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Abstract

Timing analysis and clearing design rule violations are the essential steps for taping
out a chip. However, they keep getting harder in deep sub-micron circuits because the
variations of transistors and interconnects have been increasing and design rules have
become more complex. This dissertation addresses two problems on timing analysis
and design rule violations for synthesizing deep sub-micron circuits.

Firstly, timing analysis in process corners can not capture post-Si performance ac-
curately because the slowest path in the process corner is not always the slowest one
in the post-Si instances. In addition, the proportion of interconnect delay in the critical
path on a chip is increasing and becomes over 20% in sub-10nm technologies, which
means in order to capture post-Si performance accurately, the representative critical
path circuit should reflect not only FEOL (front-end-of-line) but also BEOL (back-
end-of-line) variations. Since the number of BEOL metal layers exceeds ten and the
layers have variation on resistance and capacitance intermixed with resistance variation
on vias between them, a very high dimensional design space exploration is necessary
to synthesize a representative critical path circuit which is able to provide an accurate
performance prediction. To cope with this, I propose a BEOL-aware methodology of
synthesizing a representative critical path circuit, which is able to incrementally ex-
plore, starting from an initial path circuit on the post-Si target circuit, routing patterns
(i.e., BEOL reconfiguring) as well as gate resizing on the path circuit. Precisely, the
synthesis framework of critical path circuit integrates a set of novel techniques: (1) ex-
tracting and classifying BEOL configurations for lightening design space complexity,
(2) formulating BEOL random variables for fast and accurate timing analysis, and (3)
exploring alternative (ring oscillator) circuit structures for extending the applicability
of this work.

Secondly, the complexity of design rules has been increasing and results in more



design rule violations during routing. In addition, the size of standard cell keeps de-
creasing and it makes routing harder. In the conventional P&R flow, the routability of
pre-routed layout is predicted by routing congestion obtained from global routing, and
then placement is optimized not to cause design rule violations. But it turned out to
be inaccurate in advanced technology nodes so that it is necessary to predict routabil-
ity with more features. I propose a methodology of predicting the hotspots of design
rule violations (DRVs) using machine learning with placement related features and the
conventional routing congestion, and perturbating placed cells to reduce the number
of DRVs. Precisely, the hotspots are predicted by a pre-trained binary classification
model and placement perturbation is performed by global optimization methods to
minimize the number of DRVs predicted by a pre-trained regression model. To do
this, the framework is composed of three techniques: (1) dividing the circuit layout
into multiple rectangular grids and extracting features such as pin density, cell density,
global routing results (demand, capacity and overflow), and more in the placement
phase, (2) predicting if each grid has DRVs using a binary classification model, and
(3) perturbating the placed standard cells in the hotspots to minimize the number of

DRVs predicted by a regression model.

keywords: Representative critical path, circuit delay prediction, process variation,
BEOL, design rule violation, machine learning, placement perturbation, metaheuristic,
Bayesian optimization

student number: 2001-21599
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Chapter 1

Introduction

1.1 Representative Critical Path Circuit

Due to the scaling down of transistors and interconnects, process variations are getting
large and cause manufactured chips to expose a wide range of speed. Converting the
fraction of too slow chips into good ones by adjusting their supply voltage, called volt-
age binning, is commonly applied in industry [1, 2]. In order to measure the maximum
frequency of the chip, it takes a considerable time and it is not feasible in a limited
time because we have to check whether the circuit is working with lots of test vectors
at 2.50GHz, 2.51GHz, 2.52GHz and so on. Thus, the delay of representative circuit
on a chip such as critical path replica or ring oscillator, which can be measured in a
minute, is used to predict the delay of the post-Si target circuit. However, if the gap
between the delays of the representative critical path circuit and the target post-Si chip
is large, the chip shall be assigned to a wrong bin, resulting in a parametric yield loss.
Consequently, it is highly important to install a representative critical path circuit on
the target circuit such that its delay prediction error should be as minimal as possible.

Since the maximum frequency, F,q, of a target circuit is determined by the slow-
est path on the circuit, the critical path replica (CPR), which corresponds to the slowest

path at nominal parameter values, is a widely acceptable candidate of representative



critical path circuit [3]. However, the CPR delay is not always the slowest one for every
instance of target circuit due to process variation. As shown in Fig. 1.1, in which the
blue and red dots indicate the delay of CPR and the delay of some near-critical path,
respectively, the near-critical path is not the slowest one at nominal process condition

while it becomes the slowest one at a certain process condition, as indicated by green

rectangle.
> @ Delay of critical path replica (CPR)
© Ijl @ Delay of near-critical path
| C=a
g O Path delay distribution at nominal process condition
©) ’ [ Path delay distribution at a certain process variation
Process variation

Circuit delay

Figure 1.1: Changes of delay of critical path replica (CPR) and near-critical path at

nominal and process variation conditions.

More importantly, the proportion of BEOL delay in the critical path occupies over
20% in sub-10nm technologies as shown in Fig. 1.2 and the number of metal layers in-
creases, counting over ten layers [4, 5]. The fact that the metal layers are not so strongly
correlated each other makes an accurate prediction of circuit performance hard, even
causing circuit failure as Chiang et al. point out the potential impacting non-trivial
BEOL contribution [6]. For instance, since the clock and data paths entail different
BEOL configurations, their delays expose different characteristics by the BEOL vari-
ation, which may cause hold-time failure although there exists no hold-time violation
under conventional BEOL corners based sign-off that assumes all BEOL layers move
together to the same corner. Specifically, if the clock path is composed of upper metal
layers in RC),q, corner while the data path is composed of lower metal layers in
RC'in corner, it may enable the data path to be faster than the clock path, causing

hold-time failure.



22%

B Gate delay
B \Vire delay

Normalized delay

5 7 10 14
Technology node [nm]

Figure 1.2: Transistor and interconnect delay of an inverter driving 150 units of con-
tacted gate pitch of wire length and fan-out of 3. At 5-nm node technology, the contri-

bution by interconnect becomes as significant as that by the devices [5].

If we can monitor FEOL process shift and BEOL resistance/capacitance (RC') on
a chip, we can find the critical path delay through applying the variation to multiple
candidates of critical path. FEOL process shift can be monitored by the pass-gate based
process monitors [7]. Since special inverter structures with pass transistor are more
sensitive to transistor variation than NAND and NOR gates, ring oscillators using the
special inverter structures are suitable for monitoring FEOL process shift like TT, FF,
SS, FS, and SE.

On the other hand, there is no easy way to accurately monitor the resistance and
capacitance of metal and via layers on a chip. Even though resistance and capacitance
of BEOL layers can be measured using TEGs in scribe line, the measured values are
totally different from that of resistance and capacitance on the chip because the pattern
densities are not identical and CMP (chemical mechanical polishing) process makes

the metal height on the chip differ from that in scribe line [8]. There exists an approach



to monitor BEOL RC' by using ring oscillators: Liu, Law, and Li proposed a test
structure to extract resistance and capacitance of BEOL load from the frequency and
I,y values of ring oscillator at three modes (in-phase, out-of-phase, and quiet modes)
[9]. It predicts RC' of IW1S metal reasonably well, but the prediction for 1W2S metal
has large errors, i.e., 51% for resistance and 15% for capacitance. In addition, as the
variation sources are diverse and some of them are hard to monitor, a new methodology
to synthesize a representative critical path circuit for accurately capturing the chip
performance is required.

Prior works on monitoring circuit performance have been done by either synthesiz-
ing a representative critical path circuit or a ring oscillator. Note that in case where the
delay of critical path circuit is hundred picoseconds level, a signal generator and time-
to-digital converter are needed [10] whereas in case where the delay of ring oscillator
is a few GHz frequency, it can be lowered by frequency divider to KHz level [11]. Re-
garding synthesizing a representative critical path (RCP) circuit, Liu and Sapatnekar
proposed an iterative gate sizing method to fine tune the nominal critical path circuit
[3]. Since it is synthesized with 90nm technology, BEOL delay variation is expected
to be much lower than FEOL delay variation. For synthesizing a ring oscillator, it pro-
vides advantages such as small area, easy to design, and easy to measure the charac-
teristics like frequency and IDDQ (quiescent supply current). Chan et al. attempted to
synthesize design-dependent ring oscillators [12], in which multiple design-dependent
ring oscillators with BEOL load were designed while the BEOL load was taken from
the wire-length distribution of nets in critical paths. Even though the method consid-
ers BEOL load in monitoring circuit performance, it does not take into account the
configurations of multiple metal and via layers in the BEOL load formulation.

To the best of my knowledge, no conventional methods have synthesized represen-
tative critical path or ring oscillator circuit by taking into account the process variation

on multiple BEOL layers. This work overcomes this limitation.



1.2 Prediction of Design Rule Violations and Placement Per-
turbation

Physical design is a process to generate a physical layout from circuit netlists. It is
composed of several steps such as importing design, floorplan, powerplan, placement,
clock tree synthesis, routing and chip finish. The objectives of physical design are to
clear design rule violations (DRVs) and meet the constraints like timing and power.
Because design rules are the geometric constraints not to cause open or short of pat-
terns in transistors and interconnects, the design rule violations should be cleared for
taping out a chip. However, there are tens of thousands of design rules in advanced
technologies as shown in Fig. 1.3 and routing resources are not enough because the

height of standard cell has been reduced and it becomes 6 tracks in 5Snm technology.
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Figure 1.3: Growth in DRC rules [17].

The lack of pin access point in the standard cell makes the routing harder and
causes lots of design rule violations. Prediction of routability in placement phase can

help to reduce the number of DRVs in routed layout by avoiding the placement which



will cause DRVs. In order to predict the routability, the commercial P&R tools use
routing congestion by calculating capacity, demand and overflow in each global rout-
ing cell but it turned out to be inaccurate and incomplete in advanced technologies [18].
The routing congestion map in pre-routed layout is totally different from the map of
DRVs in routed layout. Thus, it is necessary to predict routability with more features.

Some noticeable works using machine learning have been reported. They intro-
duced features determined by placed cells such as pin density, pin proximity, cell den-
sity and so on. The placement related features as well as routing congestion are used
to train machine learning model and the hotspots including design rule violations are
predicted by the model. They focused on improving the prediction accuracy with vari-
ous machine learning algorithm and features. Chan et al. trained the machine learning
model using SVM (Support Vector Machine) with RBF (Radial Basis Function) ker-
nel with placement-derived parameters such as pin density, minimum proximity of
any pair of pins, number of complex cells, sum of incoming and outgoing hyperedges,
number of buried nets, arithmetic and geometric mean values of placement-base Rent
parameter, the worst signal transition time of all pins at the worst corner and the small-
est values of the worst negative slack of setup time of any pin within the grid [18].
Tabrizi et al. used RUSBoost for imbalanced data classification that combines data
sample and boosting because the number of hotspots including DRVs is much less
than that of non-hotspots and they are imbalanced data [19]. Islam et al. introduced
random forest algorithm to predict design rule violations [20]. Yu et al. changed the
pin patterns into image and CNN (Convolutional Neural Network) is used to train the
model [21]. Liang et al. proposed customized CNN to improve the prediction accuracy
[22].

The next step of routability prediction is to reduce the number of design rule viola-
tions using placement optimization. Chan et al. proposed machine learning predictor-
guided routability optimization algorithm [23]. White spaces are calculated in local

windows around hotspots and cells are moved incrementally to redistribute white



space. Yu et al. proposed machine learning model-guided placement [24]. The trained
model is adopted to inference the DRV probabilities using the image of pins in place-
ment cells and gives more space between cells until the probability is less than pre-
defined threshold value. However, pin patterns are not the only one to result in design
rule violations. Kahng et al. proposed mesh like placement and perturbations by two
neighbor-swap moves to measure routing capacity [25]. Even though the pin shapes
for all placements are exactly same, the number of design rule violations increases as
the swapping number increases. It means that it is not enough to predict routability us-
ing only placement related features. The routing related features like capacity, demand
and overflow should be considered to predict the routability. However, it takes time to
extract the routing related features and dynamic programming based approach to ex-
plore all cases is not feasible. Thus, global optimization algorithms should be applied
to this problem because the optimum value can be obtained from some samples.

This work presents machine learning guided placement perturbation for routing
congested circuits. Placement related features and routing related features are com-
bined to predict the routability, and the number of design rule violations is reduced by

placement perturbation with global optimization algorithms in a limited time.

1.3 Contributions of This Dissertation

In this dissertation, synthesis of representative critical path circuits and prediction of
design rule violations are studied, which brings better yield and reduced chip area.

In Chapter 2, I propose a BEOL-aware methodology of synthesizing a representa-
tive critical path circuit which is able to incrementally explore, starting from an initial
path circuit on the post-Si target circuit, routing patterns (i.e., BEOL reconfiguring) as
well as gate resizing on the path circuit, devising the following novel techniques: (1)
extracting and classifying BEOL configurations for lightening design space complex-

ity, (2) formulating BEOL random variables for fast and accurate timing analysis, and



(3) exploring alternative (ring oscillator) circuit structures for extending the applica-
bility of my work. In short, through experiments with industry circuits, it is shown that
the synthesis framework is able to reduce the prediction error by 54% and 19% on av-
erage over that using the conventional critical path replica and using the conventional
method exploiting gate sizing only, respectively.

In Chapter 3, I propose a methodology to predict the hotspots which include design
rule violations using machine learning and reduce the number of design rule violations
using placement perturbation of standard cells in the hotspots. Conventional prediction
method by using local routing congestion has its limitation of low prediction accuracy.
Thus, recent machine learning based researches used more features to predict hotspots
for the better accuracy. After predicting the hotspots, a method to reduce the number
of design rule violations should be applied but there is no concrete method. I propose a
method to predict and reduce the design rule violations by combining three techniques
such as binary classification, regression and global optimization. The framework which
is composed of hotspots prediction and placement perturbation reduces the number of

design rule violations by 22% on average.



Chapter 2

Methodology for Synthesizing Representative Critical
Path Circuits reflecting BEOL Timing Variation

2.1 Motivation

Because the maximum frequency or delay of post-Si circuit instances can’t be mea-
sured in a limited time, a representative critical path circuit is necessary for the voltage
binning.

LetS = {C1,--- ,Cy,} be the set of all post-Si circuit instances of a target circuit
Clarget With a representative critical path circuit denoted as rep(Ciarget ), and 7ep(C;)
be the circuit instance corresponding to 7cp(Ciarger) in Cj € S.

Then, the performance prediction error, €;, on C; € S is defined as

€(Cy) = |delay(rep(C;)) — delay(C;)|/delay(C;) 2.1

where delay(rcp(C;)) represents the delay of the representative path in circuit instance
C; and delay(C;) indicates the longest path delay in C;.

Then, since it is practically impossible to find the exact value of delay(C;) for
every circuit instance in S in a limited time, I predict it by measuring delay(rep(C;)).

Thus, it is very important to synthesize 7cp(Ciarget) such that €(C;) for every C; € S



should be as small as possible. Two metrics commonly used to evaluate the quality
of circuit rep(Ciarger) are the maximum prediction error (,,4,) and the correlation

coefficient (p) between delay(rcp(C;)) and delay(C;), as formally expressed as

€maz = maz{e(C1),€e(Ca),- - ,e(Cp)} (2.2)

. E[(8(rep) — tsrep)) (0(€) — ps(c))] 23)
Ts(rep) * T(c) '

where d(rcp) and 0(c) are the set of the delay values on circuits 7¢p(Ch), - - -, rep(Chy)
and the set of the longest delay values on circuit instances C1, - - -, C), in S, respec-
tively. u and o indicate the average and standard deviation of each of the sets §(rcp)
and 6(c).

By performing Monte Carlo simulation on target circuit Ciqrget and its represen-
tative critical path circuit rcp, reflecting process variation, it is possible to predict the
values of €,,45 and correlation coefficient p. Thus, the key challenge is to synthesize
rcp(Charget) such that the value of p is as high as possible while the value of €, is
as small as possible or is below a certain limit.

One noticeable work is that Liu and Sapatnekar [3] proposed to generate circuit
rcp(Charget) by iteratively tuning the size of every gate namely considering FEOL
variation on the critical path replica in C4yget, in Which they tried to maximize the
value of correlation coefficient p. To see how much the method is effective in a deep
submicron technology, I applied the method to circuit MEM_CTRL that is a design
component in OpenCores [15], on which I performed synthesis, placement, and rout-
ing at 3GHz with 7nm technology of partner foundry. The critical path replica taken
from MEM_CTRL is composed of 25 (gate-to-gate) stages and the interconnect delay
occupies 8.9% of the critical path delay when all parameters are set to nominal values.

I ran Monte Carlo simulation with 1,000 samples (i.e., equivalently 1,000 post-Si
circuit instances) for the representative circuit rcp(MEM_CTRL) synthesized by [3] by

varying the values of FEOL and BEOL parameters. Fig. 2.1(a) shows the scatter plot

10



280 7 280 7

p=0.987 ’,,’ p=0.995 .,,‘
8 260 '8 260
8 8
] 3 1.10%
O O
& 240 & 240

, 4
4
4
4
4
220 220 “
220 240 260 280 220 240 260 280
Critical path delay on Cyye; [PS] Critical path delay on Cy,ge; [PS]
(@) (b)

Figure 2.1: Monte Carlo simulation results by varying the values of FEOL and
BEOL parameters. (a) Scatter plot of performance prediction by using rcp(mem _ctrl)
produced by gate sizing [3] (b) Scatter plot of performance prediction by using
rep(mem_ctrl) produced by randomly tuning BEOL configurations as well as gate

sizing.

of the delay pairs of the 1000 circuit instances of target circuit MEM_CTRL and the
rcp(MEM_CTRL), from which it is taken that €4, = 2.34% and p = 0.987. On the
other hand, Fig. 2.1(b) shows the scatter plot of delay pairs of another 1000 circuit
instances of the target circuit MEM_CTRL and the rcp(MEM_CTRL synthesized by con-
sidering BEOL and FEOL variations, from which it is taken that €,,,, = 1.10% and
p = 0.995. Clearly, the improvement implies that tuning both of the gate size and in-
terconnect on the critical path replica considering FEOL and BEOL variations is very
necessary for accurate performance prediction of post-Si circuits in deep submicron
technologies. In the following, I propose a systematic methodology of synthesizing a
representative critical path circuit of Cyq;ger such that the value of correlation coeffi-

cient p is maximized while constraining the €,,,, value to a certain bound.
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2.2 Definitions and Overall Flow

This section describes the overall flow of generating a representative critical path cir-
cuit rep(Crarget) together with defining BEOL configuration, BEOL reconfiguring,

and gate resizing, which are the essential ingredients for generating rcp(Crarget)-

Definition 1. BEOL configuration from g; (a driving logic cell) to g;+1 (one of its
driven cells) is defined to the ordered sequence of metal/via layer numbers with metal

length information corresponding to the detailed routing between g; and g; 1.

Fig. 2.2 shows a simple critical path from flip-flop f; to flip-flop fo which consists
of three BEOL configurations BEOLI, BEOL2, and BEOL3, showing routing details
of BEOL2. 1 collect BEOL configurations on a set of critical and near-critical routing
paths in a table form as shown in Table 2.1 where for example, M2 : 5 indicates
metal-2 layer with length of Sum and V2 indicates via-2 layer.

Let B(Ciarget) be the set of all BEOL configurations extracted from top K slowest
(flip-flop to flop-flop) paths! in Ctarget to which the placement and routing have al-
ready been applied. I prepare B(Clqrget), Which I call BEOL configuration library, as

a pre-processing step in the framework of synthesizing rep(Ciarget)-

D Q|—BeorL » (Beorz J b SJ— D Q

Figure 2.2: An example of critical path consisting of three BEOLSs, showing the routing
details of BEOL2.

Definition 2. BEOL reconfiguring on 7cp(Ciarget) in Crarget refers to an incremen-

'K is set to 1000 in this work.
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Table 2.1: BEOL configuration in a table form corresponding to BEOL? in Fig. 2.2.

Driving cell : Driven cell | Routing details

M2:5 V2 M3:3 V2 M2:2 V2
BUF_X4 : INV_X3 M3:2 V2 M2:2 V2 M3:3 V3
M4:4 V3 M3:0 V2 M2:2

tally updated circuit of 7cp(Charget) in a way that one of BEOLs in rc¢p(Charget) is
replaced with a BEOL with the same type and size of driving and driven cells in BEOL
library B. I use Rppor to represent the set of all possible BEOL reconfigurings on
TCP(Ctarget)-

Fig. 2.3 shows a critical path on which BEOL?2 is tried to be reconfigured using n
alternatives BEOL2-1, BEOL2-2, - - -, BEOL2-n, one at a time.

D Q BEOLL | X4 {(BEOLZ |} {}6 BEoLs D Q

BEOL2-1

m

BEOL2-2

Figure 2.3: An example of BEOL reconfiguring for BEOL2. If there are n distinct
BEOL configurations in B such that the left and right end cells are BUF_X4 and
INV_X3, exactly n BEOL reconfigurations will be performed for BEOL2.

] 2-t) &) 3
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Definition 3. Gate resizing on rcp(Ctmnget) in Ciarger refers to an incrementally up-
dated circuit of rep(Charget) in a way that one of gate cells in rcp(Charget) is replaced
with one-level upsized or downsized cell of the same type in the cell library. I use

RrEeor to indicate the set of all possible gate resizings on rcp(C’tmget).

Fig. 2.4 shows a critical path where BUF_X4 is attempted to be upsized or down-
sized. Note that when the left end cell (BUF_X4) is resizing to produce an alternative

rcp(Cmrget), the right end cell (INV) remains intact, and vice versa.

D Q T b oz | b (BEoL3 | D Q

(a)

D Ql—Beort J b (BeoL2 | b =7 D Q

()

Figure 2.4: An example of gate resizing for BUF_X4 in Fig 2.2. (a) Upsizing. (b)

Downsizing.

Given a layout of target circuit Cyqyget, the proposed exploration algorithm, called
RCP-exp, is to synthesize a representative critical path circuit rcp(Cigrger) Which
leads to the highest p value in Eq.2.3 while ¢4, in Eq.2.2 does not exceed €pound-
Precisely, as a pre-processing step, RCP-exp builds a BEOL configuration library
from the layout of Cl4;get, and tentatively assumes a critical path replica in Cigrger as
rcp(Ctarget)- Then, in the main step, RCP-exp improves the p value of 7¢p(Ciarget)
while satisfying the €,,,, constraint by iteratively tuning the gate cells and routing
paths on 7¢cp(Clarget) through performing gate up/down sizing and BEOL reconfigur-

ing. The pseudo-code in Algorithm 1 shows the algorithmic flow of my RCP-exp.
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Algorithm 1 RCP-exp: The Proposed Algorithmic Flow of Synthesizing Repre-

sentative Critical Path rep(Crarget)
Input: Cgrger With layout information, K, T', €pound

Output: rcp(Crarget)
/] Pre-processing step
1: Build BEOL configuration library B from top K slowest paths in Cyqrget;
2: Update BEOL configuration library ; // Sec. 2.3.1
3: if (initial rcp from Cigrget) then
4 Set rep(Ciarget) = a critical path replica in Cygrget;
5: else
6 Set rcp(Clarger) = a ring oscillator of NAND gates in T stages; // Sec. 2.3.4

// Main step: tuning FEOL and BEOL
7: while (1) do
8: Apply Monte Carlo simulation to 7¢p(Crarget); / Sec. 2.3.2
9: Compute p of rcp(Crarget);
10:  Set ppest = p;
11: Extract Rppor, from rep(Cigrger) and 5;

12: Extract Rrror from rep(Charger) and cell library £;

13: Apply Monte Carlo simulation to every ¢ € A = Rppor U RrroL;
14: Compute p and €,,,,,. values of every ¢ € A;
15: Select a circuit ¢’ € A with the largest p and €00 < €pound;

16: if (¢ # ¢ and p > ppest) then

17: Set rep(Clarget) =5
18: else
19: Exit-loop

20: Return (rep(Crarget)s Poest)

15



For the pre-processing step in Algorithm 1, top K slowest paths are selected from
Cltarget by using static timing analysis at nominal condition. I extract BEOL config-
urations of K paths by using a script in P&R tool to create a BEOL configuration
library B composed of pairs of driving and driven cells with the routing details, as
illustrated in Table 1. In order to reduce the design space complexity, I resized BEOL
configuration library B by applying the designation-and-removal process discussed in
Sec. 2.3.1. The library size is adjusted by Ay;,i:. I use two options for initial setting of
7cp(Crarget): (1) the first option is to take an initial rcp from Cygpger. Precisely, 1 set
the slowest path i.e. the critical path replica to the initial 7¢p(Ciarget); (2) the second
option is to set a ring oscillator composed of NAND gates to the initial rcp(Ctmnget).

For the main step in Algorithm 1, the while-loop starts from the initial rcp(Crarget )
obtained from the pre-processing step. A statistical netlist of rcp(Clarget) is generated
and is run by MonteCarlo simulation with BEOL RC random variables and V};, vari-
ation of transistors described in Sec. 2.3.2. Since SPICE simulation is too slow, it is
not affordable to run MonteCarlo simulation with SPICE, taking over 14 hours to run
the simulation with SPICE on even a single path of 25 stages with 10,000 samples.
Instead, by using statistical timing analysis, I generate a model of path delay and run
MonteCarlo simulation on that model. (It runs about 1,000 times faster than that of
using SPICE simulation.)

I compute the correlation coefficient p of rcp(C’tmget), which is then set to the
value of ppess, followed by performing the five sub-tasks (line: 11 - 19). (line: 11)
I extract BEOL configurations in rcp(Ciarget). (Example of BEOL configuration is
illustrated in Figure 4.) I also extract, from BEOL library, BEOL configurations to
be reconfigured, as illustrated in Figure 5; (line: 12) I take cells like BUF_X4 and
INV_X3 from rep(Crarger) and cells to be resized like BUF_X3, BUF_XS for BUF_X4
from cell library £; (line: 13) I perform Monte Carlo simulation on every combina-
tion of Rpror and Rrpor; (line: 14-15) I compute the correlation coefficients and

prediction errors, from which I choose the path circuit () with the largest correlation
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coefficient under the prediction error constraint. (line: 16 - 19) if the correlation co-
efficient is larger than the current best one, rcp(Ciarget) is reset to ¢’ and I repeat the
loop. Otherwise, I terminate the loop and return rep(Charget) and ppest.

The time complexity of the while-loop in RCP-exp is bounded by O(|.A| - M)
where A = Rpror, U Rreor, and M is the number of Monte Carlo simulations for
each circuit instance in A. Thus, to reduce the time complexity, it is essential (task 1) to
reduce the size of Rprpor and (task 2) to apply the simulation on corner cases as many
as possible. In addition, to extend the applicability of RCP-exp, it is necessary (task
3) to explore more general representative circuit structures independently of Ciqrget-

The following section provides the details of my solutions to the three tasks.

2.3 Techniques for BEOL-Aware RCP Generation

This section describes three techniques for BEOL-aware RCP generation. The first one
is clustering BEOL configurations, the objective of which is to reduce time complexity
by removing similarly behaviored configurations and maintaining a small-sized con-
figuration for each cluster. The second one is formulating statistical BEOL random
variables. I propose a method of generating random variables from the variation of
physical parameters like width, height, and space on each metal layer. The random
variables of resistance and capacitance are used to run Monte Carlo simulation. The
last one proposes a method of exploring ring oscillator circuit structure for rcp. It is an
alternative option to synthesize rcp by tuning gate size and BEOL configurations on a

rather simple structure.

2.3.1 Clustering BEOL Configurations

For a pair of BEOL configurations B; and Bj in library B, I define a difference measure
A (Bz s B j ) .
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A(B;, Bj) =+ > |l(metal(k, B;) — l(metal(k, B)|+
kel 2.4)
(1 —a) - |nwia(B;) — nwvia(By)|

where [(metal(k,-) and n_via(-) represent the total length of the metals in layer-k and
the total number of vias in the corresponding BEOL configuration, respectively. L is
the set of metal layers and « is a weighting factor in between 0 and 1.
For example, for the BEOLs in Fig 2.3, when o = 0.9, A(BEOL2-1, BEOL2-2) =
0.9(|(4+2)— (5+2)| +]12—11|) + 0.1(|]2 — 2|) = 1.8 while A(BEOL2-1, BEOL2-n)
=09((4+2)—B5+3)]+]12—-(B+2)|+[0—-4)+0.1(]12—4) =99+ 0.2 =
10.1. Thus, based on the A(-,-) value, BEOL2-1 prefers clustering with BEOL2-2 to
clustering BEOL2-n.
I apply a greedy method to group BEOL configurations in B: Randomly designate a
BEOL configuration (say B;) from B and then remove all BEOL configurations whose
A(B;, -) values are less than a certain limit Ay;;,;4; Iteratively, process the designation-

and-removal process until no removal can be found in 5.

2.3.2 Formulating Statistical BEOL Random Variables

I develop a method of generating statistical random variables for BEOL resistance (R)
and capacitance (C') from variation of physical parameters. As shown in Fig. 2.5, a
metal layer involves six physical parameters w, h, d;, d,, t,, and tg4, from which R
and C values on a metal of unit-length can be calculated by field solver, even it takes
a long computation time.

BEOL typically has five corners Nominal, Cazs Cmin, BCmaz, and RCpyin.
(For simplicity, this work uses Nominal, Ciqz, and Chy;n.) 1 associate the corners
with physical parameters by formulating them into second-order polynomials: for
Nominal, I set all parameters to their nominal values; for Cj,q., C' is assigned to

the largest value and R is assigned to the smallest value, as a result, w and h each has
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the statistical maximum values i.e., y+30 while d;, d,, t,, and t4 each has the statis-
tical minimum values i.e., pu-30; for Cyin, its physical parameter values become the

opposite values of that in Cy,qz.

Figure 2.5: Physical parameters affecting resistance (1) and capacitance (C') of BEOL

metal.

To be precise, I am required to formulate the capacitance on the left-hand, right-
hand, upper, and lower sides of a metal. For example, the capacitance Cj.; can be

expressed by 7. ¢, di, and h while the resistance 2 is simply by w and h as shown:
h
Cleft = Meft (2.5)
1
5
R=—1— 2.6
w-h 2.6)
in which 7 and ~ indicate the dielectric permittivity and metal resistivity, respectively.
I'introduce effective parameters 7, ;. s+ and 7., and formulate them using the values

of R, C, and physical parameters at RC corners. More precisely, if 7, . f¢ is a function,

f(:), of d; and h, and . is a function, g(-), of w and h, Cj.; and R can be expressed
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in terms of w, h, and d; as

_ (%
Tle,left = f(ﬁ) (2.7)
_ h_ c(diyh
Ciept =neserig =1 (3 ) & 2:8)
Ye =g (w-h) 2.9)
Ye  g(w-h)
= — 2.1
R w-h w-h (2.10)

I formulate 7, ;¢ 7+ and 7, into second-order polynomial regressions:

Ne,left = 52(%)2 + 51(%) + 5o (2.11)

Ye = B (w-h)* + B (w+ h) + B} (2.12)

Then, Cjcs; and R can be expressed in terms of physical parameters:

-1

Crege = B2(50) + 1+ 50 (%) 213

R=p(w-h)+ B + By (w-h)~" (2.14)

Cright> Ctop> and Chottom can be similarly formulated in terms of physical parameters.
Like this, I can produce all the five polynomials for R, Cicf¢, Cright, Ctop, and Chottom
on each metal layer and one polynomial for R on each via.

The flowchart for generating the six BEOL random variables for R and C' is shown
in Fig. 2.6. Fig. 2.7(a) and Fig. 2.7(b) show the relation between physical parameters
and effective parameter in Eq.2.11, and the scatted plot of random variables R and C,
respectively.

I use a statistical static timing analysis on BEOL configurations using the random
variables of R and C' for corner cases. For example, Table 2.2 shows an original netlist
and the corresponding statistical netlist, in which resistance between nodes A and B is
100ohm and capacitance on A and B is 0.001F and 0.002F, respectively. I can see that
A and B are on M2 since $lvl=13 in SPEF. Thus, I can generate a statistical netlist

by multiplying random variables M2R and M2C' to the resistance and capacitance
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Resistance, Physical Variations of
capacitance parameters physical
at RC corners at RC corners parameters
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Effectlve 7y Random numbers
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BEOL RC random variables
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Figure 2.6: Flowchart for generating BEOL RC' random variables.
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Figure 2.7: (a) Physical parameters vs. effective parameter 7. at three RC' corners

Nominal, Cpaz and Copip. (b) The scatted plot of random variables R and C'.
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Table 2.2: Statistical netlist.

R1 AB 100
Original | C1 A 00.001

C2B 00.002

/I * LAYER_MAP
/I ¥13 M2

*CAP

SPEF 1 #7626 0.001

2 #7661 0.002
*RES

1 #7626 *7661 100 // $1vl=13
R1 A B 100*M2R
Statistical | C1 A 00.001*M2C
C2 B 00.002*M2C

values in nominal condition. When the statistical netlist is ready, I can insert BEOL

variation and V};, variation of transistors to the statistical netlist formulation.

2.3.3 Delay Modeling

In order to get the delay distribution within process variations, I developed delay mod-
eling method. Elmore delay measure is an upper bound on the actual 50% delay of
an RC tree response [13, 14]. As the input signal rise time increases, the actual delay
approaches the Elmore delay. Therefore, the stage delay can be a function of Elmore

delay as follows.

Tstage = AT Eimore (2.15)

where « is varied by the input rise time and less than 1.0.
Assuming « is a constant within process variations, I can make 7’44 is a function

irrelevant to c.
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Figure 2.8: Stage delay is sum of gate delay and interconnect delay.

As you can see in the Fig 2.8, Ti;q4¢ is sum of Tyq4e and Tiy,. If I model the gate

as a resistance, Tszqqe 8 as follows.

Tstage = 0Ron(Cw + Cy) + Ry, (0.5C, + Cy) (2.16)
= Lgate + Tint (217)
Since I assume «v is a constant within variations, T} and Tj,,; with variations are

obtained by their nominal values and the variation parameters such as V;;,, R, C' and

SO Oon.

Tgate,var _ < Ron,var )( Cw,var + Cg,norm ) (218)
Tgate,norm Ron,norm Cw,norm + Cg,norm
Tlmt,var o < Rw,var )( O-SCw,var + C ,norm ) (219)
T’int,norm Rw,norm O-5Cw,norm + Cg,norm

Because the variation of gate input capacitance (Cy) is much less than that of wire
capacitance, I use the nominal value of input capacitance. R, is a linear function of
AVip n and AVyy, 5, and the function is obtained by T} in five FEOL corners with

BEOL nominal values. Therefore, T4t vqr becomes a function of its nominal value,
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AVipn, AVyp, , and wire capacitance, and T, becomes a function of wire resistance

and capacitance. Now, I can get the delay distribution within process variations.

I compared the delay modeling with SPICE simulation. When a critical path is

composed of 25 stages, delay modeling is about 1,200 times faster than SPICE simu-

lation. I found that the error of delay model was less than 2% as indicated in Fig 2.9.

2

[EEN

1
[REN

Error of delay model [%0]
o

1
N

0O 100 200 300 400 500

Samples

Figure 2.9: Scatter plot of delay error calculated by the model for 500 MC samples.

2.3.4 Exploring Ring Oscillator Circuit Structures

Rather than synthesizing 7cp(Ciarger) starting from a critical path replica (CPR) in

Clarget» 1 propose another option to use a ring oscillator as an initial rcp. I use three

simple ring oscillator structures as shown in Fig. 2.10 in which each ring oscillator

is composed of gates of the same type and size, and BEOLs of an identical BEOL

configuration.

The changes in performing RCP-exp using a ring oscillator (RO) are the follow-

ings:

1. In the pre-processing step, RCP-exp uses an RO with much fewer number of

A & Tl 8} 3
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Figure 2.10: The proposed ring oscillator (RO) structures which can be used as an

initial rcp(Charget), independently of target circuits.

stages (gate-to-gate), usually ~ 10 than that using CPR, usually ~ 25. Neverthe-

less. The p value is maintained while ¢,,,, value can be proportionally scaled.

2. The while-loop in RCP-exp will be executed three times, one for each ring

oscillator structure in Fig. 2.10.
3. RCP-exp produces Rrror by equally up/down sizing all gates in RO at once.

4. RCP-exp produces R oz, by uniformly replacing all BEOL configurations in

RO at once using B.

2.4 Experimental Results

I implemented my RCP-exp and the conventional method [3] in Python, and applied
them to a set of design blocks taken from OPENCORES using 7nm technology of part-
ner foundry. I performed a sequence of tasks namely synthesis, placement, routing, RC

extraction, and static timing analysis (STA) by using Synopsys Design Compiler, IC

-":lx_! _'q.l.-._ '|'.|i "‘.ll_ '.'Iu
1 = | | —
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Compiler-1I, StarRC, and Primetime. In all experiments, I used delay modeling with
10,000 samples, from which I delete the worst 100 samples to meet 99% of delay pre-
dictions pessimism. Table 2.3 summarizes the information of the target design blocks
I tested. (I found that a considerable amount of gates in every target circuit drive just a
single pin (i.e., Fan-out 1 gates) and Fan-outs 1, 2, and 3 gates occupy around 80% of

all gates in circuits.)

Table 2.3: Target circuits.

Fan-out

1 2 3 >4

Circuit #Inst #Net Clkp

AC97_CTRL 6,150 6,178 | 300ps | 66% | 7% 6% | 21%
DES_PERF 12,881 | 13,005 | 310ps | 47% | 16% | 15% | 22%
MEM_CTRL 4,703 4,766 | 380ps | 56% | 14% | 9% | 21%
PCI_BRIDGE32 | 10,280 | 10,452 | 340ps | 64% | 11% | 5% | 20%
USB_FUNCT 8,104 8,264 | 340ps | 54% | 20% | 7% | 19%

Table 2.4 summarizes, for each target circuit, the number of stages on the critical

path (CP) at nominal condition and the portion of BEOL interconnect delay.

Table 2.4: Summary of critical paths of target circuits.

Critical path
Circuit
#stage | Portion of BEOL delay

AC97_CTRL 6 20.1%
DES_PERF 12 5.5%
MEM_CTRL 25 8.9%
PCI_BRIDGE32 26 14.3%
USB_FUNCT 22 9.4%

e Synthesizing 7cp(Cyqrger) using critical path replica (CPR) in Cy,g¢¢: Table 2.5
shows a comparison of the values of correlation coefficient (p) under maximum predic-

tion error constraint (€,,4: < €poung) among the initial critical path replica (CPR) and
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rep circuits produced by [3] considering FEOL variation only and my RCP-exp con-
sidering BEOL as well as FEOL variations. The constraints in Casel, Case2 and Case3
of RCP-exp are 0.8¢p0und> 1.0€p0und and 1.2€pound, respectively while for Case4 of
RCP-exp, minimizing the maximum prediction error is the primary objective rather
than constraint.

Note that for AC97_CTRL, the method in [3] failed to find an rcp better than CPR
for Cases 1, 2, and 4 since its CPR consists of just 6 stages, which eventually leads
to provide little room for improving rcp by performing gate resizing alone. To put it
another way, if CPR of a target circuit has a small number of stages, tuning the routing
paths on the CPR by remapping BEOL configurations is relatively more effective than
gate resizing.

Table 2.6 shows a comparison of the values of maximum prediction error. My
method is able to reduce the prediction error by 54% and 19% on average over that us-
ing the conventional critical path replica and using the conventional method exploiting
gate sizing only, respectively.

Fig. 2.11 shows the changes of correlation coefficient (p) and maximum prediction
error (¢) for rep(mem _ctrl), which is iteratively refined by the conventional method
[3] and RCP-exp, corresponding to Case2 in Table 2.5. It is shown that at each it-
eration, the p value monotonically increases while the e value fluctuates. At the last
iteration, the p value arrives at the largest and the e value at the least. The compar-
ison of the two p curves in Fig. 2.11(a) clearly indicate that RCP-exp considering
BEOL variation outperforms the conventional method which does not take into ac-
count BEOL variation at all. Fig. 2.12 shows the scatted plots of Monte Carlo simula-
tion samples for the initial CPR in MEM_CTRL, rcp(mem_ctrl) produced by [3], and

rep(mem_ctrl) by RCP-exp.
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Table 2.6: Comparison of the values of maximum prediction error of Case 2.

CPR [3] RCP-exp
Circuit (Initial) Case2 Case2
P €bound € € Impr. over CPR | Impr. over [3]
AC97_CTRL 0914 | 6.70% || 6.70% || 3.60% -46% -46%
DES_PERF 0.990 | 1.63% || 0.98% || 0.88% -46% -10%
MEM_CTRL 0.986 | 2.12% || 0.81% || 0.67% -68% -17%
PCI_BRIDGE32 || 0.982 | 2.40% || 1.11% || 1.03% -57% 7%
USB_FUNCT 0.991 | 1.58% || 0.86% || 0.75% -53% -13%
Avg. - - - - -54% -19%
1.00 2.5
=
= '0\3'2.0
2 =
8 5
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Figure 2.11: The changes of correlation coefficient (p) and maximum prediction error
() for rep(mem_ctrl) which is iteratively refined by the conventional method [3] and

RCP-exp.
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Figure 2.12: Monte Carlo simulation results. (a) Critical path replica (CPR) in
MEM _CTRL. (b) rep(mem_ctrl) produced by [3]. (¢) rep(mem_ctrl) produced by

RCP-exp.

I analyzed the yield improvement by RCP-exp. Let us assume that the required
delay for MEM_CTRL is 253.88ps which is the sum of mean and half of standard de-
viation (u+0.50) of circuit delay, shown in Fig. 2.13. If voltage binning is not ap-
plied, the yields produced by the critical path replica, [3], and my method are 69.41%,
69.41%, and 69.41%, respectively. On the other hand, if I increase the supply voltage
to shorten the delay by 8.1% when the RCP delay exceeds 253.88ps (post-Si instances
in bin2), through analysis of the statistical distribution obtained by simulation, it is
found that the corresponding yields become 95.97%, 99.17%, and 99.40%. As a re-
sult, my method improves yield by 3.43% over the critical path replica method and
by 0.23% over the method in [3]. As the portion of BEOL delay increases, the yield
improvement would be significant. For circuit AC97_CTRL, the portion of BEOL de-
lay occupies about 20% and the correlation coefficient increases from 0.914 to 0.931.
I found through distribution analysis that it leads to yield improvement of 3.38% over

the method in [3]. The yield improvement for all the test circuits is summarized in

Table 2.7.
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Figure 2.13: Green dots indicate the post-Si instances whose RCP delay is lower than

the required delay while red dots indicate the post-Si instances whose RCP delay ex-

ceeds the required delay. (a) Critical path replica (CPR) in MEM_CTRL when voltage

binning is not applied. (b) rep(mem_ctrl) by [3] when voltage binning is not applied.

(c) rep(mem_ctrl) by RCP-exp when voltage binning is not applied. (d) Critical path

replica (CPR) in MEM_CTRL when voltage binning is applied. (e) rcp(mem _ctrl) by

[3] when voltage binning is applied. (f) rcp(mem_ctrl) by RCP-exp when voltage

binning is applied.
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Table 2.7: Yield improvement by critical path replica (CPR), rcp circuits produced by
[3] and my RCP-exp when the required delay is pu+0.50 of each circuit delay and

voltage binning is applied.

CPR [3] RCP-exp
Circuit (Initial) || Case2 Case2

Yield Yield Yield | Impr. over CPR | Impr. over [3]

AC97_CTRL 9531% || 95.31% || 98.69% 3.38% 3.38%

DES_PERF 97.86% || 98.97% | 99.16% 1.30% 0.19%

MEM_CTRL 95.97% || 99.17% || 99.40% 3.43% 0.23%

PCI_BRIDGE32 || 95.21% || 98.74% || 99.11% 3.90% 0.37%

USB_FUNCT 96.96% || 99.43% | 99.59% 2.66% 0.16%

Avg. - - - 2.93% 0.87%

As explained in Sec. 2.3.1, I reduce the size of library 5 by clustering the BEOL
configurations. The number of configurations is controlled by using Ay;i:. When «
= 0.9 and Ay is enumerated from O to 8, the runtime is reduced up to 17% for
MEM_CTRL and 53% for AC97_CTRL without worsening the correlation coefficient,
as shown in Fig. 2.14. Since for the maximum value Ay;,;; of 4, the corresponding
correlation coefficients are not degraded for the two testcases, T applied the Ay

value uniformly to all testcases.
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I also evaluated the results by changing the value of K (i.e., the number of criti-
cal paths selected from Ciqrger). Initially, I set the value of K to 1000 and gradually
decrease the value as long as the correlation coefficient is not worsen. As revealed in

Fig. 2.15, the value can be down to 200.
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Figure 2.15: The changes of correlation coefficients as the value of K varies. The

curves show that at most top 200 slowest paths suffice to get the best correlation coef-

ficient.

e Synthesizing 7cp(Ciarge¢) using ring oscillator (RO): Table 2.8 shows a compar-
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ison of the values of correlation coefficient (p) under maximum prediction error con-
straint (€mqz < €pound) among the initial critical path replica (CPR) and rcp circuit
produced by my RCP-exp. (The constraints in Casel, Case2 and Case3 of RCP-exp
are 0.8¢pound» 1.0€poung and 1.2€p0und, respectively while for Case 4 of RCP-exp, min-
imizing the maximum prediction error is the primary objective rather than constraint.)
I can see that RCP-exp improves over CPRs for all target circuits except AC97_CTRL,
for which its CPR has a small number of stages and its sensitivity looks far away from

resizing NAND gates in RO.

Table 2.8: Comparison of the values of correlation coefficient (p) under maximum pre-
diction error constraint (€4 < €poung) among the initial critical path replica (CPR)
and ring oscillators produced by my RCP-exp considering BEOL as well as FEOL
variations. The constraint for Casel, Case2 and Case3 are 0.8¢pound> 1.0€pound and

1.2€poung respectively. Case 4 is to minimize the maximum prediction error.

CPR RCP-exp (Considering FEOL and BEOL variations)
Circuit (Initial) Casel Case2 Case3 Case4
P €bound P P P p
AC97_CTRL 0914 | 6.70% || 0.866 (0.947x) | 0.868 (0.950x) | 0.868 (0.950x) | 0.862 (0.943x)
DES_PERF 0.990 | 1.63% || 0.994 (1.004x) | 0.994 (1.004x) | 0.994 (1.004x) | 0.990 (1.000x)
MEM_CTRL 0.986 | 2.12% || 0.992 (1.002x) | 0.992 (1.002x) | 0.992 (1.002x) | 0.991 (1.001x)
PCI_BRIDGE32 || 0.982 | 2.40% | 0.985 (0.995x) | 0.985 (0.995x) | 0.985 (0.995x) | 0.981 (0.991x)
USB_FUNCT 0.991 | 1.58% || 0.995 (1.004x) | 0.995 (1.004x) | 0.995 (1.004x) | 0.994 (1.003x)
Impr. - - 0.990x 0.991x 0.991x 0.988x
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Figure 2.16: Monte Carlo simulation results. (a) Critical path replica (CPR) in

MEM _CTRL. (b) rcp(mem _ctrl) produced by Case4 in RCP-exp.

Fig. 2.16 compares the scatter plots of Monte Carlo simulations for CPR and rcp
produced by Case4 in RCP-exp for target circuit MEM_CTRL. Specifically, for circuit
MEM_CTRL I explored 26,196 candidates of RO based rcp where I considered 4 sizes
of NAND gate, 3 types of Fan-out, and 2,183 BEOL configurations extracted from
MEM_CTRL. Table 2.9 shows the largest value of correlation coefficient under maxi-
mum error constraint produced by Case2 in RCP-exp for every RO corresponding to
the combinations of 4 gate sizes and 3 Fan-out types for target circuit MEM_CTRL. (‘-’
indicates that RCP-exp could not find r¢p that meets the maximum error constraint.) I
can see that the best rcp is the RO which uses the BEOL configuration labeled #1542,
NAND of size X2, and Fan-out of 1. Fig 2.17 shows the details of BEOL configuration
#1542 of the best representative RO obtained in Table 2.9. Finally, Table 2.10 sum-
marizes the best rcp (RO) structures for all target circuits, from which I can see that
the BEOL configurations in the layout of all target circuits are highly sensitive to M2,
M 3, and up to M 4. Furthermore, though Fan-out 1 is the majority in all target circuits,

the most appropriate Fan-outs for representative RO circuits are 2~3.

SRk

35

1

I

U



Table 2.9: The BEOL configuration and correlation coefficient value of the best rcp
circuits produced by Case2 in RCP-exp for various combinations of gate sizes and

Fan-out types for target circuit MEM_CTRL.

Fan-out Gate BEOL p Emax
CPR - - - 0.986 | 2.12%
1 NAND2_X1 - - -
NAND2_X2 | #1542 | 0.992 | 2.01%
NAND2_X3 | #1282 | 0.988 | 1.46%
NAND2_X4 - - -
RCP-exp 2 NAND2 X1 - - -
NAND2.X2 | #31 0.988 | 1.95%
NAND2_X3 | #2094 | 0.991 | 2.08%
NAND2_X4 | #1103 | 0.991 | 1.74%
3 NAND2 X1 - - -
NAND2_X2 - - -
NAND2_X3 #31 0.990 | 1.55%
NAND2_X4 - - -

M3: 1.071um

Figure 2.17: The representative RO structure for MEM_CTRL produced by Case2 in

RCP-exp.
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Table 2.10: The best rcp ring oscillator structures synthesized by my RCP-exp.

Circuit Fan-out Gate Top metal
AC97_CTRL 3 NAND2_X4 M4
DES_PERF 2 NAND2.X1 M4
MEM_CTRL 1 NAND2_X2 M4
PCI_BRIDGE32 3 NAND2_X4 M4
USB_FUNCT 3 NAND2_X2 M4

2.5 Further Study on Variations

In this work, only process variations are considered. When the portion of BEOL vari-
ations in the critical paths is increasing, methodologies for synthesizing RCP are pro-
posed. Because voltage is also one of variation sources in the manufactured chips, the
extended availability of this work under process and voltage variations is presented in
this section. I assume that the variation of supply voltage is 5% of target and it follows
uniform distribution. The experiment with AC97_CTRL is performed using Monte-
Carlo simulation with 500 samples. As shown in Fig 2.18, the correlation coefficient is
0.909 under process variations and it becomes 0.844 when the voltage variation is also
considered. RCP under process and voltage variations are produced by RCP-exp and
the correlation coefficient becomes 0.877. From the experiment result, I can see that
the methodologies in this work can be extended to RCP generation with more variation

sources.
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Chapter 3

Methodology for Reducing Routing Failures through En-
hanced Prediction on Design Rule Violations in Place-

ment

3.1 Motivation

In advanced technology nodes, it takes more than a week to complete physical design
of a circuit including millions of instances. Routing occupies about 50% of total run-
time of physical design when there is no design rule violation but the routing runtime
increases exponentially as the number of design rule violations increases. The runtime
of physical design with a sub-block of CPU, which has about 360,000 gates, is shown
in Fig. 3.1. The portion of routing runtime is 56% when the number of design rule vi-
olations (DRV5s) is less than 100. It increases rapidly as the number of DRVs exceeds
1,000 while the sum of runtime of floorplan, powerplan, placement and clock tree syn-
thesis is slightly changed. The portion becomes 88% when the number of DRVs is
more than 150,000. If it is predicted before routing is performed, designs whose pre-
dicted DRVs are more than a certain number can be filtered out and the computing
resources can be saved.

When the P&R tools perform placement, the objective function is to minimize
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Figure 3.1: Runtime of physical design using a sub-block of CPU which is composed
of 360,000 gates.

wirelength and maximize routability. In order to predict wirelength and routability for
the pre-routed layout, global routing has been used. However, the congestion obtained
by global routing turned out to inaccurate [23]. Actual hotspots including design rule
violations are totally different from the predicted hotspots using routing congestion.
Thus, it is necessary to enhance the prediction accuracy. Various methods to predict
the hotspots using machine learning have been reported [18][19][20][21][22][23][24].
Some of them used only placement related features like pin density, and the others
used placement related features as well as routing related features. They improved the
prediction accuracy by using various machine learning algorithms such as support vec-
tor machine (SVM), RUSBoost, random forest, convolutional neural network (CNN)
and customized CNN. All works predict whether the local window has DRVs using
binary classification. The limitation is that they can’t predict the number of DRVs.

As a next step of hotspot prediction, the placement optimization using space adjust-

ment in the hotspots was proposed [23][24]. They also used binary classification model
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to determine if the local window is hotspot or not, and give more spaces between cells
in each hotspot to reduce the probability that there are DRVs in the hotspot. As I men-
tioned before, the prediction using binary classification model lets us know the prob-
ability but we don’t know how many DRVs are existed in the local window. In some
cases, binary classification based placement optimization can’t reduce the number of
DRVs. For example, if moving cell in the left direction can’t make the probability less
than 50% and moving cell right can’t do as well, cell is not moved in either directions
because the probability after cell movement indicates that there are still DRVSs in the
hotspot. However, the number of DRVs can be reduced by moving cell. This is the
first limitation of placement optimization through binary classification. The other lim-
itation of the prior works is the size of prediction window. The height of prediction
window was equal to the cell height so that the placement perturbation is fast. How-
ever, interaction between rows is not considered and it can make the routability worse
when the vertical connection is changed and it causes routing congestion. Because the
minimum window that commercial P&R tool uses for the routing is 10x10 of standard
cell height, the routability should be considered in the larger window.

I propose a methodology to predict the hotspots using binary classification through
machine learning, and perform placement perturbation in the hotspots until the pre-
dicted number of design rule violation is minimized. The number of DRVs is pre-
dicted by regression through machine learning and the global optimization algorithms
are used to find the optimal placement. Placement related features like pin density,
pin proximity and more, are extracted and combined with global routing parameters
such as capacity, demand and overflow. The machine learning models are improved by

hyperparameter tuning with Bayesian optimization.
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3.2 Opverall Flow

This section describes the overall flow of reducing routing failures through enhanced
prediction on design rule violations in placement phase. The flow is composed of fea-
ture extraction, hotspot prediction and placement optimization to minimize the pre-
dicted number of DRVs. I assume that a design is routable when the number of DRV
is less than 200. Because the number of DRVs is predicted, it is possible to filter out a
design which is doomed to be routing failure. Decision of filtering out is also included
in the overall flow.

The conventional P&R flow is composed of importing design, floorplan, power-
plan, placement, post-placement optimization, clock tree synthesis (CTS), post-CTS
optimization, route and post-route timing optimization. In the conventional flow, the
routing failure can’t be determined in placement phase and it is not possible to fil-
ter out a design doomed to be routing failure because the number of DRVs can’t be
predicted. In the proposed P&R flow, the features like pin density, pin proximity, ca-
pacity, demand, overflow and more, are extracted when post-CTS timing optimiza-
tion is finished. And then the number of DRVs is predicted using pre-trained machine
learning model to decide filtering out. I set the number doomed to be routing failure
to 1000. When the number of DRVs are more than 1000, it is filtered out because it
can’t be routable even if placement optimization is applied. The filtered design should
be run P&R flow again from importing design by modifying the P&R variables like
frequency, initial utilization and tool options. If the predicted number is less than 150,
it proceeds routing as conventional P&R flow does. When the predicted number is
between 150 and 1000, placement perturbation is applied. The comparison of conven-
tional P&R flow and proposed P&R flow is shown in Fig. 3.2.

When we focus on the placement perturbation, the flow is composed of two steps
as shown in Fig. 3.3. Firstly, the hotspots which are predicted to include DRVs, are de-

termined by pre-trained binary classification model. And then placement perturbation
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Figure 3.2: Comparison of conventional P&R flow and proposed P&R flow.

of cells in all hotspots of entire layout is started, in which the objective is to minimize
the number of DRVs in entire layout. Because the global routing for feature extrac-
tion takes time, it is not possible to explore every placement perturbation. Thus, it is
necessary to use global optimization algorithm to find the placement to minimize the
number of DRVs in a limited time. Once the optimized placement is found, routing
is performed to check if the actual DRVs are reduced or not. If the error of regres-
sion model is 0%, the predicted DRVs are exactly same as the actual DRVs. However,
machine learning model is not perfect and there must be a gap between predicted
and actual DRVs. The gap can be minimized by improving accuracy of the regression

model.

3.3 Techniques for Reducing Routing Failures

3.3.1 Binary Classification

In order to predict hotspots which include DRV, it is necessary to generate binary

classification model using machine learning. There are lots of machine learning al-
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i

flow. The proposed flow is composed of two steps such as hotspot prediction and place-

ment perturbation of cells in the hotspots.

gorithms such as linear regression, logistic regression, SVM, random forest, boosting,
multi-layer perceptron and so on. I selected two algorithms of boosting and multi-layer
perceptron (MLP) because they outperform the others in some test cases. Because the
machine learning model should be used to predicted hotspots in unseen design, model
training including itself is not prohibited. For example, if there are 7 circuits like A,
B, C, D, E, F and G, a model to predict DRVs of A is trained by B, C, D, E, F and G.
For the training and validation, 80% of data are used for the training and the rest are
used for the validation. To avoid overfitting, early stopping is applied. That is to say,
the model is saved when the validation loss is minimized. Logloss is used as a loss
function.

To select the optimal model, the exploration of model architecture and hyperpa-
rameter tuning are performed. In multi-layer perceptron, the network structure is very
important to optimize the model. The structure is defined by the number of layers, the
number of nodes in each layer and the regularization. In this work, 5 number of layers
and 6 nodes are explored. Layers can be 1, 2, 3, 4 and 5, and nodes can be 16, 32, 64,

128, 256 and 512. For the regularization, three methods such as original (no regular-

44

e g ke

S |



ization is applied), batch normalization and dropout, are compared. Boosting depends
on the hyperparameters. The optimal hyperparameters to minimize the loss function
are found by Bayesian optimization. Each machine learning algorithm generates 90

models and the best one is chosen. The training procedure is shown in Fig. 3.4.
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Figure 3.4: The training procedure for the binary classification.

3.3.2 Regression

Boosting and multi-layer perceptron are also used to predict the number of design rule
violation. The procedure of training is similar to that of binary classification. The only
difference is that root mean squared error (RMSE) is used as a loss function because
the values are integer, not binary. The training procedure is shown in Fig. 3.5. Because
DRVs are the non-negative values and the pre-defined loss function of boosting can’t
handle non-negative value, a customized loss function which changes negative value
into zero is used. On the other hands, multi-layer perceptron is able to handle non-

negative output easily by using ReLU (Rectified Linear Unit).
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Figure 3.5: The training procedure for the regression of the number of DRVs.

3.3.3 Optimization

In this work, I compared two global optimization algorithms. One is Bayesian op-
timization which is a machine learning based optimization and the other is particle
swarm optimization (PSO) which is one of metaheuristic optimization algorithms.
Bayesian optimization generates a surrogate model and obtain acquisition function
by calculating the probability of improvement using the average and standard devia-
tion of predicted value in each point of the entire space. In general, gaussian process
regression is used as a surrogate model. It is started from a prior distribution that the
physical distance between two points is related to the covariance of the points [26].
Once the samples are observed, the covariance can be obtained. And then the average
and standard deviation of predicted value in each point of entire space are calculated.
From the average and standard deviation, the probability that each point is better than
the current best value can be calculated and the best one becomes the next candidate.
There are several acquisition functions such as expected improvement, lower confi-
dence bound and probability improvement [27][28][29]. In this work, expected im-

provement is used as an acquisition function. Once the next candidate is observed, the

= M 2} &
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whole process from the surrogate model to acquisition function, is repeated.

PSO generates lots of particles in random locations with random velocities and
explores the optimum by updating the position of particles. Particle best (pbest) and
global best (gbest) can be changed in every iteration. The velocity of each particle
in the next iteration is determined by the velocity of the particle in current iteration,
pbest location and gbest location. The new positions of particles are updated by the
velocity. It doesn’t need complicated computation and it can be performed by parallel
computing because the movements of particles in each iteration are independent. The

procedure is shown in Fig. 3.6.

Iteration
Initialize particles Calculate particle Update positions of
- random position velocity considering particles and
- random velocity pbest and gbest update pbest and
(#particles : 20~40) gbest
o ._\., e) pbest 1
pbest 1 N pbest 1 N |:> S
- e | & O
. pbest 3 ‘ pbest 3 O pbest 3
pbest 2 gbest pbest 2 gbest pbest 2 gbest

Figure 3.6: The procedure of particle swarm optimization.

Bayesian optimization is originally sequential optimization because covariance
should be calculated and the next candidate is suggested after observations are done.
I will compare parallel PSO and sequential Bayesian optimization in the experimental

results.

47



3.3.4 Placement Perturbation

In the previous literatures, the cells in a row were spreaded to minimize the proba-
bility of DRVs in the window [23][24]. Because the interaction between rows is not
considered, it is very fast but it can make routability worse in some cases. I propose
placement perturbation of all cells in the hotspots of entire layout. The advantage of
this methodology is that the cells in the hotspots move simultaneously and the interac-
tion between rows is considered. The objective function of optimization is to minimize
the number of DRVs in entire layout.

Placement in a row can be defined as a problem to make an integer by adding
some numbers. The space between cells is called white space. Moving cell is equal to
white space redistribution. As shown in Fig. 3.7, there are 4 movable cells and 1 fixed
cell in the window. The fixed cell in the window indicates that it is used for the clock
tree synthesis. When the cells are used for the clock tree synthesis, I fixed the cells to
maintain the timing and skew of clock tree. The cells out of hotspot are also fixed. The
placement of movable cells can be expressed by white spaces like [1,2,2,3]. Thus, the

placement perturbation in the row is a problem to make 8 by adding 4 numbers.

| Movable Cell |

Original placement

-

4=[1.223)

Figure 3.7: Placement in local window is expressed by white spaces between cells.

As shown in Fig. 3.8, there are 165 cases to make 8 by adding 4 numbers such as
[0,0,0,8], [0,0,1,7] and so on. It explodes when the number is bigger. For example, a
problem to make 40 by adding 8 numbers has 62,891,499 cases. If we perturb all cells
in the hotspots of the entire layout, the solution space is too large to find the optimum

value. Thus, it is necessary to reduce the solution space.
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Figure 3.8: There are 165 cases to make 8 by adding 4 numbers.
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I propose a reduced solution space by limiting the moving range of each cell. For
the reduced solution space, I set a limit of moving range of each cell and the half of
white space is used as a maximum movement. For example, if the white space is 2 in
the left direction and 3 in the right direction, the maximum movement is 1 in the left
direction and 1 in the right. Because only integer is allowed in the placement problem,
1 is selected instead of 1.5 in the right direction. As a result, the cell can select one
of three movements like -1, 0 and +1, in which positive values mean movement in the
right direction, negative ones do in the left direction. It can reduce 165 cases to 18

cases as shown in Fig. 3.9.

I Movable Cell I

Original placement

I e
—

d=[1,2,2,3]
@ Solution space reduction 165 > 18
—1—3 m m

B || -

m=[01]
m,=[-1,0,1]
m=[-10,1]

Figure 3.9: The solution space is reduced from 165 to 18.

The method limiting the moving range is easily extended to the entire layout. As-
suming that the circuit layout is divided into 2x2 grids as shown in Fig. 3.10, 2 hotspots
out of 4 grids are predicted by binary classification. And then the moving range of each
cell is defined. The placement perturbation in the entire layout is also expressed by the
movement of each cell. The next step is to find the optimal values among all combina-
tions to minimize DRVs. Because original solution space includes the reduced solution
space, the optimization result of original one should be better than that of reduced one
if there is no limit of iteration. However, the original solution space may not be better
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than the reduced one because the optimum solution is explored in a limited time. It

will be compared in the experimental results.
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1,112 /
21| 22
DRV Predicte(x

Minimize #DRVs

myp1,=[-2,-1,0,1], my 5 1,=[-1,0], my 5, 5=[0,1,2]
My 52,=[-2,-1,0,1], my5,,=[-1,0,1], my 5,5=[-1,0,1]

M 21011011, My 2.30,=[-1,0,1], My 305=[-1,0,1]

M, 511=[-2,-1,0,1], my1,=[-1,0], m,, 5=[0,1]
o — My 221=[-2,-1,0,1], My 55,=[-1,0,1], M, 5 ,3=[-1,0]

My2101=[-2,-1,0,1], My210,=[-1,0,1], M; 5 165=[-1,0,1]

Figure 3.10: Placement perturbation in entire layout. Once the hotspots are determined,

the cells in the hotspots can be moved in the reduced solution space.

3.4 Experiments

3.4.1 Experiments Setup

Seven circuits taken from OPENCORES used for the experiments as shown in Table 3.1.
I performed synthesis, placement and routing using Synopsys Design Compiler and
IC Compiler-II respectively with 28nm technology of foundry. Because all standard
cells are composed of M1, the cells are routed from M2. In order to generate DRVs
intentionally, M2 and M3 are used for the clock and signal routing. Model training with
a circuit itself is not prohibited. For example, when I generate model for AC97 _CTRL,

6 circuits excluding AC97_CTRL are used for the training and validation.

3.4.2 Hotspot Prediction

I implemented the binary classification in Python. TensorFlow is used to implement

multi-layer perceptron and XGBoost is used for the boosting [30][31]. Hyperparameter
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tuning is performed by Bayesian optimization. The comparison results between multi-
layer perceptron and boosting for 7 test circuits are shown in Table 3.2. In all test
cases, XGBoost shows better performance than multi-layer perceptron. I generated 90
models in each machine learning algorithm by changing the model architecture for
multi-layer perceptron and hyperparameter tuning for XGBoost. The value of logloss

in the table is the best one among 90 models.

Table 3.2: Comparison results of machine learning models in binary classification

tasks. In all circuits, XGBoost outperforms multi-layer perceptron.

Initial Grid logloss
Circuit
utilization | size | Multi-layer perceptron | XGBoost

AC97_CTRL 70 13x13 0.12 0.11
AES_CORE 50 16x16 0.11 0.10
ETHERNET 50 35x35 0.12 0.10
MEM_CTRL 60 11x11 0.11 0.10
PCI_BRIDGE32 55 19x19 0.12 0.11
USB_FUNCT 45 17x17 0.11 0.10
VGA_LCD 40 50x50 0.11 0.10

The prediction results are shown in Table 3.3. Because DRV data are quite imbal-
anced, negative labels are much more than positive labels. The accuracy shows 95%
on average. The number of predicted hotspots is equal to the sum of true positive and
false positive which means cells in false negative are not moved even if they are actual

hotspots.

54



660 Ie € LSYC 6 08x08 or adT VDA
¥6°0 4! S 9¢¢ 91 LIXLT Sy LoNNd~dsn
860 8 ! vee 81 61%6l cs CeaDANE IOd
60 L € coI1 9 TTXTIT 09 TILO"WHNW
860 81 0T ILTT 9¢ CEXCE 0s LANYHHLE
880 6¢ C 1ce 14 91%91 0s HIO0D™SHV
$6°0 L I 94! 91 eIXel 0L TILD™L6DV
(NA+dI+NL+d.L/(NL+dL) (N (d:D) (NL) (dL) — uonezinn o
KorIndoy oane3ou oste] | oanisod aspeq | oanedou oniy, | oAnisod onij, renruy

‘syinsa1 uonoipaid jodsjoy Jo Arewwing :¢°¢ 9[qel

55



3.4.3 Regression

The regression is also implemented in Python. The comparison results between multi-
layer perceptron and boosting for 7 test circuits are shown in Table 3.4. In all circuits,
XGBoost outperforms multi-layer perceptron. I generated 90 models in each machine
learning algorithm by changing the model architecture for multi-layer perceptron and
hyperparameter tuning for XGBoost. The value of root mean squared error in the table

is the best one among 90 models.

Table 3.4: Comparison results of machine learning models in regression tasks. In all

circuits, XGBoost outperforms multi-layer perceptron.

Initial Root mean squared error
Circuit #Grids
utilization Multi-layer perceptron | XGBoost

AC97_CTRL 70 13x13 7.64 7.34
AES_CORE 50 16x16 7.05 6.94
ETHERNET 50 35x35 7.72 7.31
MEM_CTRL 60 11x11 7.51 7.25
PCI_BRIDGE32 55 19x19 7.58 7.34
USB_FUNCT 45 17x17 7.33 7.02
VGA_LCD 40 50x50 7.34 7.16

The predicted results using regression model with XGBoost is shown in Fig. 3.11.
The number of DRVs are well predicted along the line of y=x even if unseen layout is
predicted by pre-trained model. As shown in Fig. 3.12, designs doomed to be routing

failure are filtered out when the predicted DRVs are more than 1000.
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Figure 3.11: Regression results of 49 circuit layouts. There are 7 circuits and each

circuit has 7 different utilization values.

1.0E+05

1.0E+04

1.0E+03

#DRVs

1.0E+02

1.0E+01

1.0E+00

Figure 3.12: Initial utilization vs. DRVs. (a) scatter plot of DRVs of 7 circuits when

1.0E+05

*ac97_ctrl

4 aes_core ° :
ethernet e o i-

= mem_ctrl i

- pci_bridge32 e Ao - ®
usb_funct “mm
evga_lcd - -

1.0E+04

1.0E+03

#DRVs

1.0E+02

1.0E+01

1.0E+00

20 40 60
Init utilization

(a)

80

*ac97_ctrl

A aes_core
ethernet

= mem_ctrl

= pci_bridge32
ush_funct

e vga_lcd

20

40

60 80

Init utilization

(b)

filtering is not applied (b) scatter plot of DRV of 7 circuits when filtering is applied

57



3.4.4 Placement Perturbation

Placement perturbation is implemented in Python. It invokes commercial P&R tool to
move cells in the hotspots and extract features in entire layout. Precisely, it generates
a tcl script which can be readable in commercial P&R tool and the script includes
which cells are moved and how many sites each cell moves. Because the movement is
calculated from the bounding boxes, overlaps of cells are not found after cell move-
ment. If the placement has complicated rules, legalization should be performed after
cell movement. Once the features are gathered, predicted number of DRVs is obtained
using pre-trained regression model. Since the optimization algorithms propose better
values in each iteration, the number of DRVs keep decreasing. I use the GPyOpt mod-
ule for the Bayesian optimization [32]. The comparison results of optimization using
particle swarm optimization and Bayesian optimization are shown in Fig. 3.13. They
are obtained from the reduced solution spaces. Original solution spaces have different
results. They reduced the predicted number of DRVs. One of optimization algorithm

is not always better than the others.

500

—e—Particle Swarm Optimization
—e—Bayesian Optimization

IS
a1
o

I
o
o

Predicted #DRVs by XGBoost

0 100 200 300
Iteration

Figure 3.13: Placement perturbation result of VGA_LCD. The predicted DRVs are re-

duced by particle swarm optimization and Bayesian optimization.
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I compared the predicted number of DRVs between original solution spaces and
reduced solution spaces as shown in Table. 3.5. In all circuits, the reduced solution
spaces have better results than the original solution spaces. Because the number of
evaluations is 300, the reduced solution spaces can have better results. If the number
becomes infinity, the original solution spaces will have better results because they

include the reduced solution spaces.

Table 3.5: Comparison results of solution spaces. In all circuits, reduced solution

spaces have better results than original solution spaces.

Predicted number of DRVs
Placement Placement perturbation
Circuit
by P&R tool | Particle swarm optimization Bayesian optimization
Original Reduced Original Reduced

AC97_CTRL 434 401 (-7.6%) | 387 (-10.8%) | 406 (-6.5%) | 403 (-7.1%)
AES_CORE 466 425 (-8.8%) | 408 (-12.4%) | 416 (-10.7%) | 408 (-12.4%)
ETHERNET 581 477 (-17.9%) | 417 (-28.2%) | 547 (-5.0%) | 453 (-22.0%)
MEM_CTRL 203 160 (-21.2%) | 141 (-30.5%) | 170 (-16.3%) | 140 (-31.0%)
PCI_BRIDGE32 379 379 (0.0%) | 283 (-25.3%) | 379 (0.0%) | 334 (-11.9%)
USB_FUNCT 453 421 (-7.1%) | 385 (-15.0%) | 421 (-7.1%) | 383 (-15.5%)
VGA_LCD 442 429 (-2.9%) | 406 (-8.1%) | 422 (-4.5%) | 383 (-13.3%)

After the optimization is finished, routing is performed using the best result. Routed
#DRVs are also reduced as shown in Table. 3.6 and Table. 3.7. Because Bayesian op-
timization was performed sequentially, the runtime is much longer than that of PSO.
Though the reduction of predicted #DRVs of PSO is more than that of Bayesian op-
timization, Bayesian optimization shows better results for the routed #DRVs due to
the error of machine learning. In the routed layouts, the number of design rule viola-
tions is reduced by 22% on average over that using the conventional method to predict
routability with routing congestion. Since routed wirelength is correlated with tim-
ing slack, it is extracted when routing is done. The maximum degradation of routed

wirelength is about 1.4%.
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Chapter 4

Conclusions

4.1 Synthesis of Representative Critical Path Circuits reflect-
ing BEOL Timing Variation

The section proposed a BEOL-aware methodology for synthesizing a representative
critical path circuit which can provide an accurate performance prediction on post-Si
target circuit in deep sub-micron technologies. Precisely, I proposed a methodology
which was able to incrementally explore routing patterns (i.e., BEOL reconfiguring)
as well as the conventional gate resizing. My synthesis framework integrated a set
of novel techniques: (1) extracting and classifying BEOL configurations for lightening
design space complexity, (2) formulating BEOL random variables for fast and accurate
timing analysis, and (3) exploring alternative (ring oscillator) circuit structures for
extending the applicability of this work. Through experiments with industry circuits,
it was shown that the synthesis framework was able to reduce the prediction error by
54% and 19% on average over that using the conventional critical path replica and

using the conventional method exploiting gate sizing only, respectively.
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4.2 Reduction of Routing Failures through Enhanced Pre-

diction on Design Rule Violations in Placement

The section proposed a prediction methodology of design rule violations and a pertur-
bation methodology of placement to reduce design rule violations in deep sub-micron
technologies. Precisely, I combined machine learning and global optimization to min-
imize the predicted number of design rule violations. The hotspots are predicted by
binary classification and then placement perturbation in hotspots are performed us-
ing particle swarm optimization or Bayesian optimization until the number of design
rule violations is minimized, in which the number of DRVs is predicted by regression.
Since the optimization should be done in a limited time, the reduced solution space
for placement perturbation is also proposed. The solution space is reduced by limiting
the range of cell movement. Through experiments with industry circuits, it was shown
that the framework was able to reduce the number of design rule violations by 22%
on average over that using the conventional method to predict routability with routing

congestion.
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