47 research outputs found

    Growth and evaluation of high quality AlN using sputtering

    Get PDF
    ๋„“์€ ๋ฐด๋“œ๊ฐญ, ๋†’์€ ์—ด์ „๋„๋„์™€ ํ‘œ๋ฉด ํƒ„์„ฑ ์†๋„์™€ ๊ฐ™์€ ์šฐ์ˆ˜ํ•œ ๋ฌผ์„ฑ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” AlN (์งˆํ™” ์•Œ๋ฃจ๋ฏธ๋Š„)์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€๋Š” AlN ๋ฐ•๋ง‰์€ ์ฃผ๋กœ MOCVD, MBE ๋ฐ ์Šคํผํ„ฐ ๋“ฑ๊ณผ ๊ฐ™์€ ๋ฐ•๋ง‰ ์„ฑ์žฅ ์žฅ๋น„๋“ค์„ ์ด์šฉํ•˜์—ฌ ์„ฑ์žฅํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ์Šคํผํ„ฐ๋กœ ์ œ์ž‘๋œ AlN ๋ฐ•๋ง‰์€ ์ €์˜จ ์„ฑ์žฅ์˜ ๊ฐ€๋Šฅ์„ฑ, ๋ฐ•๋ง‰์˜ ๋‚ฎ์€ ๊ฑฐ์น ๊ธฐ ๋ฐ ๋‚ฎ์€ ์ œ์กฐ ๋‹จ๊ฐ€์™€ ๊ฐ™์€ ์žฅ์ ์ด ์žˆ์ง€๋งŒ ๊ฒฐ์ •์„ฑ์˜ ๊ด€์ ์—์„œ๋Š” ํŠน์ • ์šฉ๋„๋กœ์„œ ํ™œ์šฉ์—๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. ์Šคํผํ„ฐ๋œ AlN ๋ฐ•๋ง‰์˜ ๊ฒฐ์ •์„ฑ์€ ์Šคํผํ„ฐ๋ง ์กฐ๊ฑด๋“ค์— ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์Šคํผํ„ฐ๋ง ๋ฐฉ๋ฒ•์œผ๋กœ ๊ณ ํ’ˆ์งˆ์˜ AlN ๋ฐ•๋ง‰์„ ์ œ์กฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์Šคํผํ„ฐ๋ง ์กฐ๊ฑด์ด AlN ๋ฐ•๋ง‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” AlN ๋ฐ•๋ง‰์˜ ์‘์šฉ ํ™•๋Œ€๋ฅผ ์œ„ํ•ด, ์Šคํผํ„ฐ๋ง์„ ์ด์šฉํ•˜์—ฌ AlN ๋ฐ•๋ง‰์˜ ์„ฑ์žฅ๊ณผ ํ‰๊ฐ€์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ•˜์˜€๋‹ค. 1์žฅ์—์„œ๋Š” ์ด ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋™๊ธฐ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜์˜€๋‹ค. AlN์˜ ๊ฒฐ์ • ๊ตฌ์กฐ, ํŠน์„ฑ, ์‘์šฉ ๋ถ„์•ผ ๋ฐ AlN ๋ฐ•๋ง‰์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋“ค์„ ์„œ์ˆ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ์‹คํ—˜์— ์‚ฌ์šฉํ•œ ์žฅ๋น„์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. AlN ๋ฐ•๋ง‰์˜ ์ œ์กฐ๋ฅผ ์œ„ํ•œ ์Šคํผํ„ฐ๋ง ๋ฐฉ๋ฒ•๋“ค๊ณผ XRD, SEM, EDS, AFM, CL๊ณผ ๊ฐ™์€ AlN ๋ฐ•๋ง‰์˜ ๋ถ„์„ ๋ฐ ํ‰๊ฐ€๋ฅผ ์‹ค์‹œํ•œ ์žฅ๋น„๋“ค์„ ์„ค๋ช…ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” DC ๋ฐ˜์‘์„ฑ ๊ฐ€์Šค ๋งˆ๊ทธ๋„คํŠธ๋ก  ์Šคํผํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ AlN ๋ฐ•๋ง‰์˜ ์„ฑ์žฅ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ฐ•๋ง‰๋“ค์€ ๊ณต๊ธ‰๋Ÿ‰์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ํ™”ํ•™์–‘๋ก ์  ์กฐ์„ฑ์˜ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊ด€์ ์œผ๋กœ ๊ฒฐ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 4์žฅ์—์„œ๋Š” ํŽ„์Šค ์Šคํผํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ AlN ๋ฐ•๋ง‰์— ์„ฑ์žฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 3์žฅ์˜ ๋‚ด์šฉ์„ ํ™œ์šฉํ•˜์—ฌ AlN ๋ฐ•๋ง‰์˜ ์„ฑ์žฅ ์กฐ๊ฑด ์ตœ์ ํ™”๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. 5์žฅ์—์„œ๋Š”, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ํ™œ์šฉ ๊ฐ€์น˜๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด, 4์žฅ์—์„œ ์ตœ์ ํ™”๋œ AlN ๋ฐ•๋ง‰์˜ ๋ฌผ์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 6์žฅ์—์„œ ๋ชจ๋“  ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๊ณ  ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๋ก ์„ ์„ค๋ช… ํ•˜์˜€๋‹ค. |AlN (aluminum nitride), which has excellent properties such as wide band gap, high thermal conductivity and surface acoustic velocity, is utilized in various fields. Up to now, AlN thin films are mainly grown using thin film growth equipments such as MOCVD, MBE and sputter. However, AlN thin films fabricated by sputtering have advantages such as a higher possibility of a low temperature growth, a low roughness of thin film and a low manufacturing cost, but it is not satisfying in terms of crystallinity for certain applications. It was reported that the crystallinity of the sputtered AlN thin film is affected by the sputtering conditions. Therefore, in order to fabricate high-quality AlN thin films by sputtering, it is necessary to study the influence of sputtering conditions on AlN thin films. In this study, I researched the growth and evaluation of AlN thin films by sputtering for the widen application of AlN thin films. In the chapter 1, the background and motivation of this study were introduced. The crystal structure, properties, application fields of AlN and methods for fabricating AlN thin films were described. In the chapter 2, the equipments used in the experiment were introduced. The sputtering methods for fabrication of AlN thin film and equipments for the analysis and evaluation of AlN thin films such as XRD, SEM, EDS, AFM, and CL are described. In the chapter 3, The growth of AlN thin films was demonstrated using a DC reactive gas magnetron sputter. The Influences to the crystallinity in terms of the stoichiometric composition change with changes of the supply amount were investigated. In the chapter 4, The growth of the AlN thin film is discussed using a pulsed sputter. The growth conditions of the AlN thin film are optimized by utilizing the content of chapter 3. In chapter 5, In order to evaluate the utilization value of various fields, the physical properties of the optimized AlN thin films were evaluated in chapter 4. Finally, In the chapter 6 all results are summarized and conclusions of this study were explained.1. Introduction 1.1 Aluminum nitride 1 1.1.1 Crystal structure 1 1.1.2 Physical properties 3 1.1.3 Applications 4 1.2 Growth method for AlN thin films 7 1.3 Outline of thesis 7 Reference 9 2. Experimental Equipment 2.1 Sputter 13 2.1.1 DC discharge 14 2.1.2 Sputtering yield 15 2.1.3 Magnetron sputter 16 2.1.4 Reactive gas sputter 16 2.1.5 Pulsed sputtering deposition (PSD) 16 2.2 X-ray diffraction (XRD) 18 2.3 Atomic force microscopy (AFM) 20 2.4 Field emission scanning electron microscope (FE-SEM) 22 2.5 Energy dispersive X-ray spectrometer (EDS) 24 2.6 Cathodoluminescence (CL) 24 2.7 Fourier transform infrared (FTIR) 25 Reference 27 3. Reactive Gas DC magnetron Sputtering of AlN thin films 3.1 Introduction 29 3.2 Experimental details 30 3.3 Influence of plasma power on reactive gas DC magnetron sputtering of AlN thin films 30 3.3.1 Growth rate variation 30 3.3.2 Surface change 323.3.3 Composition variation 34 3.3.4 Crystallinity 35 3.4 Influence of gas flow ratio on the reactive gas DC magnetron sputtering of AlN thin films 37 3.4.1 Growth rate variation 38 3.4.2 Surface change 39 3.4.3 Crystallinity and composition variation 40 3.5 Conclusion 42 Reference 43 4. Pulsed Sputtering Deposition of AlN Thin Films 4.1 Introduction 44 4.2 Experiment details 45 4.3 Influence of plasma power on pulsed sputtering deposition of AlN thin films 46 4.3.1 Al amount supply 46 4.3.2 Migration length 49 4.3.3 Plasma damage 50 4.3.4 Lattice constant 52 4.3.5 Al-N cluster 53 4.4 Influence of gas pressure on pulsed sputtering deposition of AlN thin films 56 4.5 Influence of growth temperature on pulsed sputtering deposition of AlN thin films 58 4.6 Conclusion 62 Reference 63 5. Characterizations of AlN Thin Films 5.1 Introduction 65 5.2 Experimental details 65 5.3 Surface morphology 66 5.4 Refraction index 67 5.5 Luminescence property 69 5.6 Relative permittivity 69 5.7 Electrical resistivity 71 5.8 Conclusion 72 Reference 73 6. Conclusion 75 Resume 77 Acknowledgement 82Maste

    Floating-Gate๋ฅผ ๊ฐ–๋Š” Flash Memory ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ์ด์ข…ํ˜ธ.์ตœ๊ทผ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ ์ฐจ ๊ณ ์ง‘์ , ์†Œํ˜•ํ™” ๋˜๋ฉด์„œ ํŠธ๋žฉ์— ์ „์ž๊ฐ€capture ๋˜๋Š” emission ๋˜์–ด ๋ฐœ์ƒํ•˜๋Š” Random Telegraph Noise (RTN)๊ฐ€ ์ฝ๊ธฐ ๋™์ž‘ ๋ฐ ์†Œ์ž์˜ ๋ถˆ์•ˆ์ •์„ฑ ๋“ฑ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐ ์‹œํ‚ค๊ณ  ์žˆ์–ด ๋ฉ”๋ชจ๋ฆฌ ๋™์ž‘ ์‹œ ์ค‘์š”ํ•œ ์‚ฌ์•ˆ์œผ๋กœ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, Interpoly dielectric (IPD)์˜ ๋‘๊ป˜๊ฐ€ ์ ์  ๊ฐ์†Œํ•จ์— ๋”ฐ๋ผ, IPD์— ์กด์žฌํ•˜๋Š” ํŠธ๋žฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒ๋˜๋Š” ์‹ ๋ขฐ์„ฑ๋ฌธ์ œ ๋˜ํ•œ ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Tunneling oxide๋ฐ IPD์— ์กด์žฌํ•˜๋Š” ํŠธ๋žฉ์˜ ๋ถ„์„์„ ํ†ตํ•ด Floating Gate NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•˜์—ฌ ๋…ผํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ €, Read cell์€ NAND string์˜ ๊ตฌ์กฐ์ ์ธ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด pass cell๋“ค์˜ ์ฑ„๋„์ €ํ•ญ ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋˜๋ฉฐ, ํŠธ๋žฉ์˜ ์œ„์น˜์™€ ์—๋„ˆ์ง€ ์ค€์œ„๋ฅผ ์ถ”์ถœํ•จ์— ์žˆ์–ด pass cell๋“ค์˜ ์ฑ„๋„์ €ํ•ญ์„ ๊ณ ๋ คํ•˜์—ฌ์•ผ ๋”์šฑ ์ •ํ™•ํ•œ ๊ฐ’์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์ตœ๊ทผ ์†Œ์ž๊ฐ€ ์†Œํ˜•ํ™” ๋จ์— ๋”ฐ๋ผ ์ธ์ ‘ cell์— ์˜ํ•œ ๊ฐ„์„ญํšจ๊ณผ๊ฐ€ ๊ธ‰์†ํžˆ ์ปค์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ธ์ ‘ cell์˜ ๊ฐ„์„ญํšจ๊ณผ์— ๋”ฐ๋ฅธ RTN ํŠน์„ฑ์„ ๋ณด๊ณ ์ž 3-D TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ธก์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ธ์ ‘ cell ์ƒํƒœ์— ๋”ฐ๋ผ, Read cell์˜ ์ฑ„๋„ Width ๋ฐฉํ–ฅ์˜ Electron current density ๋ฐ RTN์— ์˜ํ•œ ๋น„ํŠธ๋ผ์ธ ์ „๋ฅ˜๋ณ€ํ™”, capture/emission time constant๊ฐ€ ๋ณ€ํ™” ๋จ์„ 3-D TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ธก์ •์„ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์•ž์„œ pass cell๋“ค์˜ ์ฑ„๋„์ €ํ•ญ ํšจ๊ณผ ๋ฐ ์ธ์ ‘ cell ๊ฐ„์„ญํšจ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ค์ œ 32nm ๋ฐ 26nm NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌstring์—์„œ RTN์„ ์œ ๋ฐœํ•˜๋Š” ํŠธ๋žฉ์˜ ์œ„์น˜๋ฅผ Vertical, Lateral, Width ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ถœ์„ ํ•˜์—ฌ 3-D ๊ทธ๋ž˜ํ”„๋กœ ํ‘œํ˜„์„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ฝ๊ธฐ ๋™์ž‘ ์‹œ, RTN์˜ ์˜ํ–ฅ์„ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ~ฮผsec ๋ฒ”์œ„์˜ pre-bias๋ฅผ ์ธ๊ฐ€ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ฝ๊ธฐ๋ฐฉ๋ฒ•์„ ์ œ์•ˆ์„ ํ•˜์˜€์œผ๋ฉฐ ์ธก์ •์„ ํ†ตํ•ด ๊ทธ ํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๋ฐœ์ƒํ•˜๋Š” hysteresis ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด pulsed I-V ์ธก์ • ๋ฐ ๋น„ํŠธ๋ผ์ธ ์ „๋ฅ˜์˜ Transient ํŠน์„ฑ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” IPD์˜ bottom oxide์— ์กด์žฌํ•˜๋Š” ํŠธ๋žฉ์— ์˜ํ•ด ๋ฐœ์ƒ๋œ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ๋„์ถœ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฐ hysteresis ํšจ๊ณผ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ฝ๊ธฐ๋ฐฉ๋ฒ•์„ ์ œ์•ˆ์„ ํ•˜์˜€์œผ๋ฉฐ ์ธก์ •์„ ํ†ตํ•ด ๊ทธ ํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰ ๋ถ€๋ก์—์„œ๋Š” ์ธ์ ‘ cell ์ƒํƒœ์— ๋”ฐ๋ผ ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋˜๋Š” ๊ฐ„์„ญํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ, ํŠธ๋žฉ ์œ„์น˜์— ๋”ฐ๋ฅธ ๋น„ํŠธ๋ผ์ธ ์ „๋ฅ˜๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ชจ๋ธ๋ง์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ชจ๋ธ๋ง์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด electric blockade length ๋ฐ ํŠธ๋žฉ ์œ„์น˜๊ฐ€ ๊ณ ๋ ค๋œ Gaussian ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„ ํŠน์„ฑ ํ•จ์ˆ˜๋ฅผ ์ •์˜๋ฅผ ํ•˜์˜€๊ณ  ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ํŠธ๋žฉ์— ์˜ํ•œ ๋น„ํŠธ๋ผ์ธ ์ „๋ฅ˜๋ณ€ํ™”๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. 3-D TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ชจ๋ธ์ด ๋งค์šฐ ์ •ํ™•ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ œ์•ˆ๋œ ๋ชจ๋ธ์„ ์ด์šฉํ•˜๋ฉด ํŠธ๋žฉ์— ์˜ํ•œ ๋น„ํŠธ๋ผ์ธ ์ „๋ฅ˜ ๋ณ€ํ™”๊ฐ’์„ ์†์‰ฝ๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.As flash memory cells continue to decrease in scale, random telegraph noise (RTN) caused by electron capture or emission at trap sites has become an important issue. Fluctuations in the threshold voltage (ฮ”Vth) due to RTN can cause serious problems, such as read errors and device instability. As the thickness of the inter-poly dielectric IPD continues to decrease, the traps in the IPD also lead to reliability issues related to the leakage current and data retention. In this thesis, we investigate the reliability of NAND flash memory with respect to traps not only in the tunneling oxide but also in the IPD of the cell device. We first focus on traps that produce RTN in the tunneling oxide during a read operation. The trap position with respect to the channel surface and the floating-gate (xT) and the trap position along the channel length direction (yT) in the fabricated NAND flash memories were obtained by considering the channel resistance of the pass cells. The RTN in the floating-gate NAND flash cell strings interfered with the adjacent bit-line cell, and the effects of such on the fluctuations in the bit-line current (ฮ”IBL= high IBL โ€“ low IBL) were characterized. The electron current density (Je) of a read cell was found to be appreciably different depending on the position in the channel width direction relative to the interference produced by the adjacent bit-line cells. We verified that ฮ”IBL due to RTN increases as a high Je position is controlled to be close to a trap position in 32 nm NAND flash memory strings. The adjacent cell interference was shown to affect not only ฮ”IBL but also the ratio between the capture and the emission time constants [ln(ฯ„c/ฯ„e)]. We used the interference between the adjacent bit-lines (BLs) to obtain the trap position along the width direction and to represent the 3-D position of the traps in 32 nm and 26 nm NAND flash memory cells for the first time. We propose a new read method that reduces the effects on ฮ”IBL resulting from RTN. The pre-bias is controlled in the s range, and our method was confirmed to effectively suppress the effect of the RTN during read operations in NAND flash memory. Second of all, we investigate the hysteresis phenomenon in the floating-gate NAND flash memory strings, which originates from the traps in the bottom oxide of the oxide/nitride/oxide blocking dielectric (IPD). The hysteresis phenomenon in the floating-gate NAND flash memory strings is analyzed by measuring pulsed I-V and fast transient IBL. A new read method that suppresses the effect of the hysteresis phenomena was also proposed in order to reduce the read failures in NAND flash memory. In the Appendix, ฮ”IBL is modeled with the trap position as a parameter for the state (program or erase) of the adjacent bit-line cells, and it is observed to appreciably affect the current density distribution. ฮ”IBL is modeled by determining the integrated electron current density [J0=f(z)] and the electric blockade length (Lt) by considering the effect of the interference on the adjacent cells. A characteristic function [g(z)] with a Gaussian functional form is defined based on Lt and the trap position within the tunneling oxide from the channel surface (xT). Finally, ฮ”IBL is extracted by integrating f(z) and g(z). Our model accurately predicts ฮ”IBL, with the trap position as a parameter of the state of the bit-line cells, showing good agreement with data from a 3-D simulation.Abstract 1 Contents 4 Chapter 1 Introduction 7 1.1 RELIABILITY ISSUES IN NAND FLASH MEMORY 7 1.2 MOTIVATION AND ORGANIZATION 14 Chapter 2 Extraction of trap profiles considering channel resistance of pass cells 16 2.1 INTRODUCTION 16 2.2 DEVICE STRUCTURE AND MEASUREMENT METHOD 17 2.3 EQUATIONS OF TRAP PROFILES IN A NAND FLASH MEMORY STRING 19 2.4 VERIFICATION OF PROPOSED EQUATIONS 24 2.5 DISTRIBUTION OF TRAP POSITIONS IN TUNNELING OXIDE OF NAND FLASH MEMORY 29 Chapter 3 Effect of bit-line interference on RTN in NAND flash memory 30 3.1 INTRODUCTION 30 3.2 DEVICE STRUCTURE AND SIMULATION CONDITION 31 3.3 RESULTS OF 3-D TCAD SIMULATION 31 3.4 RTN MEASUREMENT RESULTS WITH THE STATE OF ADJACENT BIT-LINE CELLS 38 3.5 3-D TRAP POSITION IN TUNNELING OXIDE 45 Chapter 4 A new read method suppressing random telegraph noise 49 4.1 INTRODUCTION 49 4.2 DEVICE STRUCTURE AND MEASUREMENT SETUP 50 4.3 MEASUREMENT RESULTS AND DISCUSSION 52 Chapter 5 Hysteresis phenomena in floating-gate NAND flash memory 64 5.1 INTRODUCTION 64 5.2 DEVICE STRUCTURE AND MEASUREMENT SETUP 67 5.3 HYSTERESIS PHENOMENA IN ABNORMAL CELLS 69 5.4 ORIGIN OF HYSTERESIS PHENOMENON IN THE ABNORMAL CELL 76 5.5 HYSTERESIS PHENOMENA WITH BIAS AND P/E CYCLING STRESS 90 5.6 EFFECT OF HYSTERESIS PHENOMENA ON READ OPERATION 96 Conclusions 104 Appendix Modeling of ฮ”IBL due to RTN considering bit-line interference 106 A.1 INTRODUCTION 106 A.2 DEVICE STRUCTURE 108 A.3 RESULTS AND DISCUSSION 108 Bibliography 120 Abstract in Korean 129Docto

    (The) tentorial notch : morphological analysis using magnetic resonance imaging(MRI) : ๋‡Œ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์„ ์ด์šฉํ•œ ํ˜•ํƒœํ•™์  ๋ถ„์„

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ๋ชฉ์  : ๊ฒฝ์ฒœ๋ง‰ ํ—ˆ๋‹ˆ์•„ ์ฆํ›„๊ตฐ์€ ๋‘๊ฐœ๊ฐ•๋‚ด ๋‹ค์–‘ํ•œ ์›์ธ์˜ ๊ณต๊ฐ„์ ์œ  ๋ณ‘์†Œ๊ฐ€ ๋‡Œ์•• ์ƒ์Šน์„ ์•ผ๊ธฐํ•˜์—ฌ ๋‡Œ๊ฐ„๋ถ€๊ฐ€ ์ฒœ๋ง‰์ ˆํ”์œผ๋กœ ์ด๋™๋˜๊ฑฐ๋‚˜ ๋’คํ‹€๋ ค์ ธ ์‹ ๊ฒฝํ•™์  ์ด์ƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋”ฐ๋ผ์„œ ์‹ ๊ฒฝ์™ธ๊ณผ์ ์œผ๋กœ ์ค‘์š”์‹œ ๋œ ๊ฒƒ์€ ๋‹ค ์•Œ๋ ค์ง„ ์‚ฌ์‹ค์ด๋‹ค. ๋ณธ ์ €์ž๋Š” ์‹ ๊ฒฝ์™ธ๊ณผ ํ™˜์ž๋“ค์˜ ์ƒํƒœ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” ๋‡Œ์ž๊ธฐ๊ณต๋ช…์˜์ƒ ์ดฌ์˜์„ ์ด์šฉํ•˜์—ฌ ์ฒœ๋ง‰ ์ ˆํ”์˜ ํฌ๊ธฐ์™€ ๋ชจ์–‘ ๋“ฑ์˜ ํ•ด๋ถ€ํ•™์ ์ธ ๊ธฐ์ดˆ๋ฅผ ํ™•๋ฆฝํ•˜๊ณ  ์ฒœ๋ง‰ ์ ˆํ”์˜ ํ˜•ํƒœ์— ๋”ฐ๋ฅธ ๊ตฌํšŒ ํ—ˆ๋‹ˆ์•„์˜ ๋ฐœ์ƒ ๋ฐ ์˜ˆํ›„ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์ธ์ž๋กœ์„œ์˜ ์„ ํ–‰ ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ• : 2002๋…„ 1์›” 1์ผ๋ถ€ํ„ฐ 2002๋…„ 9์›” 30์ผ ๊นŒ์ง€ ์›์ฃผ๊ธฐ๋…๋ณ‘์› ์‹ ๊ฒฝ์™ธ๊ณผ์— ๋‚ด์›ํ•˜์—ฌ ๋‡Œ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์„ ์‹œํ–‰ํ•˜์˜€๋˜ ํ™˜์ž ์ค‘ ๋‘๊ฐœ๊ฐ•๋‚ด ๊ณต๊ฐ„์ ์œ  ๋ณ‘์†Œ๊ฐ€ ์—†์—ˆ๋˜ 100๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค. ๋‡Œ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์˜ ์—ฌ๋Ÿฌ ์˜์ƒ๋ฉด์„ ์ด์šฉํ•˜์—ฌ 1) T1 ์ถ•๋ฉด์—์„œ์˜ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ๋„“์ด, 2) T1 ๊ด€์ƒ๋ฉด์—์„œ์˜ ์ฒœ๋ง‰ ์ ˆํ”์˜ ์ตœ๋Œ€๋„“์ด, 3) T2 ์‹œ์ƒ๋ฉด์—์„œ์˜ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ์˜ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ, 4) T2 ์‹œ์ƒ๋ฉด์—์„œ ์ ˆํ”์˜ ์ฒจ๋ถ€์—์„œ ์ •๋งฅ๋™ ํ•ฉ๋ฅ˜๊นŒ์ง€์˜ ์ตœ๋‹จ๊ฑฐ๋ฆฌ, 5) T2 ์‹œ์ƒ๋ฉด์—์„œ ์ค‘๋‡Œ ๋ฎ๊ฐœ์—์„œ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ, 6) T2 ์‹œ์ƒ๋ฉด์—์„œ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ ๋‡Œ๊ฐ๊ฐ„์˜ค๋ชฉ๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ์™€ 7) T1 ์ถ•๋ฉด์—์„œ์˜ ์ œ3๋‡Œ์‹ ๊ฒฝ๊ฐ„์˜ ๊ฐ๋„ ๋“ฑ์˜ ํ‰๊ท ๊ฐ’์„ ์•Œ์•„๋ณด๊ณ , ์ฒœ๋ง‰ ์ ˆํ”์˜ ์ตœ๋Œ€ ๋„“์ด์™€ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ์˜ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ์˜ ์‚ฌ๋ถ„์œ„ ๋ถ„ํฌ ๊ธฐ์ˆ ์„ ์ด์šฉํ•œ ๋ถ„๋ฅ˜๋ฒ•์„ ์ด์šฉํ•˜์—ฌ wide, narrow, long, short, typical, large, small, mixed๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ์„ฑ๋ณ„ ๋ฐ ์—ฐ๋ น์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ๋Œ€์ƒ 100๋ช… ์ค‘ ๋‚จ์ž๋Š” 64๋ช…(64%), ์—ฌ์ž๋Š” 36๋ช…(36%)์ด์—ˆ์œผ๋ฉฐ, ํ‰๊ท ์—ฐ๋ น์€ 29.6์„ธ(2-62์„ธ)์˜€๋‹ค. ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ๋„“์ด๋Š” 22mm์™€ 22.3ยฑ4.4mm(12-32mm) ์ฒœ๋ง‰ ์ ˆํ”์˜ ์ตœ๋Œ€๋„“์ด๋Š” 33mm์™€ 32.9 ยฑ 3.6mm (28-39mm), ์ ˆํ”์˜ ์ฒจ๋ถ€์—์„œ ์ •๋งฅ๋™ ํ•ฉ๋ฅ˜๊นŒ์ง€์˜ ์ตœ๋‹จ๊ฑฐ๋ฆฌ๋Š” 30mm์™€ 30.4ยฑ 3.0mm (23 -36mm), ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋Š” 56mm์™€ 57.6ยฑ5.4mm(50-70mm), ์ค‘๋‡Œ ๋ฎ๊ฐœ์—์„œ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋Š” 27mm์™€ 25.2ยฑ4.8mm (12- 33 mm), ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ ๋‡Œ๊ฐ๊ฐ„์˜ค๋ชฉ๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋Š” 18mm์™€ 18.0 ยฑ 4.9mm (10-30mm), ์ œ3๋‡Œ์‹ ๊ฒฝ๊ฐ„์˜ ๊ฐ๋„๋Š” 50.4ยฐ์™€ 50.8ยฑ6.9ยฐ(37.5-70.1ยฐ)์˜€๋‹ค. ๋‚จ์„ฑ์˜ ๊ฒฝ์šฐ์—์„œ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ๋„“์ด์™€ ์ฒœ๋ง‰ ์ ˆํ”์˜ ์ตœ๋Œ€๋„“์ด์™€ ์ ˆํ”์˜ ์ฒจ๋ถ€์—์„œ ์ •๋งฅ๋™ ํ•ฉ๋ฅ˜๊นŒ์ง€์˜ ์ตœ๋‹จ๊ฑฐ๋ฆฌ์™€ ์ค‘๋‡Œ ๋ฎ๊ฐœ์—์„œ ์ ˆํ”์˜ ์ฒจ๋ถ€๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๋Š” ์—ฌ์„ฑ์˜ ์ˆ˜์น˜๋“ค์— ๋น„ํ•ด์„œ ํ†ต๊ณ„ํ•™์  ์œ ์˜์„ฑ์ด ์žˆ์—ˆ๋‹ค(P<0.05). 17์„ธ์ด์ƒ์˜ ๊ฒฝ์šฐ์—์„œ ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ๋„“์ด์™€ ์ฒœ๋ง‰ ์ ˆํ”์˜ ์ตœ๋Œ€๋„“์ด๋งŒ 16์„ธ ์ดํ•˜์™€ ๋น„๊ต์‹œ ํ†ต๊ณ„ํ•™์ ์ธ ์œ ์˜์„ฑ์ด ์žˆ์—ˆ๋‹ค(P<0.05). wide๋Š” 16๋ช…(16%), narrow๋Š” 11๋ช…(11%), long์€ 12๋ช…(12%), short๋Š” 12๋ช…(12%), typical์€ 17๋ช…(17%)์ด์—ˆ๊ณ , wide์™€ long์ด ๊ฐ™์ด ์กด์žฌํ•œ ํ˜•ํƒœ์ธ large๋Š” 8๋ช…(8%), small์€ 12๋ช…(12%), wide์™€ short๊ฐ€ ๊ฐ™์ด ์กด์žฌํ•˜๋Š” ํ˜•ํƒœ์ธ mixed๋Š” 4๋ช…(4%)์ด์—ˆ์œผ๋ฉฐ, narrow์™€ long์ด ๊ฐ™์ด ์กด์žฌํ•˜๋Š” mixed๋Š” 8๋ช…(8%)์ด์—ˆ๋‹ค. ํ„ฐ์–ดํ‚ค์•ˆ ๋ฐฐ๋ถ€์˜ ์ƒํ›„๋ฉด์—์„œ ๋‡Œ๊ฐ๊ฐ„ ์˜ค๋ชฉ๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ์˜ ์ผ์‚ฌ๋ถ„์œ„์™€ ์‚ผ์‚ฌ๋ถ„์œ„์— ํ•ด๋‹น๋˜๋Š” 14mm์™€ 21mm๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•˜์—ฌ 14mm์ดํ•˜์ธ ๊ฒฝ์šฐ๋ฅผ ์•ž๋ถ€๋ถ„์— ๊ณ ์ •๋œ ์œ„์น˜(prefixed position), 14mm์—์„œ 21mm์‚ฌ์ด๋ฅผ ์ค‘๊ฐ„์— ๊ณ ์ •๋œ ์œ„์น˜(midposition), 21mm์ด์ƒ์ธ ๊ฒฝ์šฐ๋ฅผ ํ›„๋ฐฉ์— ๊ณ ์ •๋œ ์œ„์น˜(postfixed position)๋ผ๊ณ  ๋ถ„๋ฅ˜ํ•˜๋ฉด, ๊ฐ๊ฐ 31๋ช…(31%), 42๋ช…(42%), 27๋ช…(27%)์ด์—ˆ๋‹ค. ๊ฒฐ๋ก : ์‹ ๊ฒฝ์™ธ๊ณผ ํ™˜์ž๋“ค์˜ ์ƒํƒœ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ”ํžˆ ์‚ฌ์šฉํ•˜๋Š” ๋‡Œ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์ดฌ์˜์„ ์ด์šฉํ•˜์—ฌ ์ฒœ๋ง‰ ์ ˆํ”์˜ ํ˜•ํƒœ์— ๋”ฐ๋ผ ์ค‘์ฆ ๋‘๋ถ€ ์†์ƒ ํ™˜์ž์—์„œ์˜ ๊ตฌํšŒ ํ—ˆ๋‹ˆ์•„์˜ ๋ฐœ์ƒ ๋ฐ ์˜ˆํ›„ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์ธ์ž๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. [์˜๋ฌธ]Objective : The goals of this study were the follows: 1. to measure anatomical basis for interpretation of the tentorial notch, oculomotor nerve and brainstem using MRI; 2. to develop a classification system for the tentorial notch. Methods : From January to September 2002, we analized 100 patients with mild head injury and without space occupying lesion on the MRI. All imaging was made using a 1.5 tesla superconductive magnet(Gyroscan ACS-NT, Philips, Netherlands). The following measurements were done: 1) anterior notch width(ANW); 2) maximum notch width (MNW); 3) notch length (NL) ; 4) posterior tentorial length (PTL); 5) interpedunculoclival (IC) distance; 6) apicotectal (AT) distance; 7) inter-third nerve angle, the angle between the third cranial nerves in the T1 axial plane. The quatile distribution technique was applied to all measurements. Quatile groups defined by NL (mean 57.6๏ฟฝ5.4mm) were labeled long, short, and midrange, and those defined by MNW(mean 32.9๏ฟฝ.6mm) were labeled as wide, narrow, and midrange. Results : The patients were composed of men and women whose mean age is 29.6(2- 61) year of age. Mean values are presented as the means ๏ฟฝstandard deviations into following variations: 1) ANW, 22.3 ๏ฟฝ4.4mm; 2)MNW, 32.9 ๏ฟฝ3.6mm; 3) NL, 57.6 ๏ฟฝ5.4mm; 4) PTL, 30.4 ๏ฟฝ3.0mm; 5) AT distance, 25.2 ๏ฟฝ4.8mm; 6) IC distance, 18.0 ๏ฟฝ4.9mm; 7) inter-third nerve angle, 50.8๏ฟฝ.9๏ฟฝ Using the variables NL and MNW to examine predominant structural features permitted typing of tentorial notches into categories of wide(16%), narrow(11%), long(12%), short(12%), and typical(17%). Notches that were both wide and long were labeled large (8%), and those that were narrow and short were labeled small (12%). The category of mixed notches (12%) was assigned to tentorial notches that were either wide/short (4%) or narrow/long (8%). The positional relationship of the brainstem to the clivus was defined by the first quatile (14mm) and third quatile(21mm) of the IC distance. On the basis of this measurements, the terms "prefixed (31%)", midposition (42%)", and postfixed (27%) were applied to the brainstem position within the tentorial aperture. Conclusions : A significant statistical correlation was shown among morphometric parameters of the tentoral notches, brainstem, gender and age. The use of MRI to identify the type of tentorial notch and regional anatomy may help neurosurgical decision making.ope

    ์ƒํ™ฉ์˜ ํŠน์„ฑ์— ๋”ฐ๋ฅธ ์•„๋™์˜ ์ž๊ธฐ ๊ทœ์ œ์— ๋Œ€ํ•œ ํŒ๋‹จ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์†Œ๋น„์ž์•„๋™ํ•™๊ณผ ์•„๋™๊ฐ€์กฑํ•™์ „๊ณต,1998.Maste

    Photocatalytic Degradation of PVC-TiO2 Composite film.

    No full text
    Maste

    ์ƒ‰ํ™•์žฅํ˜• ๊นŠ์ด ์ธ์‹ ๊ธฐ๋ฐ˜ ์ธ์ฒด ๋ชจ์…˜ ํŠธ๋ ˆํ‚น ์‹œ์Šคํ…œ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 2. ์ด๊ฑด์šฐ.Motion tracking system using depth sensing camera has been widely used in motion game, sports, rehabilitation, and so on, which has limita- tions of self-occlusion, full body tracking, and person-occlusion in med- ical applications such as virtual rehabilitation. First, in order to under- stand limitations of conventional vision based method, we developed several rehabilitation and assessment programs using depth sensing cam- era. Although we confirmed the treatment effect and similarity with real assessment by the clinical testing, the occlusion and system integration problems could not cover a lot of movement of human. In this study, we examine this limitation in the developing process of several rehabilita- tion application, and resolve this problem by implementing a new track- ing method called Color Augmented Depth Sensing (CA-DT). The color based segmentation, Principle Component Analysis (PCA), and error weighted interpolation were used to develop CA-DT. Consequently, CA- DT system allowed the users to move freely without problems by partial occlusion, connection with other person. The result of comparison with a motion capture system of the passive marker type shows 0.97 correla- tion coefficient, which means that tracking ability of CA-DT is similar to conventional system. Furthermore, we considered patch size and shortened the armband type up to 5 cm breadth.Chapter 1 Introduction 1 1.1. Overview 1 1.1.1. Stroke and Neurorehabilitation 1 1.1.2. Virtual Rehabilitation 6 1.1.3. Motion Tracking System 9 1.2. Motivation and Objectives 11 1.2.1. Issue of the Stroke 11 1.2.2. Studies for Virtual Rehabilitation 16 1.2.3. Depth Sensing based Skeleton Tracking 19 1.3. Our Approach 21 1.3.1. Virtual Rehabilitation and Assessment 22 1.3.2. Color Augmented Depth Tracking 24 Chapter 2 Virtual Rehabilitation and Assessment Programs 27 2.1. Overview 27 2.2. Intensive Therapy Programs . 29 2.2.1. Introduction 29 2.2.2. Result 32 2.3. Virtual Box and Block Test [37] 39 2.3.1. Introduction 39 2.3.2. System Design and Algorithm Development 41 2.3.3. Result and Discussion 48 2.4. Virtual Fugl Meyer Assessment 52 2.4.1. Introduction 52 2.4.2. Data Acquisition 53 2.4.3. Feature Extraction 56 2.4.4. Learning Model for FMA score Prediction 60 2.4.5. Result and Discussion 61 Chapter 3 Color Augmented Depth Tracking Method 66 3.1. Introduction 66 3.2. System Overview 72 3.3. Cloth Design 76 3.4. Body Segmentation Algorithm 79 3.4.1. Introduction 79 3.4.2. Algorithm Development 81 3.4.3.Result 86 3.5. Body Axis Tracking Algorithm 90 3.5.1. Introduction 90 3.5.2. Cylindrical Fitting on 3D Point Cloud 94 3.5.3. Fitting Error Weighted Interpolation Method 98 3.5.4. Result 101 3.6. Hand Tracking Algorithm 104 3.6.1. Introduction 104 3.6.2. Hand Detection with Full Body Tracking 105 3.6.3. Result 106 3.7. Body Part Connection 109 3.8. Discussion 111 Chapter 4 Evaluation of CA-DT System 112 4.1. Introduction 112 4.2. Skeleton Tracking Performance 116 4.2.1. Self-Occlusion 116 4.2.2. Connection with Others 117 4.2.3. Hand Tracking 118 4.3. Biomedical Validation 119 4.3.1. Design and Procedure 119 4.3.2. Result and Discussion 121 4.4. Patch Length Specification 125 4.4.1. Introduction 125 4.4.2. Simulation as Cylindrical Length 126 4.4.3. Result and Discussion 129 Chapter 5 Conclusion 132 Bibliography 134 ์ดˆ๋ก 148Docto

    Deformational characteristics of soft clayey deposits under the embankment loading in Korea

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ† ๋ชฉ๊ณตํ•™๊ณผ,1998.Docto

    ๋‚ด๋…์†Œ๋กœ ์œ ๋„๋œ ์ž„์‹  ์ƒ์ฅ์˜ ํƒœ๋ฐ˜๊ฐ์—ผ์‹œ ํƒœ์•„ ๋Œ€๋‡Œ์—์„œ ๊ด€์ฐฐ๋˜๋Š” apoptosis์™€ bcl-2, bcl-xs, bax ๋ฐœํ˜„๊ณผ์˜ ๊ด€๊ณ„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ์†Œ์•„๊ณผํ•™์ „๊ณต,1998.Maste
    corecore