2 X4 M4

USB FUNCT 3 NAND2 X2 M4

2.5 Further Study on Variations

In this work, only process variations are considered. When the portion of BEOL vari-

ations in the critical paths is increasing, methodologies for synthesizing RCP are pro-

posed. Because voltage is also one of variation sources in the manufactured chips, the

extended availability of this work under process and voltage variations is presented in

this section. I assume that the variation of supply voltage is 5% of target and it follows

uniform distribution. The experiment with AC97 CTRL is performed using Monte-

Carlo simulation with 500 samples. As shown in Fig 2.18, the correlation coefficient is

0.909 under process variations and it becomes 0.844 when the voltage variation is also

considered. RCP under process and voltage variations are produced by RCP-exp and

the correlation coefficient becomes 0.877. From the experiment result, I can see that

the methodologies in this work can be extended to RCP generation with more variation

sources.

37

160

180

200

220

160 180 200 220

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

ρ=0.909

(a)

160

180

200

220

160 180 200 220

C
PR

 d
el

ay
 [p

s]

Critical path delay on Ctarget [ps]

ρ=0.844

(b)

160

180

200

220

160 180 200 220

R
C

P
de

la
y

[p
s]

Critical path delay on Ctarget [ps]

ρ=0.877

(c)

Figure 2.18: Monte Carlo simulation results under process and voltage variations. (a)

Critical path replica (CPR) in AC97 CTRL under process variations. (b) Critical path

replica (CPR) in AC97 CTRL under process and voltage variations. (c) rcp(ac97 ctrl)

by RCP-exp under process and voltage variations.

38

Chapter 3

Methodology for Reducing Routing Failures through En-

hanced Prediction on Design Rule Violations in Place-

ment

3.1 Motivation

In advanced technology nodes, it takes more than a week to complete physical design

of a circuit including millions of instances. Routing occupies about 50% of total run-

time of physical design when there is no design rule violation but the routing runtime

increases exponentially as the number of design rule violations increases. The runtime

of physical design with a sub-block of CPU, which has about 360,000 gates, is shown

in Fig. 3.1. The portion of routing runtime is 56% when the number of design rule vi-

olations (DRVs) is less than 100. It increases rapidly as the number of DRVs exceeds

1,000 while the sum of runtime of floorplan, powerplan, placement and clock tree syn-

thesis is slightly changed. The portion becomes 88% when the number of DRVs is

more than 150,000. If it is predicted before routing is performed, designs whose pre-

dicted DRVs are more than a certain number can be filtered out and the computing

resources can be saved.

When the P&R tools perform placement, the objective function is to minimize

39

0

20

40

60

80

100

1.0E+00 1.0E+02 1.0E+04 1.0E+06

R
un

tim
e

[h
]

#DRVs

Import design to CTS-Opt
Route to Route-Opt

Figure 3.1: Runtime of physical design using a sub-block of CPU which is composed

of 360,000 gates.

wirelength and maximize routability. In order to predict wirelength and routability for

the pre-routed layout, global routing has been used. However, the congestion obtained

by global routing turned out to inaccurate [23]. Actual hotspots including design rule

violations are totally different from the predicted hotspots using routing congestion.

Thus, it is necessary to enhance the prediction accuracy. Various methods to predict

the hotspots using machine learning have been reported [18][19][20][21][22][23][24].

Some of them used only placement related features like pin density, and the others

used placement related features as well as routing related features. They improved the

prediction accuracy by using various machine learning algorithms such as support vec-

tor machine (SVM), RUSBoost, random forest, convolutional neural network (CNN)

and customized CNN. All works predict whether the local window has DRVs using

binary classification. The limitation is that they can’t predict the number of DRVs.

As a next step of hotspot prediction, the placement optimization using space adjust-

ment in the hotspots was proposed [23][24]. They also used binary classification model

40

to determine if the local window is hotspot or not, and give more spaces between cells

in each hotspot to reduce the probability that there are DRVs in the hotspot. As I men-

tioned before, the prediction using binary classification model lets us know the prob-

ability but we don’t know how many DRVs are existed in the local window. In some

cases, binary classification based placement optimization can’t reduce the number of

DRVs. For example, if moving cell in the left direction can’t make the probability less

than 50% and moving cell right can’t do as well, cell is not moved in either directions

because the probability after cell movement indicates that there are still DRVs in the

hotspot. However, the number of DRVs can be reduced by moving cell. This is the

first limitation of placement optimization through binary classification. The other lim-

itation of the prior works is the size of prediction window. The height of prediction

window was equal to the cell height so that the placement perturbation is fast. How-

ever, interaction between rows is not considered and it can make the routability worse

when the vertical connection is changed and it causes routing congestion. Because the

minimum window that commercial P&R tool uses for the routing is 10x10 of standard

cell height, the routability should be considered in the larger window.

I propose a methodology to predict the hotspots using binary classification through

machine learning, and perform placement perturbation in the hotspots until the pre-

dicted number of design rule violation is minimized. The number of DRVs is pre-

dicted by regression through machine learning and the global optimization algorithms

are used to find the optimal placement. Placement related features like pin density,

pin proximity and more, are extracted and combined with global routing parameters

such as capacity, demand and overflow. The machine learning models are improved by

hyperparameter tuning with Bayesian optimization.

41

3.2 Overall Flow

This section describes the overall flow of reducing routing failures through enhanced

prediction on design rule violations in placement phase. The flow is composed of fea-

ture extraction, hotspot prediction and placement optimization to minimize the pre-

dicted number of DRVs. I assume that a design is routable when the number of DRVs

is less than 200. Because the number of DRVs is predicted, it is possible to filter out a

design which is doomed to be routing failure. Decision of filtering out is also included

in the overall flow.

The conventional P&R flow is composed of importing design, floorplan, power-

plan, placement, post-placement optimization, clock tree synthesis (CTS), post-CTS

optimization, route and post-route timing optimization. In the conventional flow, the

routing failure can’t be determined in placement phase and it is not possible to fil-

ter out a design doomed to be routing failure because the number of DRVs can’t be

predicted. In the proposed P&R flow, the features like pin density, pin proximity, ca-

pacity, demand, overflow and more, are extracted when post-CTS timing optimiza-

tion is finished. And then the number of DRVs is predicted using pre-trained machine

learning model to decide filtering out. I set the number doomed to be routing failure

to 1000. When the number of DRVs are more than 1000, it is filtered out because it

can’t be routable even if placement optimization is applied. The filtered design should

be run P&R flow again from importing design by modifying the P&R variables like

frequency, initial utilization and tool options. If the predicted number is less than 150,

it proceeds routing as conventional P&R flow does. When the predicted number is

between 150 and 1000, placement perturbation is applied. The comparison of conven-

tional P&R flow and proposed P&R flow is shown in Fig. 3.2.

When we focus on the placement perturbation, the flow is composed of two steps

as shown in Fig. 3.3. Firstly, the hotspots which are predicted to include DRVs, are de-

termined by pre-trained binary classification model. And then placement perturbation

42

Proposed idea – overall flow

2

#DRVs<200
N

Y

Fix DRVs manually

Conventional P&R flow Proposed P&R flow

Modify options
Floorplan

Powerplan

Placement

Place-Opt

CTS

CTS-Opt

Route

#DRVs<200
N

Y

Fix DRVs manually

Modify options
Floorplan

Powerplan

Placement

Place-Opt

CTS

CTS-Opt

Route

ML_DRVs<150 N
Y

ML_DRVs<1000 N

Route-Opt Route-Opt

Chip Finish Chip Finish

Placement
perturbation

Y

Import design Import design

Figure 3.2: Comparison of conventional P&R flow and proposed P&R flow.

of cells in all hotspots of entire layout is started, in which the objective is to minimize

the number of DRVs in entire layout. Because the global routing for feature extrac-

tion takes time, it is not possible to explore every placement perturbation. Thus, it is

necessary to use global optimization algorithm to find the placement to minimize the

number of DRVs in a limited time. Once the optimized placement is found, routing

is performed to check if the actual DRVs are reduced or not. If the error of regres-

sion model is 0%, the predicted DRVs are exactly same as the actual DRVs. However,

machine learning model is not perfect and there must be a gap between predicted

and actual DRVs. The gap can be minimized by improving accuracy of the regression

model.

3.3 Techniques for Reducing Routing Failures

3.3.1 Binary Classification

In order to predict hotspots which include DRVs, it is necessary to generate binary

classification model using machine learning. There are lots of machine learning al-

43

Proposed idea – cell spreader

3

Standard cell

Grid (feature extraction window)

Predicted DRVs

Placed & CTS

ML
Binary
Model

Routed

Conventional flow Proposed placement perturbation flow

Placement
perturbation

ML
Regression

Model

DRV Predicted

Routed

Actual DRVs

Standard cell in hotspot

Hotspot
prediction

Figure 3.3: Comparison of conventional flow and proposed placement perturbation

flow. The proposed flow is composed of two steps such as hotspot prediction and place-

ment perturbation of cells in the hotspots.

gorithms such as linear regression, logistic regression, SVM, random forest, boosting,

multi-layer perceptron and so on. I selected two algorithms of boosting and multi-layer

perceptron (MLP) because they outperform the others in some test cases. Because the

machine learning model should be used to predicted hotspots in unseen design, model

training including itself is not prohibited. For example, if there are 7 circuits like A,

B, C, D, E, F and G, a model to predict DRVs of A is trained by B, C, D, E, F and G.

For the training and validation, 80% of data are used for the training and the rest are

used for the validation. To avoid overfitting, early stopping is applied. That is to say,

the model is saved when the validation loss is minimized. Logloss is used as a loss

function.

To select the optimal model, the exploration of model architecture and hyperpa-

rameter tuning are performed. In multi-layer perceptron, the network structure is very

important to optimize the model. The structure is defined by the number of layers, the

number of nodes in each layer and the regularization. In this work, 5 number of layers

and 6 nodes are explored. Layers can be 1, 2, 3, 4 and 5, and nodes can be 16, 32, 64,

128, 256 and 512. For the regularization, three methods such as original (no regular-

44

ization is applied), batch normalization and dropout, are compared. Boosting depends

on the hyperparameters. The optimal hyperparameters to minimize the loss function

are found by Bayesian optimization. Each machine learning algorithm generates 90

models and the best one is chosen. The training procedure is shown in Fig. 3.4.

NEW1

6

Multi-layer perceptron

1

0

All data

Training
(80%)

Validation
(20%)

Model

layer
[1,2,3,4,5]

no
de

s
[1

6,
32

, …
 5

12
]

Early stopping

Epoch

Lo
ss

Training

Validation
Early
stopping

Boosting

Circuit MLP
(logloss)

Boosting
(logloss)

AC97_CTRL

AES_CORE

ETHERNET

MEM_CTRL

PCI_BRIDGE32

USB_FUNCT

VGA_LCD

1 2 3 4 5 6
X

1
2
3
4
5
6

Y

1

1

1

X<2

0 1
1

10
0

0
0

Y<2

0 1

X<4

0 1

+ +yes no yes no yes no

Figure 3.4: The training procedure for the binary classification.

3.3.2 Regression

Boosting and multi-layer perceptron are also used to predict the number of design rule

violation. The procedure of training is similar to that of binary classification. The only

difference is that root mean squared error (RMSE) is used as a loss function because

the values are integer, not binary. The training procedure is shown in Fig. 3.5. Because

DRVs are the non-negative values and the pre-defined loss function of boosting can’t

handle non-negative value, a customized loss function which changes negative value

into zero is used. On the other hands, multi-layer perceptron is able to handle non-

negative output easily by using ReLU (Rectified Linear Unit).

45

NEW2

7

All data

Training
(80%)

Validation
(20%)

Model Early stopping

Epoch

Lo
ss

Training

Validation
Early
stopping

Integer

Circuit MLP
(RMSE)

Boosting
(RMSE)

AC97_CTRL

AES_CORE

ETHERNET

MEM_CTRL

PCI_BRIDGE32

USB_FUNCT

VGA_LCD

Multi-layer perceptron

layer
[1,2,3,4,5]

no
de

s
[1

6,
32

, …
 5

12
]

Boosting

1 2 3 4 5 6
X

1
2
3
4
5
6

Y

1

1

1

X<2

0 1
1

10
0

0
0

Y<2

0 1

X<4

0 1

+ +yes no yes no yes no

Figure 3.5: The training procedure for the regression of the number of DRVs.

3.3.3 Optimization

In this work, I compared two global optimization algorithms. One is Bayesian op-

timization which is a machine learning based optimization and the other is particle

swarm optimization (PSO) which is one of metaheuristic optimization algorithms.

Bayesian optimization generates a surrogate model and obtain acquisition function

by calculating the probability of improvement using the average and standard devia-

tion of predicted value in each point of the entire space. In general, gaussian process

regression is used as a surrogate model. It is started from a prior distribution that the

physical distance between two points is related to the covariance of the points [26].

Once the samples are observed, the covariance can be obtained. And then the average

and standard deviation of predicted value in each point of entire space are calculated.

From the average and standard deviation, the probability that each point is better than

the current best value can be calculated and the best one becomes the next candidate.

There are several acquisition functions such as expected improvement, lower confi-

dence bound and probability improvement [27][28][29]. In this work, expected im-

provement is used as an acquisition function. Once the next candidate is observed, the

46

whole process from the surrogate model to acquisition function, is repeated.

PSO generates lots of particles in random locations with random velocities and

explores the optimum by updating the position of particles. Particle best (pbest) and

global best (gbest) can be changed in every iteration. The velocity of each particle

in the next iteration is determined by the velocity of the particle in current iteration,

pbest location and gbest location. The new positions of particles are updated by the

velocity. It doesn’t need complicated computation and it can be performed by parallel

computing because the movements of particles in each iteration are independent. The

procedure is shown in Fig. 3.6.

Particle swarm optimization

1

Initialize particles
- random position
- random velocity
(#particles : 20~40)

pbest 1

pbest 2
pbest 3
gbest

Calculate particle
velocity considering
pbest and gbest

pbest 1

pbest 2
pbest 3
gbest

Update positions of
particles and
update pbest and
gbest

pbest 1

pbest 2
pbest 3
gbest

Iteration

Figure 3.6: The procedure of particle swarm optimization.

Bayesian optimization is originally sequential optimization because covariance

should be calculated and the next candidate is suggested after observations are done.

I will compare parallel PSO and sequential Bayesian optimization in the experimental

results.

47

3.3.4 Placement Perturbation

In the previous literatures, the cells in a row were spreaded to minimize the proba-

bility of DRVs in the window [23][24]. Because the interaction between rows is not

considered, it is very fast but it can make routability worse in some cases. I propose

placement perturbation of all cells in the hotspots of entire layout. The advantage of

this methodology is that the cells in the hotspots move simultaneously and the interac-

tion between rows is considered. The objective function of optimization is to minimize

the number of DRVs in entire layout.

Placement in a row can be defined as a problem to make an integer by adding

some numbers. The space between cells is called white space. Moving cell is equal to

white space redistribution. As shown in Fig. 3.7, there are 4 movable cells and 1 fixed

cell in the window. The fixed cell in the window indicates that it is used for the clock

tree synthesis. When the cells are used for the clock tree synthesis, I fixed the cells to

maintain the timing and skew of clock tree. The cells out of hotspot are also fixed. The

placement of movable cells can be expressed by white spaces like [1,2,2,3]. Thus, the

placement perturbation in the row is a problem to make 8 by adding 4 numbers.

8

Fixed Cell

Movable Cell

Original placement

d=[1,2,2,3]
#1

#165

d=[0,0,0,8]

d=[8,0,0,0]

d=[0,0,1,7]

#2

Figure 3.7: Placement in local window is expressed by white spaces between cells.

As shown in Fig. 3.8, there are 165 cases to make 8 by adding 4 numbers such as

[0,0,0,8], [0,0,1,7] and so on. It explodes when the number is bigger. For example, a

problem to make 40 by adding 8 numbers has 62,891,499 cases. If we perturb all cells

in the hotspots of the entire layout, the solution space is too large to find the optimum

value. Thus, it is necessary to reduce the solution space.

48

8

Fixed Cell

Movable Cell

Original placement

d=[1,2,2,3]
#1

#165

d=[0,0,0,8]

d=[8,0,0,0]

d=[0,0,1,7]

#2

Figure 3.8: There are 165 cases to make 8 by adding 4 numbers.

49

I propose a reduced solution space by limiting the moving range of each cell. For

the reduced solution space, I set a limit of moving range of each cell and the half of

white space is used as a maximum movement. For example, if the white space is 2 in

the left direction and 3 in the right direction, the maximum movement is 1 in the left

direction and 1 in the right. Because only integer is allowed in the placement problem,

1 is selected instead of 1.5 in the right direction. As a result, the cell can select one

of three movements like -1, 0 and +1, in which positive values mean movement in the

right direction, negative ones do in the left direction. It can reduce 165 cases to 18

cases as shown in Fig. 3.9.

Cell spreader : solution space reduction

9

d=[1,2,2,3]

m1=[0,1]
m2=[-1,0,1]
m3=[-1,0,1]

Solution space reduction 165 18
m1 m2 m3

Fixed Cell

Movable Cell

Original placement

Figure 3.9: The solution space is reduced from 165 to 18.

The method limiting the moving range is easily extended to the entire layout. As-

suming that the circuit layout is divided into 2x2 grids as shown in Fig. 3.10, 2 hotspots

out of 4 grids are predicted by binary classification. And then the moving range of each

cell is defined. The placement perturbation in the entire layout is also expressed by the

movement of each cell. The next step is to find the optimal values among all combina-

tions to minimize DRVs. Because original solution space includes the reduced solution

space, the optimization result of original one should be better than that of reduced one

if there is no limit of iteration. However, the original solution space may not be better

50

than the reduced one because the optimum solution is explored in a limited time. It

will be compared in the experimental results.

51

Cell spreader

10

Fixed Cell

Movable Cell

Minimize #DRVs

m1,2,1,1=[-2,-1,0,1], m1,2,1,2=[-1,0], m1,2,1,3=[0,1,2]
m1,2,2,1=[-2,-1,0,1], m1,2,2,2=[-1,0,1], m1,2,2,3=[-1,0,1]
…
m1,2,10,1=[0,1], m1,2,10,2=[-1,0,1], m1,2,10,3=[-1,0,1]

m2,2,1,1=[-2,-1,0,1], m2,2,1,2=[-1,0], m2,2,1,3=[0,1]
m2,2,2,1=[-2,-1,0,1], m2,2,2,2=[-1,0,1], m2,2,2,3=[-1,0]
…
m2,2,10,1=[-2,-1,0,1], m2,2,10,2=[-1,0,1], m2,2,10,3=[-1,0,1]

2,1 2,2

1,1 1,2

DRV Predicted

Figure 3.10: Placement perturbation in entire layout. Once the hotspots are determined,

the cells in the hotspots can be moved in the reduced solution space.

3.4 Experiments

3.4.1 Experiments Setup

Seven circuits taken from OPENCORES used for the experiments as shown in Table 3.1.

I performed synthesis, placement and routing using Synopsys Design Compiler and

IC Compiler-II respectively with 28nm technology of foundry. Because all standard

cells are composed of M1, the cells are routed from M2. In order to generate DRVs

intentionally, M2 and M3 are used for the clock and signal routing. Model training with

a circuit itself is not prohibited. For example, when I generate model for AC97 CTRL,

6 circuits excluding AC97 CTRL are used for the training and validation.

3.4.2 Hotspot Prediction

I implemented the binary classification in Python. TensorFlow is used to implement

multi-layer perceptron and XGBoost is used for the boosting [30][31]. Hyperparameter

52

Ta
bl

e
3.

1:
Ta

rg
et

ci
rc

ui
ts

an
d

th
e

tr
ai

ni
ng

da
ta

.T
he

nu
m

be
rs

in
th

e
tr

ai
ni

ng
da

ta
in

di
ca

te
th

e
in

iti
al

ut
ili

za
tio

n.

C
ir

cu
it

#I
ns

t
In

iti
al

Si
ze

Tr
ai

ni
ng

da
ta

ut
ili

za
tio

n
(c

el
lh

ei
gh

tx
ce

ll
he

ig
ht

)
A

C
97

C
T

R
L

A
E

S
C

O
R

E
E

H
E

R
N

E
T

M
E

M
C

T
R

L
P

C
I

B
R

ID
G

E
32

U
S

B
F

U
N

C
T

V
G

A
L

C
D

A
C

97
C

T
R

L
4,

94
8

70
13

0x
13

0
-

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

A
E

S
C

O
R

E
10

,4
28

50
16

0x
16

0
40

,4
5,

...
,7

0
-

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

E
T

H
E

R
N

E
T

24
,0

73
50

35
0x

35
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

-
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0

M
E

M
C

T
R

L
4,

12
3

60
11

0x
11

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
-

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

P
C

I
B

R
ID

G
E

32
8,

57
9

55
19

0x
19

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
40

,4
5,

...
,7

0
-

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

U
S

B
F

U
N

C
T

7,
23

9
45

17
0x

17
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

-
40

,4
5,

...
,7

0

V
G

A
L

C
D

34
,8

72
40

50
0x

50
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

40
,4

5,
...

,7
0

-

53

tuning is performed by Bayesian optimization. The comparison results between multi-

layer perceptron and boosting for 7 test circuits are shown in Table 3.2. In all test

cases, XGBoost shows better performance than multi-layer perceptron. I generated 90

models in each machine learning algorithm by changing the model architecture for

multi-layer perceptron and hyperparameter tuning for XGBoost. The value of logloss

in the table is the best one among 90 models.

Table 3.2: Comparison results of machine learning models in binary classification

tasks. In all circuits, XGBoost outperforms multi-layer perceptron.

Circuit
Initial Grid logloss

utilization size Multi-layer perceptron XGBoost

AC97 CTRL 70 13x13 0.12 0.11

AES CORE 50 16x16 0.11 0.10

ETHERNET 50 35x35 0.12 0.10

MEM CTRL 60 11x11 0.11 0.10

PCI BRIDGE32 55 19x19 0.12 0.11

USB FUNCT 45 17x17 0.11 0.10

VGA LCD 40 50x50 0.11 0.10

The prediction results are shown in Table 3.3. Because DRVs data are quite imbal-

anced, negative labels are much more than positive labels. The accuracy shows 95%

on average. The number of predicted hotspots is equal to the sum of true positive and

false positive which means cells in false negative are not moved even if they are actual

hotspots.

54

Ta
bl

e
3.

3:
Su

m
m

ar
y

of
ho

ts
po

tp
re

di
ct

io
n

re
su

lts
.

C
ir

cu
it

In
iti

al
#G

ri
ds

Tr
ue

po
si

tiv
e

Tr
ue

ne
ga

tiv
e

Fa
ls

e
po

si
tiv

e
Fa

ls
e

ne
ga

tiv
e

A
cc

ur
ac

y

ut
ili

za
tio

n
(T

P)
(T

N
)

(F
P)

(F
N

)
(T

P+
T

N
)/

(T
P+

T
N

+F
P+

FN
)

A
C

97
C

T
R

L
70

13
x1

3
16

14
5

1
7

0.
95

A
E

S
C

O
R

E
50

16
x1

6
4

22
1

2
29

0.
88

E
T

H
E

R
N

E
T

50
35

x3
5

26
11

71
10

18
0.

98

M
E

M
C

T
R

L
60

11
x1

1
6

10
5

3
7

0.
92

P
C

I
B

R
ID

G
E

32
55

19
x1

9
18

33
4

1
8

0.
98

U
S

B
F

U
N

C
T

45
17

x1
7

16
25

6
5

12
0.

94

V
G

A
L

C
D

40
50

x5
0

9
24

57
3

31
0.

99

55

3.4.3 Regression

The regression is also implemented in Python. The comparison results between multi-

layer perceptron and boosting for 7 test circuits are shown in Table 3.4. In all circuits,

XGBoost outperforms multi-layer perceptron. I generated 90 models in each machine

learning algorithm by changing the model architecture for multi-layer perceptron and

hyperparameter tuning for XGBoost. The value of root mean squared error in the table

is the best one among 90 models.

Table 3.4: Comparison results of machine learning models in regression tasks. In all

circuits, XGBoost outperforms multi-layer perceptron.

Circuit
Initial

#Grids
Root mean squared error

utilization Multi-layer perceptron XGBoost

AC97 CTRL 70 13x13 7.64 7.34

AES CORE 50 16x16 7.05 6.94

ETHERNET 50 35x35 7.72 7.31

MEM CTRL 60 11x11 7.51 7.25

PCI BRIDGE32 55 19x19 7.58 7.34

USB FUNCT 45 17x17 7.33 7.02

VGA LCD 40 50x50 7.34 7.16

The predicted results using regression model with XGBoost is shown in Fig. 3.11.

The number of DRVs are well predicted along the line of y=x even if unseen layout is

predicted by pre-trained model. As shown in Fig. 3.12, designs doomed to be routing

failure are filtered out when the predicted DRVs are more than 1000.

56

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+01 1.0E+03 1.0E+05

Pr
ed

ic
te

d
#D

R
V

s

Actual #DRVs

Figure 3.11: Regression results of 49 circuit layouts. There are 7 circuits and each

circuit has 7 different utilization values.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 20 40 60 80

#D
R

V
s

Init utilization

ac97_ctrl
aes_core
ethernet
mem_ctrl
pci_bridge32
usb_funct
vga_lcd

(a)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 20 40 60 80

#D
R

V
s

Init utilization

ac97_ctrl
aes_core
ethernet
mem_ctrl
pci_bridge32
usb_funct
vga_lcd

(b)

Figure 3.12: Initial utilization vs. DRVs. (a) scatter plot of DRVs of 7 circuits when

filtering is not applied (b) scatter plot of DRVs of 7 circuits when filtering is applied

57

3.4.4 Placement Perturbation

Placement perturbation is implemented in Python. It invokes commercial P&R tool to

move cells in the hotspots and extract features in entire layout. Precisely, it generates

a tcl script which can be readable in commercial P&R tool and the script includes

which cells are moved and how many sites each cell moves. Because the movement is

calculated from the bounding boxes, overlaps of cells are not found after cell move-

ment. If the placement has complicated rules, legalization should be performed after

cell movement. Once the features are gathered, predicted number of DRVs is obtained

using pre-trained regression model. Since the optimization algorithms propose better

values in each iteration, the number of DRVs keep decreasing. I use the GPyOpt mod-

ule for the Bayesian optimization [32]. The comparison results of optimization using

particle swarm optimization and Bayesian optimization are shown in Fig. 3.13. They

are obtained from the reduced solution spaces. Original solution spaces have different

results. They reduced the predicted number of DRVs. One of optimization algorithm

is not always better than the others.

350

400

450

500

0 100 200 300

Pr
ed

ic
te

d
#D

R
V

s b
y

X
G

B
oo

st

Iteration

Particle Swarm Optimization
Bayesian Optimization

Figure 3.13: Placement perturbation result of VGA LCD. The predicted DRVs are re-

duced by particle swarm optimization and Bayesian optimization.

58

I compared the predicted number of DRVs between original solution spaces and

reduced solution spaces as shown in Table. 3.5. In all circuits, the reduced solution

spaces have better results than the original solution spaces. Because the number of

evaluations is 300, the reduced solution spaces can have better results. If the number

becomes infinity, the original solution spaces will have better results because they

include the reduced solution spaces.

Table 3.5: Comparison results of solution spaces. In all circuits, reduced solution

spaces have better results than original solution spaces.

Circuit

Predicted number of DRVs

Placement Placement perturbation

by P&R tool Particle swarm optimization Bayesian optimization

Original Reduced Original Reduced

AC97 CTRL 434 401 (-7.6%) 387 (-10.8%) 406 (-6.5%) 403 (-7.1%)

AES CORE 466 425 (-8.8%) 408 (-12.4%) 416 (-10.7%) 408 (-12.4%)

ETHERNET 581 477 (-17.9%) 417 (-28.2%) 547 (-5.0%) 453 (-22.0%)

MEM CTRL 203 160 (-21.2%) 141 (-30.5%) 170 (-16.3%) 140 (-31.0%)

PCI BRIDGE32 379 379 (0.0%) 283 (-25.3%) 379 (0.0%) 334 (-11.9%)

USB FUNCT 453 421 (-7.1%) 385 (-15.0%) 421 (-7.1%) 383 (-15.5%)

VGA LCD 442 429 (-2.9%) 406 (-8.1%) 422 (-4.5%) 383 (-13.3%)

After the optimization is finished, routing is performed using the best result. Routed

#DRVs are also reduced as shown in Table. 3.6 and Table. 3.7. Because Bayesian op-

timization was performed sequentially, the runtime is much longer than that of PSO.

Though the reduction of predicted #DRVs of PSO is more than that of Bayesian op-

timization, Bayesian optimization shows better results for the routed #DRVs due to

the error of machine learning. In the routed layouts, the number of design rule viola-

tions is reduced by 22% on average over that using the conventional method to predict

routability with routing congestion. Since routed wirelength is correlated with tim-

ing slack, it is extracted when routing is done. The maximum degradation of routed

wirelength is about 1.4%.

59

Ta
bl

e
3.

6:
Pl

ac
em

en
tp

er
tu

rb
at

io
n

re
su

lts
us

in
g

pa
rt

ic
le

sw
ar

m
op

tim
iz

at
io

n.
Pr

ed
ic

te
d

#D
RV

s
ar

e
re

du
ce

d
by

-1
8.

6%
on

av
er

ag
e

an
d

th
e

ro
ut

ed
#D

RV
s

ar
e

re
du

ce
d

by
-1

8.
9%

on
av

er
ag

e

C
ir

cu
it

Pl
ac

em
en

tp
er

tu
rb

at
io

n
is

no
ta

pp
lie

d
Pl

ac
em

en
tp

er
tu

rb
at

io
n

is
ap

pl
ie

d

Pr
ed

ic
te

d
#D

RV
s

R
ou

te
d

#D
RV

s
R

ou
te

d
w

ir
el

en
gt

h
Pr

ed
ic

te
d

#D
RV

s
R

ou
te

d
#D

RV
s

R
ou

te
d

w
ir

el
en

gt
h

R
un

tim
e

[h
]

A
C

97
C

T
R

L
43

4
49

5
90

52
5.

44
38

7
(-

10
.8

%
)

45
4

(-
8.

3%
)

89
43

0.
61

(-
1.

2%
)

0.
28

A
E

S
C

O
R

E
46

6
54

5
16

25
96

.3
1

40
8

(-
12

.4
%

)
44

6
(-

18
.2

%
)

16
22

63
.0

6
(-

0.
2%

)
0.

27

E
T

H
E

R
N

E
T

58
1

52
0

76
82

66
.6

2
41

7
(-

28
.2

%
)

36
3

(-
30

.2
%

)
76

80
17

.7
1

(0
.0

%
)

0.
63

M
E

M
C

T
R

L
20

3
20

2
72

23
0.

24
14

1
(-

30
.5

%
)

13
7

(-
32

.2
%

)
73

03
9.

51
(1

.1
%

)
0.

20

P
C

I
B

R
ID

G
E

32
37

9
52

9
17

71
92

.2
8

28
3

(-
25

.3
%

)
47

5
(-

10
.2

%
)

17
79

36
.9

3
(0

.4
%

)
0.

26

U
S

B
F

U
N

C
T

45
3

37
6

14
06

19
.4

9
38

5
(-

15
.0

%
)

34
8

(-
7.

4%
)

14
05

32
.2

9
(-

0.
1%

)
0.

23

V
G

A
L

C
D

44
2

40
5

12
42

84
1.

67
40

6
(-

8.
1%

)
29

9
(-

26
.2

%
)

12
41

06
6.

05
(-

0.
1%

)
0.

77

Im
pr

ov
em

en
t

-1
8.

6%
-1

8.
9%

0.
0%

-

60

Ta
bl

e
3.

7:
Pl

ac
em

en
tp

er
tu

rb
at

io
n

re
su

lts
us

in
g

B
ay

es
ia

n
op

tim
iz

at
io

n.
Pr

ed
ic

te
d

#D
RV

s
ar

e
re

du
ce

d
by

-1
6.

2%
on

av
er

ag
e

an
d

th
e

ro
ut

ed
#D

RV
s

ar
e

re
du

ce
d

by
-2

2.
2%

on
av

er
ag

e

C
ir

cu
it

Pl
ac

em
en

tp
er

tu
rb

at
io

n
is

no
ta

pp
lie

d
Pl

ac
em

en
tp

er
tu

rb
at

io
n

is
ap

pl
ie

d

Pr
ed

ic
te

d
#D

RV
s

R
ou

te
d

#D
RV

s
R

ou
te

d
w

ir
el

en
gt

h
Pr

ed
ic

te
d

#D
RV

s
R

ou
te

d
#D

RV
s

R
ou

te
d

w
ir

el
en

gt
h

R
un

tim
e

[h
]

A
C

97
C

T
R

L
43

4
49

5
90

52
5.

44
40

6
(-

7.
1%

)
43

6
(-

11
.9

%
)

90
05

6.
73

(-
0.

5%
)

7.
22

A
E

S
C

O
R

E
46

6
54

5
16

25
96

.3
1

40
8

(-
12

.4
%

)
46

8
(-

14
.1

%
)

16
21

12
.6

3
(-

0.
3%

)
7.

80

E
T

H
E

R
N

E
T

58
1

52
0

76
82

66
.6

2
45

3
(-

22
.0

%
)

41
5

(-
20

.2
%

)
76

91
63

.4
9

(0
.1

%
)

20
.0

8

M
E

M
C

T
R

L
20

3
20

2
72

23
0.

24
14

0
(-

31
.0

%
)

14
0

(-
30

.7
%

)
73

24
1.

28
(1

.4
%

)
6.

02

P
C

I
B

R
ID

G
E

32
37

9
52

9
17

71
92

.2
8

33
4

(-
11

.9
%

)
42

6
(-

19
.5

%
)

17
76

59
.8

3
(0

.3
%

)
7.

98

U
S

B
F

U
N

C
T

45
3

37
6

14
06

19
.4

9
38

3
(-

15
.5

%
)

34
6

(-
8.

0%
)

14
09

90
.8

7
(0

.3
%

)
7.

02

V
G

A
L

C
D

44
2

40
5

12
42

84
1.

67
38

3
(-

13
.3

%
)

19
9

(-
50

.9
%

)
12

44
09

9.
5

(0
.1

%
)

22
.0

3

Im
pr

ov
em

en
t

-1
6.

2%
-2

2.
2%

0.
2%

-

61

Chapter 4

Conclusions

4.1 Synthesis of Representative Critical Path Circuits reflect-

ing BEOL Timing Variation

The section proposed a BEOL-aware methodology for synthesizing a representative

critical path circuit which can provide an accurate performance prediction on post-Si

target circuit in deep sub-micron technologies. Precisely, I proposed a methodology

which was able to incrementally explore routing patterns (i.e., BEOL reconfiguring)

as well as the conventional gate resizing. My synthesis framework integrated a set

of novel techniques: (1) extracting and classifying BEOL configurations for lightening

design space complexity, (2) formulating BEOL random variables for fast and accurate

timing analysis, and (3) exploring alternative (ring oscillator) circuit structures for

extending the applicability of this work. Through experiments with industry circuits,

it was shown that the synthesis framework was able to reduce the prediction error by

54% and 19% on average over that using the conventional critical path replica and

using the conventional method exploiting gate sizing only, respectively.

62

4.2 Reduction of Routing Failures through Enhanced Pre-

diction on Design Rule Violations in Placement

The section proposed a prediction methodology of design rule violations and a pertur-

bation methodology of placement to reduce design rule violations in deep sub-micron

technologies. Precisely, I combined machine learning and global optimization to min-

imize the predicted number of design rule violations. The hotspots are predicted by

binary classification and then placement perturbation in hotspots are performed us-

ing particle swarm optimization or Bayesian optimization until the number of design

rule violations is minimized, in which the number of DRVs is predicted by regression.

Since the optimization should be done in a limited time, the reduced solution space

for placement perturbation is also proposed. The solution space is reduced by limiting

the range of cell movement. Through experiments with industry circuits, it was shown

that the framework was able to reduce the number of design rule violations by 22%

on average over that using the conventional method to predict routability with routing

congestion.

63

Bibliography

[1] M. W. Kuemerle, S. K. Lichtensteiger, D. W. Douglas and I. L. Wemple, “Inte-

grated circuit design closure method for selective voltage binning,” U.S. Patent

7,475,366, 2009.

[2] V. Zolotov, C. Visweswariah and J. Xiong, “Voltage binning under process varia-

tion,” IEEE/ACM International Conference on Computer-Aided Design, pp. 425–

432, 2009.

[3] Q. Liu and S. S. Sapatnekar, “Capturing post-silicon variations using a represen-

tative critical path,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 29, no. 2, pp. 211–222, 2010.

[4] L. Lu, “Physical design challenges and innovations to meet power, speed, and

area scaling trend,” Keynote in ACM International Symposium on Physical De-

sign, 2017.

[5] T. Huynh-Bao, J. Ryckaert, Z. Tokey, A Mercha, D. Verkest, A Thean and P.

Wambacq, “Statistical timing analysis considering device and interconnect vari-

ability for beol requirements in the 5-nm node and beyond,” IEEE Transactions

on Very Large Scale Integration Systems, vol. 25, no. 5, pp. 1669-1680, 2017.

[6] K. Chiang, J. Huang, T. Cheng, C. Hsiao, J. Sun, C. Cheng, K. Lu, K. Su, C.

Lin, K. Chen, K. Tam, T. Liu, K. Su and M. Jeng, “A comprehensive solution

64

for beol variation characterization and modeling,” Simulation of Semiconductor

Processes and Devices, pp. 307–310, 2016.

[7] A.K.M. M. Islam and H. Onodera, “On-chip detection of process shift and pro-

cess spread for post-silicon diagnosis and model-hardware correlation,” IEICE

Transactions on Information and Systems, vol. E96D, no. 9, pp. 1971–1979,

2013.

[8] X. Qi, A. Gyure, Y. Luo, S. C. Lo, M. Shahram, and K. Singhal, “Measurement

and characterization of pattern dependent process variations of interconnect resis-

tance, capacitance and inductance in nanometer technologies,” ACM Great Lakes

Symposium on VLSI, pp. 14–18, 2006.

[9] C. Liu, O. Law and F. Li, “An accurate interconnect test structure for parasitic val-

idation in on-chip machine learning accelerators,” arXiv:1701.03181 [cs], 2017.

[10] A. Drake, R. Senger, H. Singh, G. Carpenter and N. James, “Dynamic measure-

ment of critical-path timing,” IEEE International Conference on Integrated Cir-

cuit Design and Technology and Tutorial, pp. 249–252, 2008.

[11] M. Bhushan, A. Gattiker, M. Ketchen and K. Das, “Ring oscillators for cmos pro-

cess tuning and variability control,” IEEE Transaction on Semiconductor Manu-

facturing, vol. 19, no. 1, pp. 10–18, 2006.

[12] T. Chan, P. Gupta, A. B. Kahng and L. Lai, “Synthesis and analysis of design-

dependent ring oscillator (ddro) performance monitors,” IEEE Transactions on

Very Large Scale Integration Systems, vol. 22, no. 10, pp. 2117–2130, 2014.

[13] W. C. Elmore, “The transient analysis of damped linear networks with particular

regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, no. 1, pp.

55–63, 1948.

65

[14] R. Gupta, B. Tutuianu and L. T. Pileggi, “The elmore delay as a bound for rc trees

with generalized input signals,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 16, no. 1, pp. 95–104, 1997.

[15] OpenCores: Open Source IP-Cores, http://www.opencores.org

[16] TSMC and Samsung 5nm comparison, https://semiwiki.com/semiconductor-

manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/

[17] M. Hogan, “Leveraging baseline checks for robust reliability verification,” White

paper of Mentor, A Siemens business.

[18] W-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi, “BEOL stack-aware

routability prediction from placement using data mining techniques,” Interna-

tional Conference on Computer Design, pp. 41–48, 2016.

[19] A. F. Tabrizi, N. K. Darav, L. Rakai, A. Kennings, and L. Behjat, “Detailed rout-

ing violation prediction during placement using machine learning,” International

Symposium on VLSI Design, Automation and Test, pp. 1–4, 2017.

[20] R. Islam, and A Shahjalal, “Predicting drv violations using ensemble random

forest algorithm,” ACM/IEEE Design Automation Conference, pp. 1–2, 2019.

[21] T-C. Yu, S-Y. Fang, H-S. Chiu, K-S. Hu, P. H-Y. Tai, C. C-F. Shen, and H. Sheng,

“Pin accessibility prediction and optimization with deep learning-based pin part-

tern recognition,” ACM/IEEE Design Automation Conference, pp. 1–6, 2019.

[22] R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G-J. Nam, and J. Hu, “DRC

hotspot prediction at sub-10nm process nodes using customized convolutional

network,” International Symposium on Physical Design, pp. 135–142, 2020.

[23] W-T. J. Chan, P-H. Ho, A. B. Kahng, S. Nath, and P. Saxena, “Routability opti-

mization for industrial designs at sub-14nm process nodes using machine learn-

ing,” International Symposium on Physical Design, pp. 15–21, 2017.

66

[24] T-C. Yu, S-Y. Fang, H-S. Chiu, K-S. Hu, P. H-Y. Tai, C. C-F. Shen, and H. Sheng,

“Lookahead placement optimization with cell library-based pin accessibility pre-

diction via active learning,” International Symposium on Physical Design, pp.

65–72, 2020.

[25] A. Kahng, A. B. Kahng, H. Lee, and J. Li, “Probe: a placement, routing, back-

end-of-line measurement utility,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 7, pp. 1459–1472, 2018.

[26] C. E. Rasmussen, and C. Williams, “Gaussian processes for machine learning,”

The MIT Press, 2006.

[27] D. R. Jones, M. Schonlau and W. J. Welch, “Efficient global optimization of ex-

pensive black-box functions,” Journal of Global Optimization, vol. 13, pp 455—

492, 1998.

[28] D. D. Cox and S. John, “Sdo: a statistical method for global optimization,” Mul-

tidisciplinary Design Optimization: State-of-the-Art, pp 315—329, 1997.

[29] H. J. Kushner, “A new method of locating the maximum point of an arbitrary

multipeak curve in the presence of noise,” Journal of Basic Engineering, vol. 37,

no. 1, pp 97—106, 1964.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:

large-scale machine learning on heterogeneous systems,” arXiv:1603.04467 [cs],

2015.

67

[31] T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting system,”

arXiv:1603.02754 [cs], 2016.

[32] GPyOpt, http://github.com/SheffieldML/GPyOpt

68

초록

타이밍분석및디자인룰위반제거는반도체칩제조를위한마스크제작전에

완료되어야할필수과정이다.그러나트랜지스터와인터커넥트의변이가증가하고

있고 디자인 룰 역시 복잡해지고 있기 때문에 타이밍 분석 및 디자인 룰 위반 제거

는초미세회로에서더어려워지고있다.본논문에서는초미세설계를위한두가지

문제인타이밍분석과디자인룰위반에대해다룬다.

첫번째로공정코너에서타이밍분석은실리콘으로제작된회로의성능을정확

히 예측하지 못한다. 그 이유는 공정 코너에서 가장 느린 타이밍 경로가 모든 공정

조건에서도가장느린것은아니기때문이다.게다가칩내의임계경로에서인터커

넥트에의한지연시간이전체지연시간에서의영향이증가하고있고, 10나노이하

공정에서는 20%를초과하고있다.즉,실리콘으로제작된회로의성능을정확히예

측하기위해서는대표회로가트랜지스터의변이뿐만아니라인터커넥트의변이도

반영해야한다. 인터커넥트를 구성하는 금속이 10층 이상 사용되고 있고, 각 층을

구성하는 금속의 저항과 캐패시턴스와 비아 저항이 모두 회로 지연 시간에 영향을

주기 때문에 대표 회로를 찾는 문제는 차원이 매우 높은 영역에서 최적의 해를 찾

는 방법이 필요하다. 이를 위해 인터커넥트를 제작하는 공정(백 엔드 오브 라인)의

변이를반영한대표회로를생성하는방법을제안하였다.공정변이가없을때가장

느린타이밍경로에사용된게이트와라우팅패턴을변경하면서점진적으로탐색하

는방법이다.구체적으로,본논문에서제안하는합성프레임워크는다음의새로운

기술들을 통합하였다: (1) 라우팅을 구성하는 여러 금속 층과 비아를 추출하고 탐

색 시간 감소를 위해 유사한 구성들을 같은 범주로 분류하였다. (2) 빠르고 정확한

69

타이밍분석을위하여여러금속층과비아들의변이를수식화하였다. (3)확장성을

고려하여일반적인링오실레이터로대표회로를탐색하였다.

두번째로 디자인 룰의 복잡도가 증가하고 있고, 이로 인해 표준 셀들의 인터커

넥트를 통한 연결을 진행하는 동안 디자인 룰 위반이 증가하고 있다. 게다가 표준

셀의크기가계속작아지면서셀들의연결은점점어려워지고있다.기존에는회로

내 모든 표준 셀을 연결하는데 필요한 트랙 수, 가능한 트랙 수, 이들 간의 차이를

이용하여 연결 가능성을 판단하고, 디자인 룰 위반이 발생하지 않도록 셀 배치를

최적화하였다.그러나기존방법은최신공정에서는정확하지않기때문에더많은

정보를 이용한 회로내 모든 표준 셀 사이의 연결 가능성을 예측하는 방법이 필요

하다. 본 논문에서는 기계 학습을 통해 디자인 룰 위반이 발생하는 영역 및 개수를

예측하고 이를 줄이기 위해 표준 셀의 배치를 바꾸는 방법을 제안하였다. 디자인

룰 위반 영역은 이진 분류로 예측하였고 표준 셀의 배치는 디자인 룰 위반 개수를

최소화하는방향으로최적화를수행하였다.제안하는프레임워크는다음의세가지

기술로구성되었다: (1)회로레이아웃을여러개의정사각형격자로나누고각격자

에서라우팅을예측할수있는요소들을추출한다. (2)각격자에서디자인룰위반이

있는지여부를판단하는이진분류를수행한다. (3)메타휴리스틱최적화또는베이

지안 최적화를 이용하여 전체 디자인 룰 위반 개수가 감소하도록 각 격자에 있는

표준셀을움직인다.

주요어: 대표 임계 경로 회로, 회로 지연 시간 예측, 공정 변이, 백 엔드 오브 라인,

디자인룰위반,기계학습,스탠다드셀배치변경,메타휴리스틱,베이지안최적화

student number: 2001-21599

70

	1 Introduction
	1.1 Representative Critical Path Circuit
	1.2 Prediction of Design Rule Violations and Placement Perturbation . . .
	1.3 Contributions of This Dissertation

	2 Methodology for Synthesizing Representative Critical Path Circuits reflecting BEOL Timing Variation
	2.1 Motivation .
	2.2 Definitions and Overall Flow .
	2.3 Techniques for BEOL-Aware RCP Generation
	2.3.1 Clustering BEOL Configurations
	2.3.2 Formulating Statistical BEOL Random Variables
	2.3.3 Delay Modeling .
	2.3.4 Exploring Ring Oscillator Circuit Structures

	2.4 Experimental Results .
	2.5 Further Study on Variations .

	3 Methodology for Reducing Routing Failures through Enhanced Prediction on Design Rule Violations in Placement
	3.1 Motivation .
	3.2 Overall Flow .
	3.3 Techniques for Reducing Routing Failures
	3.3.1 Binary Classification .
	3.3.2 Regression .
	3.3.3 Optimization .
	3.3.4 Placement Perturbation .

	3.4 Experiments .
	3.4.1 Experiments Setup .
	3.4.2 Hotspot Prediction .
	3.4.3 Regression .
	3.4.4 Placement Perturbation .

	4 Conclusions
	4.1 Synthesis of Representative Critical Path Circuits reflecting BEOL Timing Variation .
	4.2 Reduction of Routing Failures through Enhanced Prediction on Design Rule Violations in Placement .

	Abstract (In Korean)

<startpage>16
1 Introduction 1
 1.1 Representative Critical Path Circuit 1
 1.2 Prediction of Design Rule Violations and Placement Perturbation . . . 5
 1.3 Contributions of This Dissertation 7
2 Methodology for Synthesizing Representative Critical Path Circuits reflecting BEOL Timing Variation 9
 2.1 Motivation . 9
 2.2 Definitions and Overall Flow . 12
 2.3 Techniques for BEOL-Aware RCP Generation 17
 2.3.1 Clustering BEOL Configurations 17
 2.3.2 Formulating Statistical BEOL Random Variables 18
 2.3.3 Delay Modeling . 22
 2.3.4 Exploring Ring Oscillator Circuit Structures 24
 2.4 Experimental Results . 26
 2.5 Further Study on Variations . 37
3 Methodology for Reducing Routing Failures through Enhanced Prediction on Design Rule Violations in Placement 39
 3.1 Motivation . 39
 3.2 Overall Flow . 42
 3.3 Techniques for Reducing Routing Failures 43
 3.3.1 Binary Classification . 43
 3.3.2 Regression . 45
 3.3.3 Optimization . 46
 3.3.4 Placement Perturbation . 47
 3.4 Experiments . 51
 3.4.1 Experiments Setup . 51
 3.4.2 Hotspot Prediction . 51
 3.4.3 Regression . 55
 3.4.4 Placement Perturbation . 57
4 Conclusions 61
 4.1 Synthesis of Representative Critical Path Circuits reflecting BEOL Timing Variation . 61
 4.2 Reduction of Routing Failures through Enhanced Prediction on Design Rule Violations in Placement . 62
Abstract (In Korean) 69
</body>

