78 research outputs found

    ๊ณ ๋ถ„์ž ํƒœ์–‘์ „์ง€์— ์‚ฌ์šฉ๋˜๋Š” DPP ๊ธฐ๋ฐ˜ ๊ณ ๋ถ„์ž์˜ ๋ถˆ์†Œ ์น˜ํ™˜์ด ๊ด‘์ „์ง€ ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2015. 2. ์กฐ์›ํ˜ธ.Low bandgap conjugated copolymers composed of thiophene-capped diketopyrrolopyrrole and benzene with/without fluorination were synthesized to investigate the effect of fluorine substitution on their photovoltaic properties. With increasing the number of substituted fluorine atom on benzene, both HOMO and LUMO energy levels of the copolymer are lowered and its crystallinity is increased. The fibril size of copolymer:PC71BM blend becomes smaller as the number of substituted fluorine increases. As a result, the copolymer with two fluorine substitution exhibits deeper HOMO energy level (-5.30 eV), leading to higher VOC (0.72 V), and also enhanced crystallinity (polymer chain packing), leading to higher JSC (12.4 mA cm-2) as compared to mono- and non-fluorinated ones. The copolymer with two fluorine atoms shows a promising power conversion efficiency of 5.63%.Abstract .. โ…ฐ List of Schemes โ…ณ List of Figures โ…ด List of Tables โ…ท 1. Introduction 1 2 .Experimental Section 5 2.1. Materials 5 2.2. Synthesis of monomers 5 2.3. Synthesis of polymers 10 2.4. Characterization 13 2.5. Device fabrication and measurements 14 3. Results and Discussion 17 3.1. Synthesis and characterization 17 3.2. Optical properties 27 3.3. Electrochemical properties 28 3.4. Structural properties 29 3.5. Photovoltaic properties 35 3.6. Charge transport characteristics 36 3.7. Morphology investigation 46 4. Conclusions 48 Bibliography 49 Korean Abstract 53Maste

    ์‹ ๊ฒฝ์„ฑ์žฅ์ธ์ž ๊ณต๊ธ‰ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์ด์šฉํ•œ ํ•˜์น˜์กฐ์‹ ๊ฒฝ ์†์ƒ ์น˜๋ฃŒ์—์„œ ์‹ ๊ฒฝ ์žฌ์ƒ ๋ฐ ๊ณจ์œ ์ฐฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜๊ณผํ•™๊ณผ, 2014. 2. ์ด์ข…ํ˜ธ.๋ชฉ์ : ์ž„ํ”Œ๋ž€ํŠธ ์‹œ์ˆ ์ด ๋Œ€์ค‘ํ™”๋˜๋ฉด์„œ ํ•˜์น˜์กฐ์‹ ๊ฒฝ ์†์ƒ์— ์˜ํ•œ ๊ฐ๊ฐ ์ด์ƒ๋„ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ทธ ์ค‘์š”์„ฑ๋„ ์ ์  ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•˜์น˜์กฐ์‹ ๊ฒฝ ์†์ƒ ์ˆ˜๋ณต ๋ถ€์œ„์— ์‹ ๊ฒฝ์„ฑ์žฅ์ธ์ž(NGF)๋ฅผ ๊ณต๊ธ‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํŠน๋ณ„ํžˆ ์ œ์ž‘๋œ ์น˜๊ณผ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ NGF๋ฅผ ๊ณต๊ธ‰ํ–ˆ์„ ๋•Œ ์‹ ๊ฒฝ ์žฌ์ƒ์— ๋Œ€ํ•œ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, NGF ๊ณต๊ธ‰๊ณผ ๊ฐœ์กฐ๋œ ์ž„ํ”Œ๋ž€ํŠธ์˜ ๋””์ž์ธ์ด ์ž„ํ”Œ๋ž€ํŠธ์˜ ๊ณจ์œ ์ฐฉ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ•: 18์ฃผ๋ น ์„ฑ๊ฒฌ (beagle dog, n=9)์„ ์ „์‹  ๋งˆ์ทจ์‹œํ‚จ ํ›„ ์–‘์ธก ํ•˜์น˜์กฐ์‹ ๊ฒฝ์„ ๋…ธ์ถœ์‹œํ‚ค๊ณ  ํ•˜์•… ์ œ3์†Œ๊ตฌ์น˜๋ฅผ ๋ฐœ๊ฑฐํ•œ ํ›„ NGF ๊ณต๊ธ‰ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์ฆ‰์‹œ ์‹๋ฆฝํ•˜์˜€๋‹ค. ์ž„ํ”Œ๋ž€ํŠธ์— ๊ทผ์ ‘ํ•œ ๋ถ€์œ„์˜ ํ•˜์น˜์กฐ์‹ ๊ฒฝ์„ ์ ˆ๋‹จํ•œ ํ›„ ๋‹จ๋‹จ ๋ฌธํ•ฉํ•˜๊ณ  mini osmotic pump ์นดํ…Œํ„ฐ๋ฅผ ์ž„ํ”Œ๋ž€ํŠธ์— ์—ฐ๊ฒฐํ•˜์˜€๋‹ค. ์šฐ์ธก ํ•˜์น˜์กฐ์‹ ๊ฒฝ์—๋Š” 2mL์˜ NGF ์šฉ์•ก (150ฮผg/mL)์ด ๊ทธ๋ฆฌ๊ณ  ์ขŒ์ธก ํ•˜์น˜์กฐ์‹ ๊ฒฝ์—๋Š” ๋™๋Ÿ‰์˜ PBS ์šฉ์•ก์ด ๋‹ด๊ธด pump๋ฅผ ์—ฐ๊ฒฐํ•˜์˜€๋‹ค. ์‹ ๊ฒฝ์žฌ์ƒ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ˆ ์ „ ๋ฐ ์ˆ ํ›„ 3, 6์ฃผ์— needle electrode๋ฅผ ์ด์šฉํ•ด ์ง„ํญ๊ณผ ์ž ๋ณต์‹œ๊ฐ„์„ ์ธก์ •ํ•˜์˜€๊ณ  ์‹ ๊ฒฝ์ ˆ๋‹จ ์ „ํ›„ ๋ฐ ์ˆ ํ›„ 6์ฃผ์— hook electrode๋ฅผ ์ด์šฉํ•ด ์‹ ๊ฒฝ์ „๋„์†๋„์™€ ์ตœ๋Œ€์ „์••์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์ˆ ํ›„ 6์ฃผ์— ์†์ƒ๋ถ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์‹ ๊ฒฝํ‘œ๋ณธ์„ ์ฑ„์ทจํ•œ ํ›„ ์‹œํŽธ ์ค‘์•™๋ถ€๋ฅผ ํšก๋ถ„์ ˆ (cross section)ํ•˜์—ฌ epon ํฌ๋งค ์ ˆํŽธ toluidine blue๋กœ ์—ผ์ƒ‰ ํ›„ ์ „์ฒด ์ถ•์‚ญ ์ˆ˜, ์ถ•์‚ญ๋ฐ€๋„๋ฅผ ์ธก์ •ํ•˜๊ณ  ๋Œ€ํ‘œ ๋ถ€์œ„๋ฅผ TEMํ‘œ๋ณธ ์ œ์ž‘ํ•˜์—ฌ ์ถ•์‚ญ ์ˆ˜์ดˆ์˜ ๋‘๊ป˜ ๋ฐ G-ratio๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์ž„์ƒ์ ์œผ๋กœ๋Š” ์‹๋ฆฝ๋œ ์ž„ํ”Œ๋ž€ํŠธ์˜ ์—ผ์ฆ ๋“ฑ ๋ถ€์ž‘์šฉ์„ ๊ด€์ฐฐํ•˜์˜€์œผ๋ฉฐ, ์ˆ ํ›„ 6์ฃผ์งธ ์ž„ํ”Œ๋ž€ํŠธ ์•ˆ์ •๋„ (ISQ)๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  6์ฃผ ํ›„ ํฌ์ƒ ์‹œ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์ฃผ๋ณ€ ์กฐ์ง๊ณผ ๊ฐ™์ด ์ฑ„์ทจํ•˜์—ฌ ํƒˆํšŒ, ๋น„ํƒˆํšŒ ํ‘œ๋ณธ์„ ์ œ์ž‘ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด bone-implant contact (BIC) ๋น„์œจ๊ณผ bone area (BA) ๋น„์œจ์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์ „๊ธฐ์‹ ๊ฒฝ์ƒ๋ฆฌ์ธก์ •์—์„œ ์ง„ํญ๊ณผ ์ž ๋ณต์‹œ๊ฐ„์€ ๋‘ ๊ตฐ ์‚ฌ์ด์— ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ์‹ ๊ฒฝ์ „๋„์†๋„์—์„œ๋Š” 6์ฃผ์งธ NGF๊ตฐ์˜ ์ค‘์•™๊ฐ’(2.675 m/s)์ด PBS๊ตฐ(1.892 m/s)๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜์œผ๋ฉฐ (p < 0.01), ์ตœ๋Œ€์ „์••๋„ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค (NGF vs. PBS : 1.940 ฮผV vs. 1.300 ฮผV, p < 0.01). ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ NGF๊ตฐ์˜ ์ „์ฒด ์ถ•์‚ญ ์ˆ˜ ๋ฐ ์ถ•์‚ญ๋ฐ€๋„ (4576.107 ยฑ 270.413, 10707.458 ยฑ 638.835/mm2)๊ฐ€ ๋ชจ๋‘ PBS๊ตฐ (3606.972 ยฑ 242.876, 7899.781 ยฑ 1063.625/mm2)์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜์ง€๋งŒ (p < 0.001), G-ratio๋Š” ๋‘ ๊ตฐ๊ฐ„ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. BIC ๋Š” NGF๊ตฐ์ด 46.609ยฑ6.521 %, PBS๊ตฐ์ด 42.884ยฑ6.489 % ์˜€์œผ๋ฉฐ, ๋‘ ๊ตฐ ๊ฐ„์— ์œ ์˜ํ•œ ์ฐจ์ด๋Š” ์—†์—ˆ๋‹ค. BA (NGF vs. PBS : 36.993ยฑ7.0434% vs. 33.327ยฑ6.551 %)์™€ 6์ฃผ ํ›„ ISQ (NGF vs. PBS : 42.375ยฑ3.017 vs. 38.714ยฑ2.533)์—์„œ๋„ ๋‘ ๊ตฐ๊ฐ„ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. NGF ๊ณต๊ธ‰ ์ž„ํ”Œ๋ž€ํŠธ์˜ ์ „์ฒด ์ƒ์กด๋ฅ ์€ 83.33% ์ด์—ˆ์œผ๋ฉฐ NGF ๊ตฐ์€ 88.89%, PBS๊ตฐ์€ 77.78%์˜€๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ์—์„œ NGF ๊ณต๊ธ‰ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์ด์šฉํ•œ NGF ๊ณต๊ธ‰์€ ํ•˜์น˜์กฐ์‹ ๊ฒฝ์˜ ์žฌ์ƒ์„ ๋„๋ชจํ•˜์˜€์œผ๋ฉฐ ์ด๋Ÿฌํ•œ ์ฒ˜์น˜๊ฐ€ ๊ณจ์œ ์ฐฉ์„ ์ €ํ•ดํ•˜์ง€ ์•Š์•˜์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์น˜๋ฃŒ ๋ฐฉ์‹์€ ์‹ ๊ฒฝ์žฌ์ƒ๊ณผ ๊ณจ์œ ์ฐฉ์„ ๋™์‹œ์— ๋„๋ชจํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ๊ณผ ๊ด€๋ จ๋œ ํ•˜์น˜์กฐ์‹ ๊ฒฝ ์†์ƒ์น˜๋ฃŒ์˜ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋˜์—ˆ๋‹ค.Purpose: Among the various complications of dental implant procedure, sensory disturbance caused by the damage of inferior alveolar nerve (IAN) is one of the most difficult and challenging issues with continually increasing incidence. The purpose of this study was to evaluate the functional regeneration of IAN by supplying nerve growth factor (NGF) using specially designed dental implant and its effect on the osseointegration of NGF-supplying implant. Materials and Methods: Under general anesthesia with intravenous injection of the mixture of tiletamine and zolazepam, bilateral IAN of beagle dogs (n=9, 18 week-old, 10 ~ 12kg) was exposed, transected and directly repaired. NGF-supplying implants were installed just above the nerve damage site after the third premolar extraction and connected with osmotic pump by microcatheter. For experimental group (right IAN), total 300ฮผg of NGF mixed with 2mL PBS solution was loaded in the pump and same amount of PBS for control group (left IAN). The amplitude and latency were measured with needle-type electrodes before surgery and at postoperative 3, 6 week. The conduction velocity (CV) and peak voltage (PV) were measured with custom-made hook type electrodes before transection, after nerve repair and at postoperative 6 week. At 6 week, nerve specimens were harvested and embedded to calculate axon count and density. After that, TEM analysis was done to measure the myelin thickness and G-ratio. Dental implants were observed clinically with checking the implant stability quotient (ISQ). After 6 weeks, each dental implant was prepared for the decalcified and non-decalcified sections for the measurement of bone-implant contact ratio (BIC) and the new bone area inside the thread area (BA). Results: In the amplitude and latency, there were no significant differences between two groups. The median CV of NGF group (2.675 m/s) was significantly higher than that of PBS group (1.892 m/s) at 6 week (p < 0.01) and same tendency was also observed in PV (1.940 ฮผV in NGF group and 1.300 ฮผV in PBS group). The axon count of NGF group (4576.107ยฑ270.413) was higher than that of PBS group (3606.972ยฑ242.876) with significance (p < 0.001) and same as axon density (NGF group : 10707.458ยฑ638.835/mm2, PBS group : 7899.781ยฑ1063.625/mm2,p < 0.001). In myelin thickness, mean of NGF group (1.670ยฑ0.555 ฮผm) was higher than that of PBS groups (1.173ยฑ0.388 ฮผm) with significance (p < 0.01), but no significant difference was found in G-ratio between two groups (NGF vs. PBS, 0.594ยฑ0.110 vs. 0.635ยฑ0.092). The BIC of NGF group (46.609ยฑ6.521 %) was higher than that of PBS group (42.884ยฑ6.489 %), but no significant difference was found. The same tendency was found in the BA (36.993ยฑ7.0434 % in NGF group and 33.327ยฑ6.551 % in PBS group) and ISQ (42.375ยฑ3.017 in NGF group and 38.714ยฑ2.533 in PBS group). Overall survival rate of NGF-implant was 88.89% in NGF group (88.89%), and 77.78% in PBS group. Conclusions: NGF group showed higher conduction velocity and peak voltage across the nerve repair with significance. Same tendencies were also observed in amplitude and latency of CNAP, but there were no significant differences between two groups. In histomorphometric analysis, NGF group exhibited significantly higher axon count, axon density and myelin thickness than those of PBS group, but there were no significant differecence in G-ratio, BIC and BA. Except three exfoliated implants, no significant difference was found in ISQ between NGF group and PBS group at 6 week. These results showed that NGF supplying via specially designed dental implant could promote the functional regeneration of IAN transection-repair injury. Furthermore, supplied NGF and the design of implant did not interrupt the osseointetegration of implant. This approach could be a novel technique in the treatment of IAN injury, in which nerve regeneration and prosthetic rehabilitation could be achieved simultaneously.I. Introduction --------------------------------------- 1 II. Materials and Methods ----------------------------- 5 1. Experimental design -------------------------------- 5 2. Evaluation ----------------------------------------- 7 3. Statistics ---------------------------------------- 13 III. Results ----------------------------------------- 14 1. Gross clinical observation ------------------------ 14 2. Evaluation of nerve regeneration ------------------ 14 3. Evaluation of osseointegration -------------------- 17 IV. Discussion --------------------------------------- 19 V. Conclusions --------------------------------------- 24 References ------------------------------------------- 25 Figures and legends ---------------------------------- 35 Abstract in Korean ----------------------------------- 46Docto

    Extraction of Host Internal Information for External Hardware Security Monitors

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 2. ๋ฐฑ์œคํฅ.Defending electrical devices against a variety of attacks is a daunting task. A lot of researchers have endeavored to address this issue by proposing security solutions that can attain high level of security while minimizing performance overhead introduced to the system. Among them, hardware-based security solutions have been noted for high performance compared to their software-based counterparts. However, we have witnessed that these mechanisms have rarely been accepted to the market. This phenomenon may be attributed to the fact that most solutions incur non-negligible modifications to the host architecture internals and thus would substantially increase the design time and manufacturing cost. In order to answer this problem, a hardware-based external monitoring has recently been proposed. The crux of this solution is that, being located outside the host core and connected to the host via a standard bus interface, the external monitor can efficiently conduct time-consuming monitoring tasks on behalf of the host while requiring no alteration to the host internals. However, these approaches either suffer from the incapability of handling various security problems or experience unsubtle performance overhead because, being externally placed and having no dedicated communication channels, the hardware monitor has a limited access to the information produced by the host core, and consequently, the system may be forced to use memory regions or other shared hardware resources to explicitly transfer the information from the host to the monitor hardware. In this thesis, we propose a security solution that can carry out more complicated security tasks with low performance overhead while keeping the host internal architecture intact. This can be archived by using an existing standard debug interface, readily available in numerous modern processors, to connect our security monitor to the host processor. In order to show the validity of our approach and explore the implication of using the debug interface for security monitoring, we present three security monitoring systems each of which addresses one of three well-known security issues: defending against kernel rootkits, tracking information-flow, and defense of code-reuse attacks. The experiment results show that, when implemented on a FPGA prototyping board, our monitoring solutions successfully detect the attack samples (i.e., data leakage attacks and CRAs). More importantly, our systems can attain significantly low performance overhead compared to previously proposed security monitoring solutions. The experiments also reveal that the area overhead of the hardware is acceptably small when compared to the normal sizes of today's mobile processors.Chapter 1. Introduction 1 Chapter 2. Background and RelatedWork 8 2.1 Background 8 2.1.1 Core Debug Interface 8 2.2 Related Work 9 2.2.1 Software-based Monitoring solutions 10 2.2.2 Hardware-based Monitoring with Invasive Modification 10 2.2.3 Hardware-based Monitoring with Minimal Modification 11 2.2.4 Hardware-based Kernel Integrity Monitors 12 2.2.5 Utilizing debug interface 13 Chapter 3. Monitoring the Integrity of OS Kernels with Data-Flow Information 15 3.1 Introduction 15 3.2 Motivational Example 19 3.3 Assumptions and Threat Models 20 3.4 The Baseline System 21 3.4.1 The Overall System Design 21 3.4.2 Periodic Cache Flush for Cache Resident Attacks 23 3.5 Extrax design 25 3.5.1 Address Translation Unit 26 3.5.2 Early Stage Filter 28 3.6 Experimental Results 30 3.6.1 Prototype System 30 3.6.2 Security Evaluation 32 3.6.3 Performance Analysis 34 3.6.4 Power Consumption 36 3.7 Limitation and Future Work 36 3.8 Conclusion 39 Chapter 4. Monitoring Dynamic Information Flow using Control-Flow/Data-Flow Information 41 4.1 Introduction 41 4.2 DIFT Process with an External Hardware Engine 44 4.3 Building a DIFT Engine for CDI 48 4.3.1 Components of the DIFT Engine 48 4.3.2 Tag Propagation Unit 51 4.4 Experiment 53 4.4.1 Security Evaluation 56 4.4.2 Performance Evaluation 56 4.5 Conclusion 59 Chapter 5. Monitoring ROP/JOP Attacks using Control-Flow Information 60 5.1 Introduction 60 5.2 Background and Assumptions 65 5.2.1 Background 65 5.2.2 Assumptions and Threat Model 70 5.3 Overall System Architecture 71 5.3.1 SoC Prototype Overview 71 5.3.2 CRA Detection Process 72 5.4 IMPLEMENTATION DETAILS 75 5.4.1 Binary Instrumentation 75 5.4.2 Hardware Architectures 77 5.5 EXPERIMENTAL RESULTS 82 5.6 Conclusion 86 Chapter 6. Conclusion 88 Bibliography 90 ์ดˆ ๋ก 99Docto

    ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž๋ฅผ ์œ„ํ•œ ๊ธˆ์†์„ฑ๊ณผ ๋ฐ˜๋„์ฒด์„ฑ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์„ฌ์œ  ์ œ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2019. 8. ์œ ์›…์—ด.์ตœ๊ทผ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž๋Š” ์ธ๊ฐ„ ํ™œ๋™ ๋ฐ ๊ฐœ์ธ ๊ฑด๊ฐ• ๊ด€๋ฆฌ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ํ•„์š”๋กœ ์ธํ•ด ์œ ์—ฐํ•˜๊ณ  ์ฐฉ์šฉ ๊ฐ€๋Šฅํ•œ ๊ธฐ๋Šฅ์„ฑ ์ „์ž์†Œ์ž์˜ ๊ฐœ๋ฐœ์— ๋งŽ์€ ๊ด€์‹ฌ์ด ๋ชจ์•„์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž์— ์‚ฌ์šฉ๋˜๋Š” ์žฌ๋ฃŒ๋Š” ์œ ์—ฐํ•˜๊ณ , ์‹ ์ถ•์„ฑ์ด ์žˆ์–ด์•ผํ•˜๋ฉฐ, ๊ฒฝ๋Ÿ‰์ด๋ฉฐ, ๊ธฐ๊ณ„์ ์œผ๋กœ ๊ฒฌ๊ณ ํ•˜๊ณ , ์ธ๊ฐ„ ์นœํ™”์ ์ด์–ด์•ผ ํ•œ๋‹ค. ์žฌ๋ฃŒ ์ค‘ ๊ฐ€์žฅ ์ด์ƒ์ ์ธ ์žฌ๋ฃŒ๋Š” ์ง๋ฌผ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ฑ์„ ๊ฐ€์ง„ ์ „์ž ์„ฌ์œ ๋กœ์จ ๊ตฌ์กฐ์ ์œผ๋กœ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ๋ณธ์งˆ์ ์œผ๋กœ ์œ ์—ฐํ•˜๊ณ  ์‹ ์ถ•์„ฑ ์žˆ๋Š” ์žฌ๋ฃŒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐœ๋ฐœ๋œ ์ „๋„์„ฑ ์„ฌ์œ  ์ค‘ ์•„์ง ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž์— ์‚ฌ์šฉํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ์ „๊ธฐ์  ๋ฐ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ๊ฐ–๋Š” ์„ฌ์œ ๋Š” ๊ฐœ๋ฐœ๋˜์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ, ๋‹จ์ผ ์œ ํ˜•์„ ์„ฌ์œ  ํ˜•ํƒœ์˜ ์ „์ž์†Œ์ž๋Š” ๊ฐœ๋ฐœ๋˜์–ด ๊ทธ ์„ฑ๋Šฅ์„ ์ž…์ฆํ–ˆ์ง€๋งŒ ํ†ตํ•ฉ ๋‹ค๊ธฐ๋Šฅ ์›จ์–ด๋Ÿฌ๋ธ” ํ”Œ๋žซํผ์— ์‘์šฉ ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋Š” ๊ฐ–์ถ”์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํƒ„์†Œ๋‚˜๋…ธ์†Œ์žฌ ๊ธฐ๋ฐ˜ ์ „๋„์„ฑ ์„ฌ์œ ์˜ ์ „๊ธฐ ์ „๋„์„ฑ ๋ฐ ๊ธฐ๊ณ„์  ์„ฑ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๊ณผ ํ•ด๋‹น ์„ฌ์œ ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž์— ์‘์šฉ ๊ฐ€๋Šฅํ•œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์„ฌ์œ  ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ์„ฌ์œ ํ˜• ํฌ๋„๋‹น ์„ผ์„œ๋ฅผ ์ œ์กฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ์„ฌ์œ ์˜ ๊ณ ์œ  ๊ธฐ๋Šฅ์„ ๋ถ€์—ฌํ•˜๊ณ  ์ „๊ธฐ ์ „๋„๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ถ„์‚ฐ, ์ •์ œ ๋ฐ ๋ถ„๋ฆฌ๋ฅผ ํฌํ•จํ•˜๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์ž์ฒด์˜ ์ „์ฒ˜๋ฆฌ์— ์ค‘์ ์„ ๋‘”๋‹ค. ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์ˆ˜์šฉ์•ก ์ค‘์— ์ž˜ ๋ถ„์‚ฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ถ„์‚ฐ์ œ๋ฅผ ํ•ฉ์„ฑํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋ฉด ๋‹ค๋Ÿ‰์˜ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ๋ถ„์‚ฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋Š” ์—ด์ฒ˜๋ฆฌ ๋ฐ ์‚ฐ์ฒ˜๋ฆฌ์™€ ๊ฐ™์€ ์ •์ œ ๊ณต์ •์„ ๊ฑฐ์น˜๋ฉด ๊ณ ์ˆœ๋„์˜ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ํƒ„์†Œ๋‚˜๋…ธ๋ฆฌ๋ณธ์˜ ์ฒจ๊ฐ€๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์„ฌ์œ  ๋‚ด์—์„œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์‚ฌ์ด์˜ ์ ‘์ฐฉ์ œ๋กœ ์ž‘์šฉํ•˜์—ฌ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ฐ„์˜ ๋ฏธ๋„๋Ÿฌ์ง์„ ๋ฐฉ์ง€ํ•˜์—ฌ ์„ฌ์œ ์˜ ๊ธฐ๊ณ„์  ๊ฐ•๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ „์ฒ˜๋ฆฌ ๋œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋Š” ์ „๊ธฐ ๋ฐฉ์‚ฌ ๋ฐ ์Šต์‹ ๋ฐฉ์‚ฌ๋ฅผ ํ†ตํ•ด ์„ฌ์œ ๋กœ ์ œ์กฐ๋œ ํ›„ ๊ทธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์„ฌ์œ  ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ์„ฌ์œ ํ˜• ํฌ๋„๋‹น ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ์„ฌ์œ ์˜ ์‘์šฉ์— ์ค‘์ ์„ ๋‘”๋‹ค. ์„ฌ์œ  ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ์ „๋„์„ฑ ์„ฌ์œ , ๊ณ ๋ถ„์ž ์ ˆ์—ฐ ์ธต, ์œ ๊ธฐ ๋ฐ˜๋„์ฒด ๋ฐ ์ด์˜จ ์ ค์„ ํฌํ•จํ•˜๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ˜•ํƒœ๋กœ ์ œ์กฐํ•œ๋‹ค. ํ”Œ๋ผ์ฆˆ๋งˆ ํ™”ํ•™๊ธฐ์ƒ์ฆ์ฐฉ์€ ์–‡์€ ์ ˆ์—ฐ ์ธต์œผ๋กœ ๊ฒŒ์ดํŠธ ์„ฌ์œ  ์ „๊ทน์„ ๋ฎ๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•œ ๊ณต์ •์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์œ ๊ธฐ ๋ฐ˜๋„์ฒด๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋Š” ์ด์˜จ ๊ฒ”์„ ์ž˜๋ผ ๋ถ™์—ฌ ์„ฌ์œ  ์‚ฌ์ด์— ๊ฒฐํ•ฉํ•˜์—ฌ ๋‹จ์œ„ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ๋˜ํ•œ, ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์˜ ๋…ํŠนํ•œ ์„ฑ์งˆ์ธ ํ‚ค๋ž„์„ฑ์— ๋”ฐ๋ฅธ ํŠน์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ‚ค๋ž„์„ฑ์— ๋”ฐ๋ผ ๋ถ„๋ฆฌํ•œ ํ›„ ์„ฌ์œ ๋กœ ์ œ์กฐํ•˜์—ฌ ์„ฌ์œ  ์ž์ฒด์— ๊ธฐ๋Šฅ์„ ๋ถ€์—ฌํ•œ๋‹ค. ํ•ฉ์„ฑํ•œ ๋ถ„์‚ฐ์ œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์–ป์€ ๋†’์€ ํ•จ๋Ÿ‰์˜ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๊ฐ€ ๋ถ„์‚ฐ๋œ ์šฉ์•ก์„ ์ „๊ธฐ ๋ฐฉ์‚ฌํ•˜๋ฉด ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ๋งŽ์ด ํฌํ•จํ•˜๊ณ  ์ž˜ ์ •๋ ฌ๋œ ๋†’์€ ์ „๊ธฐ ์ „๋„์„ฑ์˜ ๋ณตํ•ฉ๋‚˜๋…ธ์„ฌ์œ ๋ฅผ ์ œ์กฐํ•œ๋‹ค. ๋˜ํ•œ, ์ •์ œํ•œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์Šต์‹ ๋ฐฉ์‚ฌํ•˜๋ฉด ๋†’์€ ์ „๊ธฐ ์ „๋„๋„๋ฅผ ๋ณด์ด๋Š” ์„ฌ์œ ๋ฅผ ์ œ์กฐํ•˜๋ฉฐ, ํƒ„์†Œ๋‚˜๋…ธ๋ฆฌ๋ณธ์„ ํ˜ผํ•ฉํ•˜์—ฌ ๋†’์€ ์ธ์žฅ ๊ฐ•๋„๋ฅผ ๋ณด์ด๋Š” ์„ฌ์œ ๋ฅผ ์ œ์กฐํ•œ๋‹ค. ์ œ์กฐํ•œ ๊ณ  ์ „๋„์„ฑ ์„ฌ์œ ๋Š” ์„ฌ์œ  ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค. ๋˜ํ•œ, ๋ถ„๋ฆฌ๋ฅผ ํ†ตํ•ด ์ œ์กฐํ•œ ๋ฐ˜๋„์ฒด์„ฑ ์„ฌ์œ ๋Š” ๋‹ค์–‘ํ•œ ํ†ตํ•ฉ ํ˜•ํƒœ์˜ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž์†Œ์ž์—์„œ ์ง์กฐ๋ฅผ ํ†ตํ•ด ํฌ๋„๋‹น ์„ผ์„œ๋กœ ํ™œ์šฉํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Wearable electronic devices are required in various fields such as monitoring human activity and personal health care. Thus, in recent years, much attention has been paid to the development of flexible and wearable functional electronic devices. The materials used in these wearable electronic devices must be flexible, stretchable, light-weight, mechanically robust and human-friendly. The most ideal material among the materials is either structurally deformable or intrinsically flexible and stretchable material, e.g. textiles containing all electronic functions intrinsically embodied in the electronic fibers themselves. However, none of the developed conductive fibers have electrical and mechanical properties suitable for use in wearable electronic devices. In addition, a single type of fiber-based electronic device has been developed and demonstrated its performance, but there are still few reports on an integrated multifunctional wearable platform. This dissertation suggests improvement of the electrical conductivity and mechanical properties of conductive carbon-based fibers and separation for semiconducting carbon-based fibers, applying on the hybrid fiber transistor and the fiber-type glucose sensor that can be integrated into textile-type of wearable electronic devices. Firstly, to increase the electrical conductivity and to give the intrinsic functionality of the fiber, the pretreatments of the carbon nanotubes themselves are followed: Dispersion, purification, and separation. A large amount of carbon nanotubes were dispersed by a dispersant synthesized that enables carbon nanotubes to be dispersed well in an aqueous solution. In addition, high-purity carbon nanotubes were obtained through purification process: heat and acid treatments. The addition of the carbon nanoribbon acts as an adhesive between the carbon nanotubes due to pi-pi interaction, thereby preventing slip between the carbon nanotubes, leading to increase mechanical strength of carbon fibers. The pretreated carbon nanotubes were manufactured by electro-spinning and wet-spinning and then evaluated for their performance. Next, the applications of above fibers to develop fiber transistors and glucose sensors are followed. Fiber transistors are made in hybrid form, including conductive fibers, polymer insulating layers, organic semiconductors, and ion-gels. Plasma enhanced chemical vapor deposition was used to cover the surface of the gate fiber electrode with a thin insulating layer. Then, a cut-and-stick method was used to incorporate an ion-gels contained organic semiconductor into the fibers to form a unit transistor. Besides, the single-walled carbon nanotubes were separated depending on their chirality to give functions intrinsically to the fibers themselves. The fibers that are electro-spun with a dope solution in which high content of carbon nanotubes are dispersed through the synthesized dispersant became high conductive composite nanofibers, which contains a lot of aligned carbon nanotubes. Also, The carbon fibers wet-spun by the purified carbon nanotubes showed high electrical conductivity and by the mixture dope of carbon nanotubes and nanoribbons achieved high tensile strength. For the applications, highly conductive fibers were used as electrodes in fiber transistors. Also, the functionalized semiconducting fibers have been shown to act as glucose sensors, expecting to work as a glucose sensor through weaving in various integrated forms of wearable electronics.1 INTRODUCTION 1 1.1 Overview of Fiber-Based Wearable Electronics . . . . . . . . . . . . 1 1.1.1 Fiber Components for Wearable Electronics . . . . . . . . . . 2 1.1.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Overview of Carbon Materials for Wearable Electronics . . . . . . . . 6 1.2.1 Conductive Electrodes . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Electrochemical Sensors . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Integrated Wearable Electronics . . . . . . . . . . . . . . . . 8 2 ELECTRO-SPUN METALLIC CNT NANOFIBERS 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Preparation of Dope Solutions . . . . . . . . . . . . . . . . . 12 2.2.3 Electrospinning Conditions . . . . . . . . . . . . . . . . . . . 13 2.3 Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Morphology Analysis . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Electrical Conductivity Measurements . . . . . . . . . . . . . 13 2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Dispersion of CNT . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Morphologies of CNT Nanofibers . . . . . . . . . . . . . . . 19 2.4.3 Electrical Conductivity of CNT Nanofibers . . . . . . . . . . 19 2.4.4 CNT Concentrations of CNT Nanofibers . . . . . . . . . . . 24 2.4.5 CNT Alignment of CNT Nanofibers . . . . . . . . . . . . . . 25 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 WET-SPUN METALLIC CNT MICROFIBERS 28 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Preparation of Dope Solutions . . . . . . . . . . . . . . . . . 31 3.2.3 Wetspinning Conditions . . . . . . . . . . . . . . . . . . . . 33 3.2.4 Plasma Deposition System . . . . . . . . . . . . . . . . . . . 33 3.2.5 Preparation of Semiconducting Channel . . . . . . . . . . . . 33 3.3 Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Purity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Electrical Conductivity Measurement . . . . . . . . . . . . . 38 3.3.3 Tensile Strength Measurement . . . . . . . . . . . . . . . . . 38 3.3.4 Insulating Layer . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.5 Transistor Characteristics . . . . . . . . . . . . . . . . . . . . 39 3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 Characterizations of CNT . . . . . . . . . . . . . . . . . . . 39 3.4.2 Morphologies of CNT Microfibers . . . . . . . . . . . . . . . 48 3.4.3 Electrical and Mechanical Properties of CNT Microfibers . . . 48 3.4.4 Characterizations of Insulating Layer . . . . . . . . . . . . . 51 3.4.5 Performance of Fiber Transistors . . . . . . . . . . . . . . . . 56 4 WET-SPUN SEMICONDUCTING CNT MICROFIBERS 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 Semiconducting CNT . . . . . . . . . . . . . . . . . . . . . 61 4.1.2 Glucose Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Separation of Semiconducting CNT . . . . . . . . . . . . . . 64 4.2.2 Enzyme Immobilization . . . . . . . . . . . . . . . . . . . . 65 4.3 Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Optical Characterizations . . . . . . . . . . . . . . . . . . . . 65 4.3.2 Electrochemical Characterizations . . . . . . . . . . . . . . . 65 4.3.3 Atomic Structure Characterizations . . . . . . . . . . . . . . 67 4.3.4 Amperometric Electrochemical Analysis . . . . . . . . . . . 67 4.3.5 Gate Effect Measurement . . . . . . . . . . . . . . . . . . . . 70 4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.1 Graphitic Structures of CNT . . . . . . . . . . . . . . . . . . 70 4.4.2 Energy Levels of CNT . . . . . . . . . . . . . . . . . . . . . 74 4.4.3 Chirality of CNT . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.4 Transistor Characteristics . . . . . . . . . . . . . . . . . . . . 77 4.4.5 Fiber-Type Glucose Sensor . . . . . . . . . . . . . . . . . . . 80 5 CONCLUSION 85 Abstract (In Korean) 116Docto

    Use of field observations to characterize a fractured porous aquifer system in Won-Ju, Korea

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€์งˆ๊ณผํ•™๊ณผ ์ง€์งˆํ•™์ „๊ณต,1998.Maste

    Significance of interrelationship between cardiac mcrovasculature, myuocytes, and collagen framework on the mechanisms of hypertensi

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] ๋‹น๋‡จ๋ณ‘์€ ๋งค์šฐ ํ”ํ•œ ์ „์‹ ์งˆํ™˜์œผ๋กœ์„œ ํŠนํžˆ ์‹ฌํ˜ˆ๊ด€๊ณ„์—๋Š” ๊ด€์ƒ๋™๋งฅ ๊ฒฝํ™”์ฆ์ด ์—†์ด๋„ ์‹ฌ๋ถ€์ „์ฆ์„ ํ”ํžˆ ์œ ๋ฐœ์‹œํ‚ค๋ฉฐ ๊ณ ํ˜ˆ์••์˜ ๋ฐœ์ƒ๋นˆ๋„๋„ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋™์•ˆ ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์ด ๋ฐฑ์„œ์—์„œ ๋‹น๋‡จ๋ณ‘๊ณผ ๊ณ ํ˜ˆ์••์„ ๋™์‹œ์— ์œ ๋ฐœ์‹œ์ผœ(๊ณ ํ˜ˆ์••-๋‹น๋‡จ์„ฑ ์‹ฌ๊ทผ์ฆ ๋ฐฑ์„œ, HD-CM) ์‹ฌ์žฅ์˜ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ๋Šฅ์ , ๊ตฌ์กฐ์  ์ด์ƒ์„ ๊ด€์ฐฐ, ๋ณด๊ณ ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ฌ๊ทผ์„ ์ง€ํƒฑํ•ด์ฃผ๋Š” ๊ฒฐ์ฒด์กฐ์ง ๊ตฌ์กฐ์˜ ์—ญํ• ์— ๋Œ€ํ•ด์„œ๋Š” ์ „ํ˜€ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์‹คํ—˜์—์„œ๋Š” ๊ณ ํ˜ˆ์•• ์œ ๋ฐœ ๋ฐฑ์„œ, ๋‹น๋‡จ๋ณ‘ ์œ ๋ฐœ ๋ฐฑ์„œ, ๊ณ ํ˜ˆ์••-๋‹น๋‡จ์„ฑ ์‹ฌ๊ทผ์ฆ ๋ฐฑ์„œ์—์„œ ์‹ฌ์žฅ์˜ ์กฐ์งํ•™์  ๋ณ€ํ™”์ค‘ ๊ฒฐ์ฒด์กฐ์ง ๊ตฌ์กฐ์˜ ๋ณ€ํ™”, ํŠนํžˆ ์‹ฌ๊ทผ๋‚ด ๊ต์›์งˆ์˜ ๋ณ€๋™์„ ์•Œ์•„๋‚ด๊ณ , ์‹ฌ๊ทผ์„ธํฌ์™€ ๊ฒฐ์ฒด์กฐ์ง๊ฐ„์˜ ์ƒํ˜ธ๊ด€๊ณ„ ์†์ƒ์ด ์‹ฌ๊ธฐ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ์‹ฌ๊ทผ ๋ฏธ์„ธํ˜ˆ๊ด€ ๊ตฌ์กฐ์˜ ๋ณ€ํ™”, ๊ณ ํ˜ˆ์•• ๋ฐ ํ˜‘์‹ฌ์ฆ์˜ ๊ฐœ์„ ์ œ์ธ diltiazem์ด ์‹ฌ๊ทผ์ค‘์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. Silver clip์„ ์ขŒ์‹ ๋™๋งฅ์— ๋ผ์›Œ ์‹ ์„ฑ ๊ณ ํ˜ˆ์••์„ ์œ ๋ฐœํ•˜๊ณ  streptozotocin์„ ์ •๋งฅ๋‚ด ์ฃผ์‚ฌํ•˜์—ฌ ๋‹น๋‡จ๋ณ‘์„ ์œ ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ์ด ๋‘๊ฐ€์ง€๋ฅผ ๊ฐ™์ด ์ฒ˜์น˜ํ•˜์—ฌ ๊ณ ํ˜ˆ์••๊ณผ ๋‹น๋‡จ๋ณ‘์„ ๋™์‹œ์— ์œ ๋ฐœ์‹œํ‚ค๊ณ , ์ด๋“ค์— diltiazem์„ ํˆฌ์—ฌํ•˜์—ฌ ์ •์ƒ ๋Œ€์กฐ๊ตฐ๊ณผ ํ•จ๊ป˜ ์‹ฌ๊ทผ์˜ ์กฐ์ง๋ณ‘๋ฆฌํ•™์  ํŠน์„ฑ์„ ๊ด€์ฐฐํ•˜๊ณ  ๊ต์›์งˆ์„ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, microfil ๊ด€๋ฅ˜์‹คํ—˜์„ ํ†ตํ•ด ๋ฏธ์„ธํ˜ˆ๊ด€์˜ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋˜, modified del Rio Hortega's silver carbonate impregnation ๋ฐฉ๋ฒ•์— ์˜ํ•ด ๊ฒฐ์ฒด์กฐ ์ง ๊ตฌ์กฐ๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ฒด์ค‘์— ๋Œ€ํ•œ ์‹ฌ์žฅ์˜ ์ƒ๋Œ€์ ์ธ ๋ฌด๊ฒŒ๋Š” ์ „ ์‹คํ—˜๊ตฐ์ด ์ •์ƒ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด ์ฆ๊ฐ€๋˜์–ด ์‹ฌ๋น„๋Œ€๊ฐ€ ์ผ์–ด๋‚œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๊ณ  ์‹ฌ๊ทผ์˜ ๊ฐ„์งˆ์„ฌ์œ ํ™”, ํ˜ˆ๊ด€์ฃผ์œ„ ์„ฌ์œ ํ™”, ํ˜ˆ๊ด€๊ฒฝํ™”, ๋ฏธ์„ธํ˜ˆ๊ด€์˜ ๋ณ€ํ™”๋“ฑ์€ ๋‹น๋‡จ๋ณ‘ ๋‹จ๋…์œ ๋ฐœ๊ตฐ์—์„œ๋Š” ์ •์ƒ ๋Œ€์กฐ๊ตฐ๊ณผ ๊ฑฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์œผ๋‚˜ ๊ณ ํ˜ˆ์•• ๋‹จ๋… ์œ ๋ฐœ๊ตฐ๊ณผ ๊ณ ํ˜ˆ์••-๋‹น๋‡จ๋ณ‘ ๋™์‹œ์œ ๋ฐœ๊ตฐ์—์„œ๋Š” ํ˜„์ €ํ•˜๊ฒŒ ์ฆ๊ฐ€๋œ ์†Œ๊ฒฌ์„ ๋ณด์˜€๋‹ค. ๋Œ€์น˜์„ฌ์œ ํ™”๋„ ๊ณ ํ˜ˆ์••-๋‹น๋‡จ๋ณ‘ ๋™์‹œ์œ ๋ฐœ๊ตฐ์—์„œ ๋งŽ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ„์งˆ์„ฌ์œ ํ™”์˜ ์ •๋„๋Š” ํ˜ˆ๊ด€์ฃผ์œ„ ์„ฌ์œ ํ™”์˜ ์ •๋„์™€ ๋น„๋ก€ํ•˜์˜€์œผ๋‚˜ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••, ๋ชธ๋ฌด๊ฒŒ์— ๋Œ€ํ•œ ์‹ฌ์žฅ์˜ ๋ฌด๊ฒŒ ๋น„์œจ, ๊ณ ํ˜ˆ๋‹น์˜ ์ •๋„์™€๋Š” ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์—†์—ˆ๋‹ค. ์‹ฌ๊ทผ๋‚ด ๋น„๊ต์›์งˆ์„ฑ ๋‹จ๋ฐฑ์งˆ์— ๋Œ€ํ•œ ๊ต์›์งˆ ์–‘์˜ ๋น„์œจ์€ ์ „ ์‹คํ—˜๊ตฐ์ด ์ •์ƒ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด ์•ฝ๊ฐ„ ๋†’์€ ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๊ณ ํ˜ˆ์•• ๋‹จ๋…์œ ๋ฐœ๊ตฐ์—์„œ๋Š” ์„ธํฌ์™ธ ๊ฒฐ์ฒด์กฐ์ง ์„ฑ๋ถ„์˜ ์ฆ์‹์ด ์žˆ์—ˆ์œผ๋‚˜ ๋ฐฐ์—ด๋ฐ ์—ฐ๊ฒฐ ์ƒํƒœ๋Š” ์ •์ƒ์ด์—ˆ๊ณ , ๋‹น๋‡จ๋ณ‘ ๋‹จ๋…์œ ๋ฐœ๊ตฐ์—์„œ๋Š” ๊ฒฐ์ฒด์„ฌ์œ ์˜ ์ฆ์‹์€ ์—†์—ˆ์œผ๋‚˜ ๊ทผ์„ธํฌ ์„ฌ์œ ์˜ ์—ฐ๊ฒฐ์ด ๋Š์–ด์ง„ ๊ฒƒ์ด ๊ด€์ฐฐ๋˜์—ˆ๊ณ , ๊ณ ํ˜ˆ์••-๋‹น๋‡จ๋ณ‘ ๋™์‹œ์œ ๋ฐœ๊ตฐ์—์„œ๋Š” ๊ฒฐ์ฒด์„ฌ์œ ์˜ ์ฆ์‹๊ณผ ์—ฐ๊ฒฐ์ด์ƒ์ด ๋™์‹œ์— ๋‚˜ํƒ€๋‚ฌ๋‹ค. Diltiazem์„ ํˆฌ์—ฌํ•œ ๋ฐฑ์„œ์—์„œ๋Š” ๋น„ํˆฌ์—ฌ๊ตฐ์— ๋น„ํ•ด ํ˜ˆ์••์ด ๋‚ฎ์•˜๊ณ  ๊ฐ„์งˆ์„ฌ์œ ํ™”์™€ ๋Œ€์น˜์„ฌ์œ ํ™”, ํ˜ˆ๊ด€์ฃผ์œ„ ์„ฌ์œ ํ™”, ํ˜ˆ๊ด€๊ฒฝํ™”๋“ฑ์˜ ์กฐ์งํ•™์  ์ด์ƒ์ด ์ ์—ˆ์œผ๋ฉฐ ๋ฏธ์„ธํ˜ˆ๊ด€์˜ ๋ณ€ํ™”๋„ ์—ญ์‹œ ๋” ์ ์€ ๊ฒƒ์œผ๋กœ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ๋ณด์•„ ๋‹น๋‡จ๋ณ‘๊ณผ ๊ณ ํ˜ˆ์••์ด ๊ฐ™์ด ๋ฐœ์ƒ๋˜๋Š” ๊ฒฝ์šฐ ์ฃผ๋กœ ๋‹น๋‡จ๋ณ‘์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋˜๋Š” ๊ธฐ๋Šฅ ์ €ํ•˜์™€, ์ฃผ๋กœ ๊ณ ํ˜ˆ์••์˜ ์˜ํ–ฅ์ธ ์‹ฌํ•œ ์‹ฌ๊ทผ์˜ ๊ตฌ์กฐ์  ์†์ƒ์ด ์ƒ์Šน์ž‘์šฉ์„ ํ•˜์—ฌ ํ”ํžˆ ์‹ฌ๊ทผ์ฆ์œผ๋กœ ๋ฐœ์ „๋˜๋ฉฐ, ์ด์˜ ๋ฐœ์ƒ๊ธฐ์ „์€ ์‹ฌ์žฅ๋‚ด ๋ฏธ์„ธํ˜ˆ๊ด€์˜ ๊ฒฝ๋ จ์œผ๋กœ ์ธํ•œ ์žฌ๊ด€๋ฅ˜ ์†์ƒ์— ์˜ํ•ด ์‹ฌ๊ทผ์„ธํฌ์˜ ๊ดด์‚ฌ๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์—ฌ๊ธฐ์— ๋ฏธ์„ธํ˜ˆ๊ด€ ๋ˆ„์ถœ๋กœ ์ธํ•œ ๊ฐ„์งˆ๋ถ€์ข…๊ณผ ์„ฌ์œ ํ™”์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ๋˜, diltiazem์€ ๋ฏธ์„ธํ˜ˆ๊ด€ ๋ณ€ํ™”๋ฅผ ํฌํ•จํ•œ ์‹ฌ์žฅ์˜ ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๊ฒฝ๊ฐ์‹œํ‚ค๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•„ ์•ž์œผ๋กœ ๋”์šฑ ๊ทœ๋ช…ํ•ด ๋ณผ ๊ฐ€์น˜๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. [์˜๋ฌธ] Semiquantitative histopathologic changes, myocardial collagen content and intramural microvascular changes using Microfil perfusion, and morphologic change of connective tissue framework by modified del Rio Hortega's silver carnonate impregnation method were studied in hypertensive, diabetic, hypertensive-diabetic, and control rats. Diltiazem, a calcium channel blocking agent, was administered orally into half of the hypertensive-diabetic group and the myocardial protective effect of this agent was also evaluated. The observed results are summarized as follows: 1 . Blood pressures were significantly elevated in hypertensive and hypertensive-diabetic rats, and were less elevated in diltiazem-treated group compared with untreated group. 2. All the experimental groups showed higher heart weight/body weight ratio than controls. Among the hypertensive-diabetic rats, the ratio was higher in diltiazem-treated group. 3. Both hypertensive-diabetic and hypertensive groups showed significant perivascular fibrosis. Vascular sclerosis was more frequently observed in hypertensives than in hypertensive-diabetics. Diltiazem-treated group had lesser degree of perivascular fibrosis and vascular sclerosis than untreated. 4. Interstitial fibrosis was increased significantly in hypertensive-diabetic animals, while diabetic rats showed only minimal fibrotic changes as in controls. Also, diltiazem-treated rats showed lesser degree of interstitial fibrosis than untreated. 5. The degree of interstitial fibrosis was well correlated with the decree of Perivascular fibrosis, but was not correlated with systolic blood pressure, cardiac weight/body weight ratio, or blood glucose level. 6. The ratio of myocardial collagen content to noncollagenous protein was elevated in the all experimental animals compared with the controls, and it was higher in the diltiazem-untreated group among the hypertensive-diabetic animals. 7. Microvascular changes observed in Microfil perfusion study were prominent in hypertensive and hypertensive-diabetic groups which showed vascular constriction, tortuosity and microaneurysm formation. But microvascular changes of diabetic group were similar to those of controls. Diltiazem-treated rats showed significantly less microvascular changes than untreated group. 8. There was an increase in the connective tissue matrix demonstrated with the silver impregnation technique in the hypertensive and hypertensive-diabetic groups. However, the hypertensive-diabetic group revealed multiple foci of silver negative zone with torn, distorted or disconnected connective tissue fibers, in addition to increased comnective tissue matrix. This investigation with extensive comparison of five groups of rats with hypertension and/or diabetes or no disease with or without diltiazem treatment, has revealed that there are relatively severe functional changes in myocardium caused by diabetes that are reversible and not associated with significant tissue damage. Hypertension causes more moderate functional changes but more extensive morphologic damage in the myocardium with interstitial and replacement fibrosis. Stable and reversible left ventricular dysfunction may ensue, but the heart does not progress to a cardiomyopathic stage. The combination of diabetes and hypertension, however, causes both severe functional changes and significant widespread myocardial injury. There is thus a dual and additive cardiac insult: extensive myocardial cell loss contributing to systolic dysfunction and multifocal fibrosis with Possible interstitial matrix increase leading to diastolic dysfunction, and metabolically affected myocytes with decreased mechanical and electrophysiological capability also leading to systolic and diastolic dysfunction. Of the two insults, the morphologic damage is irreversible; therefore prevention of this injury may ameliorate the progression to cardiomyopathy. There is evidence that the microvasculature in these animals is abnormal, with changes suggestive of spasm and vessel wall lesions. We believe that the pathogenesis of the myocardial damage is related to the induction of reperfusion induced myocyte necrosis due to spasm, and interstitial edema and fibrosis due to microvascular leakage. It is possible that pharmacologic inhibition of the microvascular changes in hypertension and diabetes may limit the progression of the disease to cardiomyopathy. The diltiazem treatment for hypertensive-diabetic cardiomyopathy should be tested further.restrictio

    ๋ฐฑ์„œ ์ขŒ๊ณจ ์‹ ๊ฒฝ ์†์ƒ๋ถ€์œ„์— ์ œ๋Œ€์ค‘๊ฐ„์—ฝ ์ค„๊ธฐ์„ธํฌ์™€ ์Šˆ๋ฐ˜์„ธํฌ ์ด์ž…์„ ์ด์šฉํ•œ ๋ง์ดˆ ์‹ ๊ฒฝ ์žฌ์ƒ

    No full text
    Thesis(masters) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์น˜์˜ํ•™๊ณผ,2008.2.Maste

    Nonlinear optical properties and molecular vibrations of polyene derivatives

    No full text
    Docto

    VLIW ASIP for H.264 Integer transform and Quantization

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ. ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2011.2. ๋ฐฑ์œคํฅ.Maste
    • โ€ฆ
    corecore