18 research outputs found

    ํ™”ํ•™ ๋ฐ ์ƒ ๋ถ„์„ ๊ฒ€์ถœ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์‹ ํ˜ธ์ฆํญ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™๋ถ€, 2014. 8. ์ •ํƒ๋™.ํ˜„๋Œ€์˜ ๋ถ„์„ ์—ฐ๊ตฌ๋Š” ์ƒ๋ถ„์ž ๊ฒ€์ถœ์„ ์œ„ํ•ด ๋ฏผ๊ฐํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋น„์‹ธ์ง€ ์•Š์€ ๊ณ  ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ถ„์„ ๋ฐฉ๋ฒ• ๊ฐœ๋ฐœ์ด ์ž„์ƒ ์ง„๋‹จ, ์‹ํ’ˆ ์•ˆ์ „ ๋ฐ ํ™˜๊ฒฝ ๊ฐ์‹œ์— ์žˆ์–ด์„œ ํฐ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ƒ๋ถ„์„์— ์žˆ์–ด์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๋Š” ๋งค์šฐ ๋ฏผ๊ฐํ•œ ์‹ ํ˜ธ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒƒ์ธ๋ฐ, ์ด๋Š” ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฌผ์งˆ์ด ์ƒ˜ํ”Œ๊ณผ ์‹œ์•ฝ์˜ ์•„์ฃผ ์ ์€ ์ฒ˜๋ฆฌ ๋ฐ ์†Œ๋ชจ์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ํ™”ํ•™ ๋ฐ ์ƒ ๋ถ„์„ ๊ฒ€์ถœ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ ๋ฐ ์‘์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์ฒซ์งธ, ์ˆ˜์€ ์ด์˜จ ๊ฒ€์ถœ์„ ์œ„ํ•ด ๊ธˆ ๋งˆ์ดํฌ๋กœ์‰˜์„ ๊ธฐ๋ฐ˜ํ•œ ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€ ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ์„ผ์„œ๋Š” ๋ผ๋งŒ ํ™œ์„ฑ ๋ฌผ์งˆ์ธ ํ…ŒํŠธ๋ผ ๋ฉ”ํ‹ธ๋กœ๋‹ค๋ฏผ์ด ํ‘œ์ง€๋œ DNA ๋จธ๋ฆฌํ•€ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜ํ•˜๋ฉฐ ์ˆ˜์€ ์ด์˜จ์— ๋Œ€ํ•ด ํ‹ฐ๋ฏผ-ํ‹ฐ๋ฏผ ๋ถˆ์ผ์น˜์—์„œ์˜ ์„ ํƒ์  ๊ฒฐํ•ฉ์„ ์ „๋žต์ ์œผ๋กœ ์ œ๊ณตํ•œ๋‹ค. ์ด ์„ผ์„œ๋Š” ์ข‹์€ ๋ฏผ๊ฐ๋„์™€ ๊ธˆ ๋งˆ์ดํฌ๋กœ์‰˜ ํ‘œ๋ฉด ์œ„์— ์ œํ•œ๋œ ๋ผ๋งŒ ๋ถ„์ž์˜ SERS ์‹ ํ˜ธ ๋ณ€ํ™” ๊ด€์ฐฐ์„ ํ†ตํ•ด 50 nM ์˜ ๊ฒ€์ถœํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋‹ค์–‘ํ•œ ๋‹ค๋ฅธ ๊ฒฝ์Ÿ ๊ธˆ์† ์ด์˜จ๋“ค๋กœ๋ถ€ํ„ฐ ์ˆ˜์€ ์ด์˜จ์˜ ๋ช…ํ™•ํ•œ ๊ตฌ๋ณ„์„ ํ†ตํ•ด ์„ผ์„œ์˜ ์„ ํƒ์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ๋˜ํ•œ DNA๊ฐ€ ๊ณ ์ •๋œ ๋‹จ์ผ ๊ธˆ ๋งˆ์ดํฌ๋กœ์‰˜์€ ๋งˆ์ดํฌ๋กœํ”ผํŽซ์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ณ„์ ์œผ๋กœ ์กฐ์ž‘์„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ DNA๊ฐ€ ๊ณ ์ •๋œ ๋‹จ์ผ ๊ธˆ ๋งˆ์ดํฌ๋กœ์‰˜์„ ํ†ตํ•ด ์†Œ์ฒด์  ์ƒ˜ํ”Œ์—์„œ ์ˆ˜์€ ์ด์˜จ์˜ ๊ฒ€์ถœ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•˜์˜€ ๋‹ค. ๋‘˜์งธ, ๋งˆ์ดํฌ๋กœ ์œ ๋™์นฉ์—์„œ์˜ ๋งค์šฐ ๋†’์€ ์ „ํ•˜ ์„ ํƒ์„ฑ์„ ์ง€๋‹Œ ๊ณ ๋ถ„์ž [poly-2-acrylamido-2-methyl-1-propanesulfonic acid (pAMPSA)] ํ”Œ๋Ÿฌ๊ทธ ๊ฐ€๊นŒ์ด์—์„œ ์ผ์–ด๋‚˜๋Š” ๋™์ „๊ธฐ์ ์ธ ๋†์ถ•์„ ํ†ตํ•ด ๊ฒฝ์Ÿ์  ๋ฉด์—ญ ๋ถ„์„๋ฒ•์˜ ๋ฏผ๊ฐ๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์ด์˜จ ๋ถ„ํฌ๋ฅผ ์ •๊ตํ•˜๊ฒŒ ์กฐ์ ˆํ•˜๋Š” ํšจ๊ณผ์ ์ธ ์ „ํ•˜ ์„ ํƒ์„ฑ์„ ์ง€๋‹Œ ์ถ”์ถœ๊ธฐ๋กœ ๊ธฐ์—ฌํ•˜๋Š” ๊ณ ๋ถ„์ž ์ „ํ•ด์งˆ ์ ค์€ ๋งˆ์ดํฌ๋กœ ์œ ๋™ ์ฒด๋„ ์•ˆ์—์„œ ๊ด‘์ค‘ํ•ฉ์„ ํ†ตํ•ด ์ œ์ž‘๋˜์—ˆ๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ์…ˆํ”Œ ์•ˆ์— ๋ถ„์‚ฐ๋œ ์ž์„ฑ ๋งˆ์ดํฌ๋กœ๋น„๋“œ ์œ„์˜ ํ˜•๊ด‘ ์ง€์‹œ์ฒด๊ฐ€ ๊ผฌ๋ฆฌํ‘œ๊ฐ€ ๋ถ™์ง€ ์•Š์€ ํƒ€๊ฒŸ ๋ถ„์ž์— ์˜ํ•ด ์ž๋ฐœ์ ์œผ๋กœ ๋Œ€์ฒด๋œ ํ›„ ๋งˆ์ดํฌ๋กœ ์œ ๋™ ์นฉ์ƒ์˜ ๋‹จ์ผ ํŠน์ •ํ•œ ๊ณณ์— ๋™์ „๊ธฐ์ ์œผ๋กœ ๋†์ถ•ํ•œ๋‹ค. ๊ตญ๋ถ€์ ์œผ๋กœ ๋†์ถ•๋œ ํ˜•๊ด‘ ์ง€์‹œ์ฒด๋Š” ๋ ˆ์ด์ € ์œ ๋„ ํ˜•๊ด‘์„ ์ด์šฉํ•ด ๊ฒ€์ถœํ•˜์˜€๋‹ค. ๊ฐœ๋… ์ž…์ฆ ์—ฐ๊ตฌ๋กœ์„œ ๊ผฌ๋ฆฌํ‘œ๊ฐ€ ๋ถ™์ง€ ์•Š์€ 1 nM ๋ฐ”์ด์˜คํ‹ด์˜ ๊ฒฝ์Ÿ์  ์น˜ํ™˜ ๋ถ„์„ ์‹œํ—˜์„ ํ†ตํ•ด 3๋ถ„ ์•ˆ์— 2000๋ฐฐ์— ๋‹ฌํ•˜๋Š” ๋†์ถ•์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ๊ผฌ๋ฆฌํ‘œ๊ฐ€ ๋ถ™์ง€ ์•Š์€ ์ž‘์€ ํƒ€๊ฒŸ ๋ถ„์ž์˜ ๋ฏผ๊ฐํ•œ ๊ฒ€์ถœ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ œ์•ˆํ•œ ๋ฉด์—ญ ๋ถ„์„ ์‹œ์Šคํ…œ์€ ๋ฐ”์ด์˜คํ‹ด ์œ ์‚ฌ ๋ฌผ์งˆ์ธ ๋ฐ”์ด์˜ค์‚ฌ์ดํ‹ด, 2-์ด๋ฏธ๋…ธ๋ฐ”์ด์˜คํ‹ด, ๋ฐ์Šคํ‹ฐ์˜ค๋ฐ”์ด์˜คํ‹ด์— ๋Œ€ํ•ด์„œ๋„ ์ข‹์€ ์„ ํƒ์„ฑ์„ ๋ณด์˜€๋‹ค. ์…‹์งธ, ์นฉ ๊ธฐ๋ฐ˜์ธ ๋ฉด์—ญ์„ผ์„œ์˜ ๋ฏผ๊ฐ๋„ ์ฆ๊ฐ€๋ฅผ ์œ„ํ•œ ์‹ ํ˜ธ ์ฆํญ์„ ์œ„ํ•ด 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์— ๊ธฐ๋ฐ˜ํ•œ ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™”ํ™˜์› ์ˆœํ™˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์€ ๊ฐ€๊นŒ์ด ๊ฐ„๊ฒฉ์„ ๋‘” 2๊ฐœ์˜ ITO ์ „๊ทน์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์œผ๋ฉฐ, ์ฒœ์žฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฐ”๋‹ฅ์— ์œ„์น˜ํ•ด์žˆ๊ณ  ๋งˆ์ดํฌ๋กœ ์œ ๋™ ์ฒด๋„์„ ๋”ฐ๋ผ ์„œ๋กœ ๋งˆ์ฃผ๋ณด๊ณ  ์žˆ๋Š” ํ˜•ํƒœ์ด๋‹ค. ์ „๊ธฐํ™”ํ•™์  ์‹คํ—˜๊ณผ ์œ ํ•œ ์š”์†Œ ์‹œ๋ฌผ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ํ‰ํ–‰ํ•œ ์ „๊ทน, ์—ด๋ฆฐ 2์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน, ๋‹ซํžŒ 2์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน ๋ฐ 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์˜ ๊ธฐํ•˜ํ•™์  ๋ฐฐ์น˜์— ๋Œ€ํ•œ ์‹ ํ˜ธ ์„ธ๊ธฐ์˜ ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 4๊ฐœ์˜ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ ์ค‘์— 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์€ ์ œํ•œ๋œ ๋งˆ์ดํฌ๋กœ ์ฒด๋„ ์•ˆ์—์„œ ์ „๊ธฐํ™”ํ•™์  ํ™œ์„ฑ์„ ๋ค ๋ฌผ์งˆ์˜ ํšจ๊ณผ์ ์ธ ์‚ฐํ™”ํ™˜์› ์ˆœํ™˜์„ ํ†ตํ•ด ํŽ˜๋Ÿฌ๋ฐ์ด ์ „๋ฅ˜๊ฐ€ 100๋ฐฐ๊ฐ€ ์ฆ๊ฐ€๋˜์—ˆ๋‹ค. ์ƒŒ๋“œ์œ„์น˜ ํšจ์†Œ๋ฉด์—ญ์ธก์ •๋ฒ•์„ ๊ธฐ๋ฐ˜ํ•œ ์‹œ๊ฐ„๋Œ€์ „ํ•˜์ ์ธ ๋ฉด์—ญ ๊ฒ€์ถœ ํ”Œ๋ ›ํผ ๊ตฌ์ถ•์„ 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์˜ ์ฆ๊ฐ€๋œ ๋ฏผ๊ฐ๋„์— ์ด์šฉํ•˜์˜€๋‹ค. 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์—์„œ mouse IgG ์˜ ๊ฒ€์ถœํ•œ๊ณ„๋Š” ๋‹ซํžŒ 2์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน๋ณด๋‹ค ๋” ๋‚ฎ์€ ๊ฒ€์ถœํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ 3์ฐจ์› ์ง‘์ ํ™” ์ „๊ทน์„ ๊ธฐ๋ฐ˜ํ•œ ๋ฉด์—ญ์„ผ์„œ ์‹œ์Šคํ…œ์€ ์ธํ˜ˆ์ฒญ ์•ˆ์—์„œ 100 fg/mL cardiac troponin I ์˜ ๋ฏผ๊ฐํ•œ ๊ฒ€์ถœ์„ ํ†ตํ•ด ์ž„์ƒ์  ๋ถ„์„์— ์„ฑ๊ณต์ ์œผ๋กœ ์ด์šฉํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋„ท์งธ, ์•„๋ฏผ ๋ง๋‹จํ™”๋œ PAMAM ๋ด๋“œ๋ฆฌ๋จธ๋ฅผ ITO ํ‘œ๋ฉด ์œ„์— ๋ด๋“œ๋ฆฌ๋จธ์˜ ์•„๋ฏผ ๋ง๋‹จ ๊ทธ๋ฃน์˜ ์ „๊ธฐ์‚ฐํ™”์  ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ๊ณ ์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ „๊ธฐํ™”ํ•™์  ์ธก์ •๋ฒ•์œผ๋กœ ITO ํ‘œ๋ฉด ์œ„์— ์•„๋ฏผ ๋ง๋‹จํ™”๋œ ๋ด๋“œ๋ฆฌ๋จธ์˜ ์ „๊ธฐํ™”ํ•™์  ๊ฒฐํ•ฉ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ •ํ™” ๋ฐฉ๋ฒ•์œผ๋กœ ITO ํ‘œ๋ฉด ์œ„์— Fc-D ์™€ Pt DENs ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์ ์šฉํ•˜์˜€๊ณ , ๋ด๋“œ๋ฆฌ๋จธ๊ฐ€ ์ ‘ํ•ฉ๋œ ๋ง‰์€ ์•„๋ฏธ๋…ธํŽ˜๋†€์˜ ์‚ฐํ™”ํ™˜์› ๋ฐ˜์‘์— ๋Œ€ํ•œ ์ „๊ธฐ ์ด‰๋งค ์ž‘์šฉ ํ™œ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋งˆ์ดํฌ๋กœ ์นฉ ์•ˆ์—์„œ ์‚ผ ์ „๊ทน ์‹œ์Šคํ…œ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ณ ์ฒด ์ƒํƒœ์ธ ๊ธฐ์ค€์ „๊ทน, ITO ์ž‘์—…์ „๊ทน ๋ฐ ์ „๊ธฐ ๋„๊ธˆ๋œ Pt ๋ณด์กฐ์ „๊ทน์ด ์ง‘์ ํ™”๋œ ์นฉ์˜ ์ œ์ž‘์€ ์ผ๋ฐ˜์ ์ธ ์‚ฌ์ง„์„ํŒ์ˆ  ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ „์••๊ณผ ์‹œ๊ฐ„์— ๊ด€ํ•œ ์ „๊ธฐ๋„๊ธˆ ์กฐ๊ฑด๋“ค์„ ๊ธฐ์ค€์ „๊ทน๊ณผ ๋ณด์กฐ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์ „๊ธฐ๋„๊ธˆ๋œ ๋ง‰์˜ ์•ˆ์ •์„ฑ๊ณผ ๊ท ์ผ์„ฑ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ณ ์ฒด ์ƒํƒœ์ธ ๊ธฐ์ค€์ „๊ทน์€ ๋‚˜๋…ธ๋‹ค๊ณต์„ฑ ๋ฐฑ๊ธˆ ํ‘œ๋ฉด ์œ„์— ์ „๊ธฐ๊ณ ๋ถ„์žํ™”๋œ poly-m-PD ๋ง‰์„ ์ด์šฉํ•˜์—ฌ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์‚ผ ์ „๊ทน ์‹œ์Šคํ…œ์˜ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ์€ ์ˆœํ™˜์ „์••์ „๋ฅ˜๋ฒ•์„ ํ†ตํ•ด ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์€ ๊ณ ์ฒด ์ƒํƒœ์ธ ๊ธฐ์ค€์ „๊ทน์œผ๋กœ์„œ ์„ฑ๊ณต์ ์œผ๋กœ ์ž‘๋™์„ ํ•˜๋ฉฐ, ๋ฏธ๋Ÿ‰๋ถ„์„ ์‹œ์Šคํ…œ์„ ์œ„ํ•ด ๋งˆ์ดํฌ๋กœ ์นฉ ์•ˆ์œผ๋กœ ์ง‘์ ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹คํ—˜์„ ํ†ตํ•ด ์ฆ๋ช…ํ•˜์˜€๋‹ค.In modern analytical research, the development of sensitive, reliable, and inexpensive high-throughput assays for the detection of biomolecules has shown great potential in clinical diagnostics, food safety, and environmental monitoring. One of the most important issues in bioanalysis is to generate ultrasensitive signals, which will allow the analytes of interest to be identified with minimal treatment and consumption of samples and reagents. This dissertation describes the development and application of analytical methodologies for chemical/biological detection to improve their analytical performance. First, we developed a gold microshell-based surface enhanced Raman scattering (SERS) sensor for the detection of mercury(II) ions. This sensor is based on a molecular beacon, which involves a Raman-active, tetramethylrhodamine-tagged DNA hairpin structure and provides strategically selective binding of a thymine-thymine mismatch to Hg2+ ions. The sensor achieved good sensitivity and a detection limit of 50 nM by monitoring the change in the SERS signal of Raman reporters confined on the gold microshell surface. The selectivity of the sensor was demonstrated by the specific discrimination of mercury(II) ion from various other competing divalent metal ions. In addition, a DNA-modified single gold microshell could be individually manipulated using a micropipette. The DNA-modified single gold microshell demonstrated that the detection of mercury(II) ions could be successfully performed in small-volume sample solutions. Second, we devised a new method to enhance the sensitivity of a competitive immunoassay using electrokinetic concentration near a pair of highly charge-selective polymer [poly-2-acrylamido-2-methyl-1-propanesulfonic acid (pAMPSA)] plugs on a microfluidic chip. The polyelectrolytic gel, which was photopolymerized in a microfluidic channel network, served as the effective charge-selective extractor to sophisticatedly control the ion distribution. In this system, fluorescent indicators on the magnetic microbeads dispersed in the sample were spontaneously displaced by the unlabeled target molecules and then electrokinetically preconcentrated in a single spot on the microfluidic chip. The locally preconcentrated fluorescent indicators were detected using laser-induced fluorescence. As a proof-of-concept, the competitive displacement assay of unlabeled 1 nM biotin was conducted to observe ca. 2000-fold enrichment within 3 min. In addition to the sensitive assessment of unlabeled small target molecules, the proposed immunoassay system also showed good selectivity for biotin analogs such as biocytin, 2-iminobiotin, and desthiobiotin. Third, we suggest an electrochemical redox cycling based on the three-dimensional interdigitated array (3D IDA) electrodes for signal amplification to enhance the sensitivity of chip-based immunosensors. The 3D IDA consists of two closely spaced parallel indium tin oxide (ITO) electrodes, which were not only positioned at the bottom but also the on ceiling, facing each other along a microfluidic channel. The geometric configurations affecting the signal intensity were investigated for the parallel electrode, Open-2D IDA, Closed-2D IDA, and 3D IDA through electrochemical experiments and finite-element simulations. The 3D IDA, amongst the four different systems, exhibited the greatest signal amplification resulting from the efficient redox cycling of electroactive species confined in the microchannels, such that the faradaic current was augmented by a factor of ~ 100. We exploited the enhanced sensitivity of the 3D IDA to build a chronocoulometric immunosensing platform based on the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. The mouse IgGs on the 3D IDA showed much lower detection limits compared to those on the Closed-2D IDA. Moreover, the proposed immunosensor system based on the 3D IDA could be successfully used in clinical analysis, as shown by the sensitive detection of up to 100 fg/mL cardiac troponin I in human serum. Fourth, we report that the amine-terminated polyamidoamine (PAMAM) dendrimers can be immobilized onto the ITO surfaces via the electrooxidative coupling of the terminal amine groups of dendrimers to the ITO surfaces. The electrochemical measurements confirmed the electrochemical immobilization of the amine-terminated dendrimers onto the ITO surfaces. The immobilization approach was applied to assemble the partially tethered ferrocenyl dendrimer (Fc-D) and Pt dendrimer-encapsulated nanoparticles (Pt DENs) onto the ITO surfaces, and the resulting dendrimers-grafted films showed electrocatalytic activity for the p-aminophenol redox reaction. Finally, a new strategy involving three-electrode system fabrication in microchip systems has been described herein. A standard photolithography method was used for the fabrication of an on-chip integrated three-electrode system, with a solid-state reference electrode, an ITO working electrode, and an electrodeposited Pt counter electrode. Electroplating conditions of potential and time were investigated with respect to the stability and uniformity of the electrodeposited films used as reference and counter electrodes. The solid-state reference electrode was fabricated using an electropolymerized poly-1,3-phenylendiamine (poly-m-PD) layer on a nanoporous platinum (np Pt) surface. The electrochemical performance of the three-electrode system was evaluated using cyclic voltammetry. The experimental results in this study demonstrate that the proposed system successfully works as a solid-state reference electrode, which can be integrated into microchips for microanalysis systems.Contents Abstract ..................................................................................1 Contents ..................................................................................6 List of Figures ......................................................................11 1. Introduction ......................................................................23 1.1. Background and Overview ...............................................23 1.2. References ........................................................................29 2. Mercury(โ…ก) Detection by SERS based on a Single Gold Microshell .............................................................................31 2.1. Introduction .......................................................................31 2.2. Experimental .....................................................................35 2.2.1. Materials and reagents .........................................................35 2.2.2. Preparation of gold microshells ...........................................36 2.2.3. Functionalization of gold microshells with ss-DNA ..........37 2.2.4. Trapping a DNA-modified single gold microshell at the tip of the micropipiette and manipulation ............................................38 2.2.5. Instruments ...........................................................................39 2.3. Results and Discussion .....................................................40 2.3.1. Principle of sensor operation ...............................................40 2.3.2. Sensitivity of Hg2+ sensor.....................................................45 2.3.3. Selectivity of Hg2+ sensor.....................................................47 2.3.4. Application for small volume analysis..................................49 2.4. Conclusion .........................................................................51 2.5. References ........................................................................52 3. Electrokinetic Concentration on a Microfluidic Chip using Polyelectrolytic Gel Plugs for Small Molecule Immunoassay ........................................................................55 3.1. Introduction .......................................................................55 3.2. Experimental .....................................................................61 3.2.1. Reagents ................................................................................61 3.2.2. Preparation of antibody-conjugated magnetic microbeads .......................................................................62 3.2.3. Competitive immunoassay ....................................................63 3.2.4. Fabrication of microfluidic chips ..........................................63 3.2.5. Polyelectrolytic gel plugs(pAMPSA) fabrication process .65 3.2.6. Instrumentaion ......................................................................67 3.3. Results and Discussion .....................................................68 3.3.1. The mechanism of electrokinetic concentration polarization ...............................................................68 3.3.2. Electrokinetic precencentration of fluorescent indicators .71 3.3.3. Displacement andsubsequent preconcentration .................74 3.3.4. Sensitivity ..............................................................................75 3.3.5. Specificity ..............................................................................81 3.4. Conclusion .........................................................................84 3.5. References ........................................................................86 4. Electrochemical Signal Amplification for Immunosensor based on 3D Interdigitated Array Electrodes ....................91 4.1. Introduction .......................................................................91 4.2. Experimental .....................................................................97 4.2.1. Chemicals and materials .......................................................97 4.2.2. Device fabrication .................................................................98 4.2.3. Modeling and calculations ..................................................103 4.2.4. Electrode midification and procedures for measurements ..................................................104 4.2.5. Electrochemical measurements .........................................106 4.3. Theory .............................................................................108 4.3.1. Electrochemical processes ................................................108 4.3.2. Finite element simulations .................................................109 4.4. Results and Discussion ..................................................111 4.4.1. Current amplification by 3D IDA electrode.......................111 4.4.2. Signal amplification of various types of devices...............115 4.4.3. Electrografting of ferrocene moieties on ITO electrodes ...............................................................................126 4.4.4. Immunosensing performance by dependence on geometry ...................................................................................134 4.4.5. Sensitive detection of cTnI using 3D IDA electrode .......140 4.4. Conclusion .......................................................................143 4.6. References ......................................................................145 5. Electrografting of an ITO Surface with Amine-Terminated Dendrimers and its Application to Electrocatalytic Reaction ...................................................152 5.1. Introduction .....................................................................152 5.2. Experimental ...................................................................158 5.2.1. Chemicals and materials .....................................................158 5.2.2. Synthesis of Pt DENs .........................................................159 5.2.3. Preparation of the Fc-D-modified ITO electrode ..........159 5.2.4. Modification of ITO surfaces with Pt DENs .....................162 5.2.5. Fabrication of IDA microelectrode ....................................162 5.2.6. Electrochemical measurements .........................................164 5.3. Results and Discussion ..................................................165 5.3.1. Preparation and characterization of Fc-D- modified electrodes ....................................................................165 5.3.2. Immobilization of Pt DENs on ITO electrodes ..................171 5.3.3. Application of Fc-D and Pt DEN-grafted ITO electrodes to electrocatalysis ...........................................174 5.4. Conclusion .......................................................................187 5.5. References ......................................................................188 6. A Novel Three-Electrode System Microfabricated onto ITO for On-Chip Electrochemical Detection ...................192 6.1. Introduction .....................................................................192 6.2. Experimental ...................................................................197 6.2.1. Chemicals and materials .....................................................197 6.2.2. Micropatterning of ITO-coated glass substrates ............197 6.2.3. Fabrication of integrated three-electrode system ..........199 6.2.4. Electrochemical measurements .........................................202 6.3. Results and Discussion ..................................................203 6.3.1. Fabrication of a Pt counter electrode on an ITO surface for a microchip .....................................................................................203 6.3.2. Fabrication of the solid-state reference electrode for the microchip using L2-ePt ................................................................210 6.3.3. Application for microchip with integrated three-electrode system ............................................................................................217 6.4. Conclusion .......................................................................222 6.5. References ......................................................................224 7. Summary ......................................................................226 Appendix .............................................................................231 A. Mask Layout ......................................................................231 B. Cyclic Voltammetry Simulation at 3D IDA with COMSOL Mutiphysics .............................................................................233 Abstract (in Korean) .........................................................258 Acknowlegments (in Korean) ...........................................262Docto

    ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ์กฐ์งํšจ๊ณผ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ–‰์ •๋Œ€ํ•™์› : ํ–‰์ •ํ•™๊ณผ(์ •์ฑ…ํ•™์ „๊ณต), 2013. 8. ๊ตฌ๋ฏผ๊ต.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ๋ถ€ํ•˜ ํ˜•์‚ฌ๋“ค์˜ ์กฐ์ง๋ชฐ์ž…๊ณผ ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์™€ ๊ฐ™์€ ์ฃผ๊ด€์ โ€ค๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•œ ๋‹ค์Œ, ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์ด ์ฃผ๊ด€์ โ€ค๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ์–ด๋–ค ๋ฆฌ๋”์‹ญ ์œ ํ˜•์„ ๋ฐœํœ˜ํ•ด์•ผ ํ•˜๋Š”์ง€ ์ œ์‹œํ•˜๋ ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ์ฃผ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์ธ ํ˜•์‚ฌ๋“ค์˜ ์กฐ์ง๋ชฐ์ž…์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜๊ณ  ๋‘˜์งธ ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์ธ ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜• ํŒŒ์•…์„ ์œ„ํ•ด ์„œ์šธ๊ณผ ๋ถ€์‚ฐ ๋“ฑ 7๋Œ€ ๋„์‹œ ์ง€๋ฐฉ๊ฒฝ์ฐฐ์ฒญ 64๊ฐœ ๊ฒฝ์ฐฐ์„œ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋Š” ๊ฒฝ์ฐฐ์„œ๋งˆ๋‹ค 10๋ช…์˜ ํ˜•์‚ฌ๋“ค์„ ๋ฌด์ž‘์œ„๋กœ ์„ ์ •ํ•˜์˜€๊ณ  ํ˜•์‚ฌ 550๋ช…์˜ ์‘๋‹ต์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ ์ž๋ฃŒ๋ฅผ ๊ทผ๊ฑฐ๋กœ ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ๋ถ€ํ•˜ ํ˜•์‚ฌ๋“ค์˜ ์กฐ์ง๋ชฐ์ž…์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ณ€ํ˜์  ๋ฆฌ๋”์‹ญ์€ ํ˜•์‚ฌ๋“ค์˜ ์กฐ์ง๋ชฐ์ž…์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๊ณ , ๊ฑฐ๋ž˜์  ๋ฆฌ๋”์‹ญ์€ ํ˜•์‚ฌ๋“ค์˜ ์กฐ์ง๋ชฐ์ž…์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ๊ณ„์†ํ•ด์„œ ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ฆฌ๋”์‹ญ ์œ ํ˜•์ด ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์˜ ๋ณ€ํ˜์  ๋ฆฌ๋”์‹ญ์€ ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์ณค๊ณ , ๊ฑฐ๋ž˜์  ๋ฆฌ๋”์‹ญ์€ ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๊ฒฝ์ฐฐ์„œ ํ˜•์‚ฌ๊ณผ์žฅ์€ ๊ฑฐ๋ž˜์  ๋ฆฌ๋”์‹ญ์„ ๊ฐ•ํ™”ํ•˜๋ฉด ์ฃผ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ณ , ๋ณ€ํ˜์  ๋ฆฌ๋”์‹ญ์„ ๊ฐ•ํ™”ํ•˜๋ฉด ๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ์„ ๊ฐœ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ œ1์žฅ ์„œ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ๊ณผ ํ•„์š”์„ฑ 1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ๊ณผ ๋ฒ”์œ„ 5 ์ œ3์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 7 ์ œ2์žฅ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  9 ์ œ1์ ˆ ๋ฆฌ๋”์‹ญ ์ด๋ก  9 1. ๋ฆฌ๋”์‹ญ์˜ ์ •์˜ 9 2. ๋ฆฌ๋”์‹ญ ์ด๋ก ์˜ ์ „๊ฐœ 10 3. ๋ณ€ํ˜์  ๋ฆฌ๋”์‹ญ๊ณผ ๊ฑฐ๋ž˜์  ๋ฆฌ๋”์‹ญ 12 ์ œ2์ ˆ ๊ฒฝ์ฐฐ ๋ฆฌ๋”์‹ญ ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ 18 ์ œ3์ ˆ ์กฐ์งํšจ๊ณผ์„ฑ 26 1. ์ฃผ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ 26 2. ๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ 29 ์ œ3์žฅ ์—ฐ๊ตฌ ๋ชจํ˜•์˜ ์„ค๊ณ„ 36 ์ œ1์ ˆ ์—ฐ๊ตฌ ๋ชจํ˜• 36 ์ œ2์ ˆ ๋ณ€์ˆ˜ ์„ค์ • 39 ์ œ3์ ˆ ๊ฐ€์„ค ์„ค์ • 41 ์ œ4์ ˆ ๋ณ€์ˆ˜์˜ ์กฐ์ž‘์  ์ •์˜ 44 1. ๋…๋ฆฝ๋ณ€์ˆ˜ 44 2. ์ข…์†๋ณ€์ˆ˜ 45 3. ํ†ต์ œ๋ณ€์ˆ˜ 47 ์ œ5์ ˆ ์กฐ์‚ฌ ์„ค๊ณ„ 49 1. ํ‘œ๋ณธ์˜ ์„ ์ • ๋ฐ ์กฐ์‚ฌ ๋ฐฉ๋ฒ• 49 2. ์„ค๋ฌธ์ง€์˜ ๊ตฌ์„ฑ 51 3. ์ž๋ฃŒ ๋ถ„์„๋ฐฉ๋ฒ• 53 ์ œ4์žฅ ํ†ต๊ณ„๋ถ„์„ ๋ฐ ๊ฐ€์„ค ๊ฒ€์ฆ 55 ์ œ1์ ˆ ๊ธฐ์ดˆ ํ†ต๊ณ„๋ถ„์„ 55 1. ์‘๋‹ต์ž์˜ ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ํ˜„ํ™ฉ 55 2. ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ๋ณ€์ˆ˜์™€ ์กฐ์ง๋ชฐ์ž… ๊ฐ„์˜ ๊ด€๊ณ„ 57 3. ๊ฒฝ์ฐฐ์„œ์˜ ํ™˜๊ฒฝ๋ณ€์ˆ˜์™€ ํ˜•์‚ฌ 1์ธ๋‹น 5๋Œ€ ๋ฒ”์ฃ„ ๊ฒ€๊ฑฐ๊ฑด์ˆ˜์™€์˜ ๊ด€๊ณ„ 74 4. ๋ฌธํ•ญ์˜ ์‹ ๋ขฐ๋„ ๋ถ„์„ 76 5. ๋ณ€์ˆ˜๋“ค ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„ 78 6. ๋ณ€์ˆ˜๋ณ„ ๊ฒฝ์ฐฐ๊ด€์˜ ์ธ์‹ ์ˆ˜์ค€ 81 ์ œ2์ ˆ ๊ฐ€์„ค ๊ฒ€์ฆ 83 1. ์ฃผ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ ๊ฐ€์„ค๊ฒ€์ฆ 83 2. ๊ฐ๊ด€์  ์กฐ์งํšจ๊ณผ์„ฑ ๊ฐ€์„ค๊ฒ€์ฆ 100 ์ œ5์žฅ ๊ฒฐ ๋ก  116 ์ œ1์ ˆ ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  116 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 118 ์ฐธ๊ณ ๋ฌธํ—Œ 121 ์„ค๋ฌธ์ง€ 125 Abstract 135Maste

    Hg2+-DNA ๋ณตํ•ฉ์ฒด๋ฅผ ๊ธฐ๋ฐ˜ํ•œ ์ˆ˜์€(โ…ก)์˜ ์„ ํƒ์ ์ธ ์ „๊ธฐํ™”ํ•™์  ๊ฒ€์ถœ

    No full text
    Thesis(masters)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๋ถ€(๋ถ„์„ํ™”ํ•™์ „๊ณต),2009.8.Thesis(masters) -

    Design of computer interface of emergency record based on mobile device and biological measurement monitoring system

    No full text
    ์˜๊ณผํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” mobile device๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‘๊ธ‰๊ตฌ์กฐํ™œ๋™ ๊ธฐ๋ก ๋ฐ ์ƒ์ฒด๊ณ„์ธก monitoring์˜ computer interface๋ฅผ ์„ค๊ณ„ ๋ฐ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ์„œ๋ฉด ํ˜•์‹์˜ ์‘๊ธ‰๊ตฌ์กฐ๊ธฐ๋ก์€ ํ™˜์ž๊ฐ€ ์ด๋ฏธ ๋ณ‘์›์œผ๋กœ ์ด์†ก๋œ ์ƒํƒœ์—์„œ ๊ตฌ๊ธ‰๋Œ€์› ๋“ฑ์˜ ์ธ๋ ฅ์ด ๊ทธ ์ž๋ฆฌ์—์„œ ๊ตฌ์กฐํ™œ๋™์ผ์ง€๋ฅผ ์ž‘์„ฑํ•˜์—ฌ ๋ณ‘์› ์ธก์— ์ธ๊ณ„ํ•˜๋Š” ํ˜•ํƒœ์˜ ๊ฒƒ์ด์—ˆ๊ณ  ํ™˜์ž๋ฅผ ์ด์†กํ•˜๋Š” ๊ณผ์ •์—์„œ ์ธก์ •ํ•œ ์‘๊ธ‰ํ™˜์ž์˜ ํ™œ๋ ฅ์ง•ํ›„, ๋˜๋Š” ์˜์‹์ˆ˜์ค€ ๋“ฑ์˜ ์ •๋ณด๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ณ‘์› ์ „ ๋‹จ๊ณ„ ์ฒ˜์น˜๊ฐ€ ์›๋งŒํžˆ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ด๋‹ค. ์‹ค์ œ๋กœ ์‘๊ธ‰๊ตฌ์กฐํ™œ๋™์ผ์ง€์— ๊ธฐ์žฌ๋˜๋Š” ๋‚ด์šฉ๋“ค์€ ๊ทธ ํ•ญ๋ชฉ์ด ๋งค์šฐ ๋งŽ์ง€๋งŒ, ์‘๊ธ‰์ƒํ™ฉ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ์‘๊ธ‰ํ™˜์ž์˜ ํ˜„์žฌ ์ฆ์ƒ ํŒŒ์•…๊ณผ ๊ทธ๋Ÿฌํ•œ ์ฆ์ƒ๋“ค์ด ์–ด๋Š ์ •๋„์˜ ์ค‘์ฆ ๋„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋Š๋ƒ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒƒ์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‘๊ธ‰ํ™˜์ž์˜ ์ค‘์ฆ๋„ ๋ถ„๋ฅ˜๋Š” ๋‹ค์ˆ˜์˜ ์‚ฌ์ƒ์ž๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์žฌ๋‚œ ์ƒํ™ฉ ๋“ฑ์˜ ๊ฒฝ์šฐ์—์„œ ํŠนํžˆ ๊ทธ ์ค‘์š”๋„๊ฐ€ ํฐ๋ฐ, ๊ทธ ์ด์œ ๋Š” ์‹ ์†ํ•˜๊ณ ๋„ ํšจ์œจ์ ์ธ ์ค‘์ฆ๋„ ๋ถ„๋ฅ˜๊ฐ€ ํ•œ์ •๋œ ์˜๋ฃŒ์ž์›์˜ ์šด์šฉ๊ณผ ๋ฐฐ๋ถ„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ํ•œํŽธ ์ด๊ฒƒ์ด ๊ณง ์ตœ๋Œ€ ๋‹ค์ˆ˜ ํ™˜์ž์˜ ์ตœ์  ์ฒ˜์น˜๋กœ ๊ท€๊ฒฐ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณด๊ฑด ๋ณต์ง€๋ถ€, ์ค‘์•™ ์‘๊ธ‰์˜๋ฃŒ์„ผํ„ฐ, ์†Œ๋ฐฉ ๋ฐฉ์žฌ ์ฒญ, ๋Œ€ํ•œ ์‘๊ธ‰ ์˜ํ•™ ํšŒ, ๋Œ€ํ•œ ์‘๊ธ‰ ๊ตฌ์กฐ ์‚ฌ ํ˜‘ํšŒ๊ฐ€ ๊ณต๋™ ์ฃผ๊ด€์œผ๋กœ ๋ฐœ๊ฐ„ํ•œ ์‘๊ธ‰ ๊ตฌ์กฐ ์‚ฌ ์—…๋ฌด์ง€์นจ์„œ์˜ ๋‚ด์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์žฌ๋‚œ์‘๊ธ‰์ƒํ™ฉ๊ณผ ์ผ๋ฐ˜์‘๊ธ‰์ƒํ™ฉ์—์„œ ๋ฐœ์ƒํ•œ ์™ธ์ƒ, ๋น„ ์™ธ์ƒ, ํ™˜๊ฒฝ ์„ฑ ์™ธ์ƒ ํ™˜์ž์— ๋Œ€ํ•œ ์ฆ์ƒ ๋ฐ ์ฒ˜์น˜๋ฒ• ๋ถ„๋ฅ˜๋ฅผ ์†Œํ”„ํŠธ์›จ์–ด์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜๊ณ ์ž ํ•˜์˜€๊ณ , ์‘๊ธ‰์˜ํ•™๊ณ„์— ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ๋Š” ์ค‘์ฆ๋„ ๋ถ„๋ฅ˜ ์ง€ํ‘œ๋“ค์„ ์—ฐ๊ตฌ, ์ฐธ๊ณ  ํ•˜์—ฌ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์‘๊ธ‰๊ตฌ์กฐ๊ธฐ๋ก application์—์„œ์˜ ์‘๊ธ‰ํ™˜์ž ์ค‘์ฆ๋„ ๋ถ„๋ฅ˜ ๋ถ€๋ถ„์„ ๊ตฌํ˜„ํ•˜๋Š”๋ฐ ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ mobile mevice์— ๋‚ด์žฅ๋œ ์นด๋ฉ”๋ผ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ™˜์ž์˜ ํ™˜๋ถ€๋‚˜ ์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์˜์ƒ์„ ์ดฌ์˜ํ•  ๊ฒฝ์šฐ ๊ทธ ์˜์ƒ์„ application ๊ตฌ๋™ ๋‹จ๊ณ„์—์„œ ์กฐํšŒํ•  ์ˆ˜ ์žˆ๋Š” image viewer์™€ ํŠน์ • ์ง€์—ญ์˜ ์‘๊ธ‰์˜๋ฃŒ๊ธฐ๊ด€์˜ ์—ฐ๋ฝ์ฒ˜๋ฅผ ์กฐํšŒํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ์‹ค์ œ ์ƒ์ฒด์‹ ํ˜ธ ๊ฐ์ง€ ์žฅ์น˜์™€ mobile device๊ฐ€ interface๋˜์—ˆ์„ ๊ฒฝ์šฐ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ vital sign display๋ฅผ mobile device๋ผ๋Š” ์ œํ•œ์ ์ธ ํ™˜๊ฒฝ์—์„œ Testํ•˜๊ณ , ์ „์ฒดapplication๊ณผ ํ†ตํ•ฉ์‹œ์ผฐ๋‹ค. ์ด๋™์„ฑ์ด ๊ทน๋Œ€ํ™”๋œ mobile device๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‘๊ธ‰๊ตฌ์กฐ๊ธฐ๋ก์„ ๊ด€๋ฆฌํ•˜๊ณ , ์‘๊ธ‰ํ™˜์ž์˜ vital sign๋˜ํ•œ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด ์ผ์ƒ์ƒํ™œ์—์„œ์˜ ์‘๊ธ‰ํ™˜์ž๋ฟ ๋งŒ ์•„๋‹ˆ๋ผ ์ฒœ์žฌ์ง€๋ณ€, ๊ฑด์ถ•๋ฌผ ๋ถ•๊ดด, ๋Œ€ํ˜•๊ตํ†ต์‚ฌ๊ณ  ๋“ฑ์œผ๋กœ ์ธํ•œ ์‘๊ธ‰ํ™˜์ž์˜ ์ฆ์ƒ๊ณผ triage๋ฅผ ๋ณด๋‹ค ํŽธ๋ฆฌํ•˜๊ฒŒ ๊ธฐ๋ก ๋ฐ ์ €์žฅํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ์˜ ๊ฒฐ๊ณผ๋Š” ์•ž์œผ๋กœ ํ–ฅํ›„ ๋ฐœ์ „ ํ•˜๋Š” Ubiquitous-healthcare ์„œ๋น„์Šค์™€ ์—ฐ๊ณ„๋จ์œผ๋กœ์จ, ๊ณ  ๋ถ€๊ฐ€๊ฐ€์น˜ ์ฐฝ์ถœ์„ ์œ„ํ•œ ํ•˜๋‚˜์˜ ์•„์ดํ…œ์œผ๋กœ์„œ ๋ฐœ์ „ํ•ด ๋‚˜๊ฐˆ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. [์˜๋ฌธ] In this study, we designed and constructed the electronic emergency medical record and vital sign monitoring computer interface which would be used on the mobile devices. For the existing paper based emergency medical record, it was filled out after a patient had already arrived at the hospital by one of the emergency rescuers and was delivered to the hospital. Thus the efficient Pre Hospital Care based on all the information obtained during transfer - vital signs and degree of consciousness - couldn't get attained. The emergency record includes lots of queries in itself, but the most important thing in the emergency case is to grasp the current symptom of an emergency patient and do triage according to those symptoms. In the case of disaster which causes many killed and injured people, the triage on the emergency patients is seriously required since the fast and efficient triage affect on the use and distribution of the limited medical resource. In addition, it results in the optimized treatment for many and various patients. In this study, we referred the work guideline for the emergency rescuers which was published by the cooperation of the Ministry of Health and Welfare, National Emergency Medical Center, National Emergency Management Agency, Korean Society of Emergency Medicine, Korean Emergency Medical Technician Associationand implemented the ์†Œํ”„ํŠธ์›จ์–ด architecture for the categorization of symptoms and treatment methods.This categorization was for the traumatic, non-traumatic, or environmental traumatic patients from disaster emergency case and ordinary emergency case. Hence, we have analyzed the reported Triage methods to the Emergency Medical Society and reflected the analyzed result to implement the triage part in the emergency medical record application. In addition, when a user uses the built-in camera of the mobile device to figure out the injured part or the state of a patient, the Image Viewer is available to see the image at the stage of application. Another function of this application was to provide the contact information of the emergency medical center in a designated area. Prior to the integration of the whole applications, we tested the vital sign display in the limited environment, the Mobile device, assuming that the vital sign sensors and the mobile device were interfaced. Mobile device is very portable in general. Thus if it is used to manage the emergency medical record and to measure the vital signs, it may be more convenient to record and store the symptoms of a patient and the result of triage not only in the daily life but also in the natural calamity and the man-made disaster like the breakdown of a building or the terrible traffic accident. Finally, we expect that this system will be linked to the Ubiquitous - healthcare service and will be a core item which can make higher added value in the future.ope

    ํ”„๋ž‘์Šค ์ œ3๊ณตํ™”๊ตญ ํ—Œ๋ฒ•์ฒด์ œ์˜ ์ •๋ฆฝ๊ณผ์ •์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฒ•ํ•™๊ณผ,2008.2.Docto

    ํ›„ํ–ฅ๊ฒฝ์‚ฌ๊ณ„๋‹จ์—์„œ ์ฃผ๊ธฐ์  ๊ต๋ž€์— ์˜ํ•œ ๋ฐ•๋ฆฌ-์žฌ๋ถ€์ฐฉ ์œ ๋™์ œ์–ด์— ๊ด€ํ•œ ์‹คํ—˜์  ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2001.Maste
    corecore