

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Extraction of Host Internal
Information for External

Hardware Security Monitors

하드웨어기반보안모니터링을위한호스트

시스템의정보추출

2016년 2월

서울대학교대학원

전기컴퓨터공학부

이진용

Abstract

Defending electrical devices against a variety of attacks is a daunting

task. A lot of researchers have endeavored to address this issue by proposing

security solutions that can attain high level of security while minimizing

performance overhead introduced to the system. Among them, hardware-

based security solutions have been noted for high performance compared to

their software-based counterparts. However, we have witnessed that these

mechanisms have rarely been accepted to the market. This phenomenon may

be attributed to the fact that most solutions incur non-negligible modifica-

tions to the host architecture internals and thus would substantially increase

the design time and manufacturing cost. In order to answer this problem, a

hardware-based external monitoring has recently been proposed. The crux of

this solution is that, being located outside the host core and connected to the

host via a standard bus interface, the external monitor can efficiently conduct

time-consuming monitoring tasks on behalf of the host while requiring no

alteration to the host internals. However, these approaches either suffer from

the incapability of handling various security problems or experience unsubtle

performance overhead because, being externally placed and having no dedi-

cated communication channels, the hardware monitor has a limited access

to the information produced by the host core, and consequently, the system

may be forced to use memory regions or other shared hardware resources

to explicitly transfer the information from the host to the monitor hardware.

In this thesis, we propose a security solution that can carry out more com-

i

plicated security tasks with low performance overhead while keeping the

host internal architecture intact. This can be archived by using an existing

standard debug interface, readily available in numerous modern processors,

to connect our security monitor to the host processor. In order to show the

validity of our approach and explore the implication of using the debug inter-

face for security monitoring, we present three security monitoring systems

each of which addresses one of three well-known security issues: defending

against kernel rootkits, tracking information-flow, and defense of code-reuse

attacks. The experiment results show that, when implemented on a FPGA

prototyping board, our monitoring solutions successfully detect the attack

samples (i.e., data leakage attacks and CRAs). More importantly, our systems

can attain significantly low performance overhead compared to previously

proposed security monitoring solutions. The experiments also reveal that the

area overhead of the hardware is acceptably small when compared to the

normal sizes of today’s mobile processors.

Keywords : Security, Hardware-based Security Monitoring, Core Debug

Interface

Student number : 2011-30250

ii

Table of Contents

I. Introduction . 1

II. Background and Related Work 8

2.1 Background . 8

2.1.1 Core Debug Interface 8

2.2 Related Work . 9

2.2.1 Software-based Monitoring solutions 10

2.2.2 Hardware-based Monitoring with Invasive Modifica-

tion . 10

2.2.3 Hardware-based Monitoring with Minimal Modifi-

cation . 11

2.2.4 Hardware-based Kernel Integrity Monitors 12

2.2.5 Utilizing debug interface 13

III. Monitoring the Integrity of OS Kernels with Data-Flow In-

formation . 15

3.1 Introduction . 15

3.2 Motivational Example . 19

3.3 Assumptions and Threat Models 20

3.4 The Baseline System . 21

3.4.1 The Overall System Design 21

3.4.2 Periodic Cache Flush for Cache Resident Attacks . . 23

iii

3.5 Extrax design . 25

3.5.1 Address Translation Unit 26

3.5.2 Early Stage Filter 28

3.6 Experimental Results . 30

3.6.1 Prototype System 30

3.6.2 Security Evaluation 32

3.6.3 Performance Analysis 34

3.6.4 Power Consumption 36

3.7 Limitation and Future Work 36

3.8 Conclusion . 39

IV. Monitoring Dynamic Information Flow using Control-Flow/Data-

Flow Information . 41

4.1 Introduction . 41

4.2 DIFT Process with an External Hardware Engine 44

4.3 Building a DIFT Engine for CDI 48

4.3.1 Components of the DIFT Engine 48

4.3.2 Tag Propagation Unit 51

4.4 Experiment . 53

4.4.1 Security Evaluation 56

4.4.2 Performance Evaluation 56

4.5 Conclusion . 59

V. Monitoring ROP/JOP Attacks using Control-Flow Informa-

tion . 60

5.1 Introduction . 60

iv

5.2 Background and Assumptions 65

5.2.1 Background . 65

5.2.2 Assumptions and Threat Model 70

5.3 Overall System Architecture 71

5.3.1 SoC Prototype Overview 71

5.3.2 CRA Detection Process 72

5.4 IMPLEMENTATION DETAILS 75

5.4.1 Binary Instrumentation 75

5.4.2 Hardware Architectures 77

5.5 EXPERIMENTAL RESULTS 82

5.6 Conclusion . 86

VI. Conclusion . 88

Bibliography . 90

초록 . 99

v

Figures

1. Cache resident LKM hiding attack 20

2. The overall baseline system design 21

3. The augmented baseline system with Extrax 26

4. Multiple virtual addresses mapping example 27

5. The structure of the ATU 27

6. The overall structure of the early stage filter 29

7. Example for DLP using DIFT 44

8. Example of tag propagation rules 46

9. Overall SoC platform 49

10. Microarchitecture of the proposed DIFT engine 51

11. Graph of execution time normalized to Native 58

12. A ROP example on ARM processors 69

13. Overall architecture of our SoC design 71

14. Original vs. instrumented binary (newly added parts

are written in boldface) 76

15. CRA monitor hardware architecture 78

16. Hardware architecture of the CRA detector 78

17. Information flow diagram processed by the Trace Com-

biner . 79

18. Benchmark execution time when the CRA monitor is

enabled . 84

vi

Tables

1. Description of CDI signals for ETM 9

2. Synthesis result of the prototype system 32

3. Rootkit detection result 32

4. Performance overhead 35

5. Bandwidth comparison 35

6. Power consumption analysis 36

7. Synthesis result . 54

8. Comparison table of execution time normalized to Native 57

9. The description of implemented CRAs and detection re-

sults of the attacks . 83

10. Comparison of binary sizes between ours and [1] 85

11. Frequency gap tolerance of ours and [1]

(IP CLK is for both the monitor and the DDR memory) . 86

vii

Chapter 1

Introduction

As technology rapidly evolves, we are nowadays surrounded by a myriad

electrical devices, including desktops, laptops, tablets, mobile phones, and

smart watches. With these devices, we can do various things; they include

seemingly trivial tasks such as sending emails and accessing social network

sites to considerably more serious business like online banking and measuring

medical information. As the amount of private information managed in these

devices drastically increases, they are becoming more appealing targets of

attackers.

In order to protect these devices (which we call the system from now

on) against various attacks, a number of security solutions have been pro-

posed in literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Techniques they employ

in their solutions can roughly be categorized as follows: (1) encryption (2)

obfuscation (3) isolation (4) system monitoring. Encryption is a process of

converting one data form into another, called ciphertext, basically making

the original data impossible to be read or be understood by unauthorized

users. Unlike encryption techniques that use keys to convert the whole data,

obfuscation deliberately changes the layout of the structure of original data or

1

inserts redundant logics to original source code in a way that malicious users

cannot easily understand the original meaning of the code/data. Isolation

is, as the name implies, the way of protecting information by placing it in

a reserved, isolated space that cannot be accessed without proper authority.

Lastly, system monitoring is an act of watching a specific set of system

behaviors and checking whether the behaviors deviate from the ones of the

legitimate system.

More specifically, the system monitoring technique mainly checks the

execution behaviors of a program running on the host system to find any

symptom of attacks. For monitoring, users or system administrators firstly

define a set of rules (or invariants) that mostly signify the legitimate behaviors

of target applications during normal code execution. At runtime, a security

monitor deployed on the system checks whether there is any violation of these

rules. If there is any detection of such an event, then the system administrators

are notified of a possible attack.

Among many techniques, this system monitoring techniques have been

adopted in many security solutions addressing a variety of attacks from

monitoring the integrity of OS kernels [10, 12, 13, 14, 8, 9, 11] to monitor-

ing application behaviors to detect any suspicious activities, for instance,

by performing dynamic information flow tracking or control flow integrity

checking [15, 16, 17, 18, 19, 20, 21]. These security monitoring schemes can

be implemented in various forms. Two mainstream research directions are

software-based [14, 8, 9, 22, 23, 15, 16, 17] and hardware-based approaches

[7, 13, 10, 12, 11, 18, 19].

In general, the former approaches have popularity in the security com-

2

munity as they do not necessitate underlying hardware modification, thus

allowing the easy deployment of such solutions to commodity hardware

platforms. Moreover, they can easily adapt to new types of attacks as their

core algorithms exist in the form of software, which can be readily updated

in the field. Not surprisingly, however, they have a drawback in that they

may impose substantial computational loads upon the host machine, which

is not desirable for these solutions to be deployed in practice. For instance,

in the case of DIFT, the flow of critical data needs to be monitored at ev-

ery instruction that possibly moves the data from a secure storage to some

other places. Even after aggressive optimizations [16, 17], the overhead

still remains one or two orders of magnitude higher than that of hardware

approaches [18, 19] in which extra hardware for monitoring operations is

designed and integrated into an existing processor for acceleration. The main

source of such a performance loss is that these software-based monitors are

another software layer that competes with other software in the system for

computing resources.

The hardware-based approaches, on the contrary, utilize an isolated

hardware module which is physically independent of the monitored host

system, thus unaffecting the operation of the tasks running on the host.

Several works introduced in [13, 24, 25, 10, 12, 11, 26, 27, 28, 29, 30, 18, 19].

These hardware solutions tend to exhibit high performance by accelerating

the monitoring process with the assistance of customized hardware logics for

the task.

Despite their dramatic performance enhancement, they have a few draw-

backs. The first one is that they may require the redesign of the existing

3

processor architecture if one wants to maximize the overall performance

while attaining high level of security. For instance, authors in [27, 28, 29]

present solutions in which their hardware logics are tightly coupled with the

host CPU for close monitoring of every control transfer during code execution.

Such a close coupling requires major modifications to processor internal com-

ponents such as pipeline datapaths or the structure of registers[31, 27, 28, 29],

which would stymie the direct deployment of these solutions into commercial

platforms.

The second drawback is that, if one chooses to avoid the aforementioned

problem and places the monitor at the outside the host procesor as proposed

in [12, 10, 11, 13, 20, 21], they may either have their system experiencing

non-negligible performance overhead or have their monitor less useful than it

should be. Undoubtedly, in their approaches, the host processor can concen-

trate on the execution of its own code while the time-consuming monitoring

task is offloaded to the specialized hardware module outside the processor;

in the literature, they empirically demonstrated that their monitoring scheme

can be carried out in a great speed by external hardware, relieving significant

burden for the extra computation from the host.

Nevertheless, there still remains an inefficiency. It originates from the

limited ability of an external module to watch every internal state change

dynamically made by the code running on the host. For precise security

monitoring, the external monitor should be able to receive from the host

various runtime information such as branch targets, memory addresses and

register moves. Without such information, the effectiveness of such hardware

monitors are subtatially reduced, and are allowed to perform only simple

4

tasks such as monitoring memeoy access patterns as proposed in [13, 10, 11].

To conduct more sophisticated monitoring tasks, researchers in [21, 20]

sugest the use of share memory regions to explicitly deliver the essential

information from the host to the monitor. Even though their approaches

exhibit a substantial performance improvement compared to software-based

approches, there still remains non-negligible performance overhead mainly

due to the tremendous amount of traffic for communication. As reported

in [21, 20], the overehad is up to 30% of the total execution time even after

all their optimizations through hardware communication buffers and special

instructions.

In this thesis, we propose a new security monitoring solution that can

resolve the problems of the previous works; the monitoring system imple-

mented under the guidance of our solution can carry out more complicated

security tasks with negligible performance overhead while keeping the host

internal architecture intact. Complex as it sounds, but our monitoring so-

lution merely suggests that the monitoring engine be placed externally to

the host processor, similar to those introduced in [21, 20, 12, 10, 13], and

that the engines be connected to the host processor via an existing standard

interface, called the core debug interface (CDI), which is readily available

for debugging purposes in various modern processors including ARM Cortex

series and Intel x86 architectures [32, 33, 34].

Once they are plugged into CDI, our monitor engines can access bounti-

ful information transmitted in the form of signals from CDI. The signals from

CDI can largely be categorized into two groups. The first group of signals

convey information relavant to the control-flow transfer of code executed

5

on the host system. The second group of signals present memory access

behaviors such as target addresses of a memory access with its corresponding

(written/read) value for the access. In our solution, these groups of signals,

which we hereafter call the control-flow information and data-flow infor-

mation respectively, are the key element that enable us to build a variety of

security monitoring mechanisms on external hardware monitors.

Simple as it may sound, but using these signals for building up a security

system can involve several complications majorly because the initial set of

signals from CDI cannot simply be fed into the security monitor as they

are in their present form. Some signals originally generated for debugging

may need to be translated into another form that is required for security

monitoring. Therefore, in order to show the implication of using CDI for

security monitoring, this thesis presents in its main chapters three well-known

security problems, each of which monitoring solution requires different

groups of signals to address the corresponding problem. In Chapter 3, attacks

that target the integrity of an OS kernel is presented. The chapter shows,

under the vigilance of our proposed monitor and thanks to the data-flow

information transferred via CDI, no attack launched on the system can

compromise the kernel. Chapter 5 describes a well-known attack technique

that attackers tweak the control flow of a legitimate code into performing

malicious operations. The second monitorng system presented in this chapter

uses the control-flow information coming from CDI to detect any suspicious

control-flow change. Chapter 4 presents a monitoring system that uses both

control-flow and data-flow information to monitor the trace of secret data.

At runtime, every data derived from the secret data is tainted and tracked

6

throughout the operation, and if any tainted data is involed in potentially

illegal activities, our monitoring system raises an alarm.

This thesis is organized as follows: Chapter 1 introduces and sumarizes

the thesis. Chapter 2 provides a brief explanation of CDI and presents past

work in the area of software-based and hardware-based monitoring solutions.

Chapter 3 describes a monitoring solution that makes use of data-flow infor-

mation to detect attacks targetting OS kernels. In Chapter 5, a monitoring

solution that uses the control-flow information is explained. Chapter 4 shows

the third monitoring solution that, to detect the misuse of critical data, makes

use of both control-flow and data-flow information. And finally, Chapter 6

7

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Core Debug Interface

As the complexity of software running on a processor drastically in-

creases, recent commodity processor vendors tend to include rich debug

features in thier hardware. The On-chip debug (OCD) unit [35, 34] is such a

hardware feature that supports efficient real-time debugging/tracing without

affecting the performance of the target processor. Provided by OCD, a rich set

of information allows developers (or users), on their debugging environment

(usually on desktop machines), to follow the path that the target CPU takes

as a result of code execution and monitor values in various registers and

memories. Representative examples of OCD are the ARM CoresSight mod-

ules [32] supported in ARM Cortex series processors such as the embedded

trace macrocell (ETM) and the program trace macrocell (PTM).

CDI is an interface placed on the CPU side, whose main role is to

provide OCD with the CPU’s internal status information that is essential

for debug/trace. In general, the OCD modules provide various signals to

8

Signal Description

ETMICTL [20:0] ETM instruction control bus

ETMIA [31:1] ETM instruction address

ETMDCTL [10:0] ETM data control bus

ETMDA [31:0] ETM data address

ETMDD [63:0] ETM data write data value

ETMCID [31:0] Current processor Context ID

table 1: Description of CDI signals for ETM

developers such as instruction address, current context ID (or process ID),

and data address/value of memory access instructions, which are useful

information to keep track of the behavior of a monitored program. Thus, CDI

for the OCD modules also provide such information through the dedicated

signal lines [32]. As an example, in Table 1, the signals to ETM provided by

ARM processors through CDI is described. Although the types of information

supported by CDI can vary from one processor architecture to another, the

signals presented in Table 1 are generally provided in most CDIs.

2.2 Related Work

As introduced in Chapter 1, there have been much research conducted

to defend computer systems from various security attacks. In this section,

we present a number of security solutions which mainly rely their detection

techniques on monitoring the behaviors or patterns exhibited on the host

system as a result of target program code execution. Starting from the de-

scription of the software-based monitoring solutions, we revisit past work

on hardware-based monitoring solutions, and finally we address some work

9

relavant to the use of debug interfaces to other purposes than their original

usages.

2.2.1 Software-based Monitoring solutions

To defend the computer systems from various security attacks, there

have been proposed a number of monitoring techniques, such as DIFT [22],

memory bound checking and control flow integrity checking [15]. The most

popular way to realize security monitoring schemes is to implement them

in software. Most software monitoring approaches [22, 16, 36, 17, 37, 15]

have relied upon either source-code instrumentation or dynamic binary

translation (DBT) [38] for the defense against diverse attacks at execution

time. However, the main drawback of them is that they experience excessively

high performance overhead. For example, in [22] that proposes a software-

based DIFT implementation, the overhead reaches up to about 40 times the

original code execution time in the worst case. The performance overhead

of DROP [23], which proposes a ROP detection scheme, ranges from 1.9X

to 21X. MoCFI [39], which introduces a CFI checking technique on ARM-

based mobile devices, shows the performance loss about 5X. Considering

that these techniques are usually employed for runtime monitoring, the

performance degradation is not acceptable to be deployed in real machines.

2.2.2 Hardware-based Monitoring with Invasive Modification

To address the shortcoming of software-based monitoring, some early

hardware approaches [18, 19, 27, 28, 40, 20] tried to improve performance

by inserting into the host processor core dedicated hardware modules that

10

accelerate monitoring computations. The main advantage of these approaches

is that they do not need to instrument the host code and thus they could bring

the overhead down to under 5%. However, they have a disadvantage in that

invasive modifications to the processor internal (e.g., registers and pipeline

data paths) are required. For instance in [18], inside the core, they installed

hardware tagging units to conduct DIFT, called the flow tracker and tag

checker, and widened the widths of registers, internal datapaths and caches,

to accommodate tag bits, all of which call for major changes of the proces-

sor internal. In fact, modern microprocessor development may take several

years and hundreds of engineers from an initial design to production [31].

Therefore, the substantial costs of development to integrate the customized

logic would hamper processor vendors to adopt them, unless the necessity is

clearly established.

2.2.3 Hardware-based Monitoring with Minimal Modification

In an attempt to minimize the internal architecture changes, the re-

searchers in [20, 21] suggested security monitoring solutions in the existing

multi-core environment where one general-purpose core is devoted solely to

run a helper thread that performs tag propagation for the main code running

concurrently on a different core. In [31, 41], they proposed an external device

that performs monitoring outside the host. By dedicating the monitoring task

to a separate core or an external hardware, these approaches can manage

to enhance the performance drastically. However, as discussed earlier, the

fundamental problem of these approaches is that a vast amount of informa-

tion must be continuously delivered to the external hardware for accurate

11

monitoring operations [41]. To cope with this communication issue, they

modified either the x86 architecture to supplement special hardware queues

and new instructions [20, 21], or the CPU pipeline datapath to provide a

customized channel between the host and the external device [31]. Our work

is somewhat similar to the work in [31] since both propose the external

hardware optimized for DIFT. But ours is different from theirs in that we

exploit the standard interface CDI for communication. The security engines

proposed in our work have been specially designed to perform the monitoring

tasks by interpreting the signals for debugging from CDI.

2.2.4 Hardware-based Kernel Integrity Monitors

The idea of using a separate hardware module to secure the kernel was

first proposed by Hollingworth et al [42]. In the work, they used a symmetric

multi-processor to secure the kernel. Later, Zhang et al. [43] suggested

deploying an intrusion detection system on a coprocessor to monitor the

host. Petroni et al. designed and implemented Copilot [13], a snapshot-based

kernel integrity monitor based on a coprocessor PCI card. Originally, Copilot

focused on monitoring only immutable kernel regions, where the residing

code or data should not be changed during runtime, but additional effort

had been made in [25] to monitor kernel dynamic regions, where the data

can be modified as a result of legitimate kernel operations, as well. Baliga

et al. presented a PCI card-based two-phase rootkit detection technique in

which the first phase automatically extracts the invariants of kernel data

structures and the second phase enforces the invariants at run-time [24]. Even

though these monitors employed external hardware module to secure the

12

kerel, they employed snapshot-based approach, which periodically takes

snapshot of memory contents to detect suspicious activities. Therefore, they

cannot constantly monitor the memory contents since doing so would impose

performance overhead on the system. Moreover, their periodic monitoring

opens up a new vulnerability, which can be exploited by transient attacks as

reported in [10].

Recently, researchers who are aware of the problem of transient attacks

proposed snoop-based external monitors. Vigilare [10] was the first work that

leverages an external hardware monitor to constantly snoop the system bus

to protect immutable kernel regions. In [11], they also proposed snooping

techniques. They especially has shown the feasibility of the approach by

showing that only small portion of all memory access are related to operating

system kernel and the portion of write in the access is again small. KI-

Mon [12] extended the Vigilare to monitor both immutable and mutable

kernel regions. These monitors have the capacity of defending a system with

negligible performance overhead, but the scope of attacks they can address

is somewhat limited in that they can monitor only memory access patterns

placed on the standard bus interface.

2.2.5 Utilizing debug interface

The idea of using debug interface for other purpose rather than debug-

ging has been proposed in other works, especially in the field of fault-tolerent

computing [44, 45, 46, 47, 48, 49, 50]. In [44, 45, 46, 47], they proposed

methods of injecting faults to the host system by accessing internal resources

such as registers and memory via existing OCD. In doing so, they tried to

13

facilitate fault tolerance evaluation. Their works are different from ours be-

cause they use OCD to intrusively modify the internal state of the host CPU

to inject faults while ours are directly connected to CDI to monitor the trace

of memory access events so as to detect malicious attempt. In [48, 49, 50],

they presented error detection approaches utiilizing available debugging in-

terface, CDI or trace buffer in OCD, to retrieve control flow information as

well as load/store information. The overall concept of exploiting information

flowing out of CDI is same to the of our monitoring system, but the main

objective is different in that theirs is to detect faults while ours is to defend

the host system against various security attacks.

14

Chapter 3

Monitoring the Integrity of OS Kernels
with Data-Flow Information

3.1 Introduction

As electronic devices such as PCs and smartphones become essential

parts of our everyday life, the potential privacy and security risks due to

numerous malwares on the devices are rapidly growing. As a means to

protect such devices from these attacks, current OSes support a variety of

anti-malware solutions. These solutions usually depend on the services from

the underlying OS kernel, implying that they would only work as designed

when the integrity of the kernel is ensured. However, the kernel integrity

has been seriously threatened since the advent of kernel level rootkits that

manipulate the kernel so as to achieve certain goals (i.e., concealing their

existence or providing backdoor accesses). Because the kernel operates at

the highest privilege level in the system, the compromised kernel may nullify

the effectiveness of any anti-malware measures that have their root of trust

on the kernel.

The threat of rootkits have urged researchers to conduct much study to

15

seek a more secure computing base that can safely monitor the system and

ensure the kernel integrity even in the presence of rootkits. Two mainstream

of the research directions are hypervisor-based [14, 8, 9] and hardware-

based approaches [7, 13, 10, 12, 11]. In general, the former approaches have

popularity in the security community as they do not necessitate underlying

hardware modification while providing a higher privileged, thus safer, soft-

ware layer for monitoring than the kernel does. However, the latest attacks

[51] and reported vulnerabilities [52] pointed toward the probability that the

code and data of hypervisors can also be compromised at runtime. Although

the known vulnerabilities have been fixed shortly, the growing complexity of

hypervisors implicates that there would be more vulnerabilities revealed in

the near future.

The hardware-based approaches utilize an isolated hardware module

physically independent of the monitored host system [13, 10, 12, 11]. In

particular, prominent monitoring schemes are recently proposed in [10, 12,

11]. At the center of these approaches, there is a hardware monitor, which

we hereafter call the snoop-based monitor, whose role is to detect malicious

attempts to alter the kernel by snooping every data traffic between the host

CPU and main memory. Being located at the outside of the host as a dedicated

hardware unit, the monitor is not only immune to rootkits attacks on the host,

but also able to constantly observe the memory access behaviors of rootkits

revealed on the system bus without affecting the host performance.

Although snoop-based monitors have been working well in their environ-

ments and assumptions, we have recently discovered a potential vulnerability

which future attackers might exploit. It comes from the fact that most com-

16

puter systems employ write-back caches. Being located in between the host

CPU and main memory, caches hold copies of data or instructions recently

accessed by CPU, thereby boosting the overall system performance to a large

extent. However, for the perspective of snoop-based monitors, the existence

of caches can be disadvantageous because they shall reduce the number of

events that the monitors can watch. For example, if a rootkit tries to com-

promise the kernel by modifying sensitive data, and the very data hits in the

cache, then the write traffic would not appear on the system bus, rendering

the monitor oblivious of the write event.

Even though some previous works discussed the possibility that this

problem may seriously undermine the effectiveness of their approaches

[10, 12, 11], none of them has properly addressed this cache-induced hiding

(CIH) effect problem. In [12], they tried to avert the problem by restricting

the usage of their monitors to the systems with write-through caches. In [11],

they merely mentioned a simple scheme of using periodic cache flush. Unfor-

tunately, they did not provide any empirical data about how much loss their

scheme may suffer on performance, detection rate or power consumption.

However, as we will see later, our study evinces that frequent cache flush

might increase the host performance overhead to a large extent.

In this chapter, we present a hardware-assisted low-overhead solution

which thwarts the CIH effect by enabling the external monitors to directly

access the cache resident information (CRI) which includes all the internal

data residing within the cache without being exposed on the system bus. To

implement this solution, we utilized the existing hardware logic, CDI, which

can be found in several processors available today such as ARM Cortex series

17

and Xilinx MicroBlaze[35, 34]. If CDI is plugged into a security monitor,

the bountiful information provided by CDI, which contains memory access

events issued by CPU, would certainly help monitor perform its desired task

without the CIH effect.

This task, however, involves several complications in implementation

majorly because the initial set of signals from CDI cannot be simply fed into

the security monitor as they are in their present form. Some signals originally

generated for debugging must be translated into another form that is required

for security monitoring. Therefore, we have developed an extra hardware

unit, called the Extrax, that being located between CDI and security monitors,

carefully examine and properly refine or transform each individual signal

from the interface before delivering it to the monitor.

To validate our design and further explore the implication of this addi-

tional circuits to the overall system, we have implemented a full snoop-based

monitoring system in which the host system has been augmented with Extrax.

With the system prototyped on a FPGA platform, we evaluated and compared

the performance, power and area of our full system against the baseline

system in which Extrax is not deployed. Experiment results exhibit that our

monitor, with modest area and power overhead but with the host performance

being almost unaffected, successfully detects rootkit attacks regardless of the

type of caches while the baseline monitor often fails.

The rest of the chapter is organized as follows. We first present a mo-

tivational example in Section 3.2. Then in Section 3.3, the assumption and

threat model are presented. In Section 3.4, the baseline system is presented

to show the overall operation of hardware-based monitoring. Section 3.5

18

describes the details of the proposed security extension, Extrax. After Section

3.6 shows our experimental results, we conclude this chapter in Section 3.8.

3.2 Motivational Example

We define cache resident attacks as malicious attacks that, intentionally

or unintentionally take advantage of the CIH effect; the existence of write-

back caches can unintentionally blindfold snoop-based monitors by impeding

memory write events from appearing on the system bus, or attackers can

intentionally hide the evidence of attacks by overwriting the malicious data

residing in caches with benign one, thereby prohibiting the monitors to

detect the symptom of attacks. To better explain, we chose the loadable

kernel module (LKM) hiding technique as a representative cache resident

attack example since many rootkits in the wild employ the technique to

hide themselves. LKMs are initially designed to support extension of the

kernel code at runtime without recompiling the entire kernel. However, they

are often used by attackers to conceal malicious processes, files or even

themselves from detection mechanisms. Adversaries achieve their goal of

hiding LKMs by directly modifying the kernel data structures that maintain

the list of loaded LKMs.

Figure 1 shows how the LKM hiding technique is affected by write-back

caches. In (a), there are several LKMs, each of which is represented by the

struct module. The kernel handles the LKMs by maintaining the modules

list, which is a linked list of struct module. Upon the module load request,

in this case a request from the malicious LKM depicted in (b), the kernel

19

"LKM1"
list

struct module
 "LKM2"

list

struct module

"LKM1"

list

struct module
"LKM2"

list

struct module
"Malicious LKM"

list

struct module

"LKM1"

list

struct module
 "LKM2"

list

struct module
"Malicious LKM"

list

struct module

list

list

list

(a)

(b)

(c)

Figure 1: Cache resident LKM hiding attack

adds the corresponding struct module to the list, which is the head of the

modules list. In a system with write-back cache, the list will be cached after

this step, and subsequent accesses to the data structure will also hit in the

cache. Thus, even if the malicious LKM removes itself from the modules

list by directly manipulating the pointers of the modules list as depicted in

(c), this event might not be placed on the system bus. Consequently, recently

proposed snoop-based monitors might no longer guarantee the integrity of

the kernel since they detect attacks by snooping the system bus. Hence, a

novel way to nullify CIH effect should be devised.

3.3 Assumptions and Threat Models

We use the assumption taken by previous snoop-based monitors, espe-

cially by KI-Mon [12]. Therefore, we assume that adversaries have already

gained administrators’ privilege on the host system and thus are able to

install rootkits to hide themselves or leave backdoors to the host system; for

instance, the attackers can install LKMs or place hooks on critical system

20

calls. However, we rule out physical attacks by an insider who has direct

access to the host system and direct kernel structure manipulation attacks

proposed in [53].

In addition, we also assume that the host system uses write-back caches,

and provides CDI, that can be connected to OCD. Side-channel attacks that

exploit the information from OCD/CDI are not considered in this work.

3.4 The Baseline System

3.4.1 The Overall System Design

Figure 2 shows a high level view of the baseline system. Since our

monitoring system employs the snoop-based monitoring scheme, it is similar

to the prototype of KI-Mon[12]. To ensure the integrity of the kernel, the

monitor side core dynamically configures the hardware ASIC units, especially

the snooper, based on a security policy.

We designed our baseline monitor to support various policies on detect-

ing attacks on immutable regions and mutable objects that have invariant

value sets, as KI-Mon proposed in [12]. Immutable regions contain data that

Snooper
Verifier
Core

Traffic from
the CPU

Filtered
Traffic

Snoop‐based Monitor

BUS_CLKCPU_CLK

Host System

System Bus

DMA Memory
Ctrl CN…

Main Memory

 Host core

AHB M
aster IF

CDI

System Bus

Figure 2: The overall baseline system design

21

should not be modified after the boot process is complete, such as the system

call table (SCT) and interrupt descriptor table (IDT). Kernel mutable object

with a invariant value set is data object in which data can be updated by the

kernel at run-time, but the updated value is chosen among the set of possible

values that can be profiled prior to run-time; for instance, many function

pointers within kernel objects are known that each function pointer points to

one of its possible candidate landing sites [12].

According to the security policy of the host CPU, the snooper is config-

ured with appropriate address ranges of the kernel data objects or regions to

be monitored on main memory. Then the snooper constantly acquires write

events placed on the system bus, filters out every benign event that is not

relevant to the monitored regions, and transfers only the ones that violate the

current security policy to the verifier core for further investigation.

While attacks on immutable regions can be easily detected by simply

snooping the bus for write events on the region, catching evidence of mali-

cious modifications on kernel mutable objects with invariant value sets is not

straightforward since mere write events cannot be regarded as a symptom

of attacks. Therefore, we employ techniques similar to the ones proposed in

[12] such as the whitelisting-based verification and callback-based semantic

verification that basically verifies the written values as well. The detailed

explanation of these techniques are omitted in this chapter since our work is

focused on overcoming the CIH effect rather than suggesting new detection

schemes. Therefore, readers interested in these techniques are kindly referred

to [12].

The key difference between our baseline system and the prototype of

22

[12] is that ours uses write-back caches. Therefore, snooping only the system

bus may cause detection failure because of the aforementioned CIH effect.

3.4.2 Periodic Cache Flush for Cache Resident Attacks

As mentioned in [11], periodically flushing caches might help reveal

more CRI on the bus when write-back caches are deployed in the system. To

show the effectiveness of the scheme, we applied it to the baseline system.

When implementing the scheme, the flush period should be decided with

great care because a reckless choice of the period may induce either non-

negligible overhead or detection failure.

For attacks that aim at immutable regions [10], the cache flush period, p,

can be selected arbitrarily because any write attempt on the regions is deemed

malicious [10], and the cacheline where the written data is located will

eventually be evicted to main memory regardless of the period p. However,

the decision of the period p for attacks that target kernel mutable objects

is far more difficult since attackers can usually figure out a way to avoid

detection by slightly modifying the original attacks.

To better explain, consider the case shown in Figure 1. Assume that the

state of the modules list changes from the state (a) to (b) on time s, and from

the state (b) to (c) on time e. In principle, the baseline monitor concludes that

an LKM is malicious when the LKM is removed from the modules list (state

change from (b) to (c)) while the corresponding memory region for the LKM

remains in memory [12]. Thus, the period of cache flush p should be shorter

than the interval d=e-s so that every event on modules list can be revealed

on the system bus before the adversary achieve her own goal. Since d in a

23

primitive LKM hiding technique is sufficiently large, p of our baseline with

periodic cache flush could be long as well, so as to detect the attack with

acceptable performance overhead.

However, by slightly changing the original LKM hiding technique, it

is possible for attackers to reduce d substantially. The devised technique

requires two LKMs, one of which is the malicious LKM and the other is

an LKM that merely hides the first one. We call the latter the hider LKM

whose role is to insert a callback function to the kernel timer, and set the

timer with a period q. Then the callback function is periodically invoked to

check whether the malicious LKM, which ultimately achieves the attacker¡¯s

goal, is inserted or not, and hide the newly added one upon detection. To

insert and hide a malicious LKM, attackers first insert the hider LKM with

an arbitrary period q, and insert the malicious one sometime later. Since the

hider LKM does not hide itself and is thus added and removed legitimately,

the monitor has no way of distinguishing the hider LKM from other normal

LKMs.

Thus, to defend against such cache resident attacks, the flushing period

d should be adjusted to a very small value. Our preliminary study showed

that, in order to attain 100% detection rate, the period d need to be reduced

to 30us, resulting in increased performance overhead of up to 84%. From this

result, we claim that the detection with periodic cache flush might not only

induce huge performace overhead, but would also cause failing in detection if

attackers know the existence of periodic cache flush and modify their attacks

to reduce d.

24

3.5 Extrax design

As long as CRI is accurately sent via CDI to snoop-based monitors,

many security threats due to cache resident attacks would be resolved without

modifying the host internal architecture. Unfortunately, realizing precise and

efficient deliverance of these signals in an actual system comes at a cost

with some implementation challenges, as briefly stated in Section 3.1. Below

is summarized two of those that must be resolved in order to efficaciously

transfer the host internal information to snoop-based monitors through the

existing CDI.

1. CDI is originally designed to send a virtual address (VA) to the OCD

unit for each memory access while the monitor demands physical addresses

(PA) so as not to be disrupted by the certain type of attacks which will be

discussed shortly. Therefore, the original VAs from CDI cannot be directly

used for a snoop-based monitor.

2. The number of memory events coming from CDI is far larger than

that of those appearing on the system bus because a majority of write events

originating from CPU are hidden by caches on the way to the bus. This

excessive number of events sent from CDI could be burdensome to the

monitoring system in terms of performance.

These key issues are tackled respectively by two new hardware units,

the address translation unit (ATU) and the early stage filter (ESF), both

of which constitute our Extrax. Figure 3 depicts a block diagram of our

proposed system where the baseline is extended with Extrax. It is noteworthy

here that even though the information conveyed through ATU can cover all

25

Snooper Filtered
Traffic

Host CPU
with

Write-back
Cache

C
D

I

E
SF ATU Verifier

(CPU)

Extrax

Async.
Queue

System Bus Traffic from System Bus

Host System Snoop-based Monitor with Extrax

BUS_CLKCPU_CLK

Figure 3: The augmented baseline system with Extrax

memory events, the original path from the system bus remains the same. The

purpose of the path is mainly to detect attacks from other bus masters such as

DMA. In this section, we will focus our discussion on these hardware units.

3.5.1 Address Translation Unit

Upon receiving VAs from CDI, a snoop-based monitor should decide

whether the current memory access targets the regions it monitors. It seems

that such a decision can be made based on VAs, but there are cases in which

the monitor necessities PAs. For instance, consider the case depicted in

Figure 4 where the monitor is protecting a kernel data structure contained

in the critical page frame. Since this data structure is critical to the integrity

of the system and is thus managed by the kernel through the kernel page

table, no arbitrary mapping should be made to the data structure. However,

in the presence of kernel-level rootkits, it would be possible for attackers

to simply insert an LKM that generates another page table mapping for the

data structure, denoted as the malicious mapping in the figure. Thus in this

situation, if the monitor used the original VA to protect this type of kernel

structures, the attackers could indirectly modify the kernel data with the

26

PGD Entry to #1
PGD Entry to #2

Original PTE

Malicious PTE

Critical Region
MMU

PGD

Page Table #1

Page Table #2

Critical Page Frame

Physical Address

Virtual Address
Malicious
Mapping

Figure 4: Multiple virtual addresses mapping example

newly mapped VA, hence successfully escaping the vigilance of the monitor.

To deal with the cases where PAs must be supplied for security monitors,

we have installed ATU that translates VAs from CDI into physical ones. The

overall architecture of ATU is displayed in Figure 5. ATU is configured

by the monitor through the advanced high-performance bus (AHB) slave

interface. On a translation lookaside buffer (TLB) miss, a page table walk is

initiated through the AHB master interface, which is connected to the host

system bus. The input to ATU includes a VA, the context ID and the base

address of the Linux page global directory (PGD). The former two inputs are

provided by CDI, while the latter one is configured through the AHB master

interface immediately after the current context ID is updated. TLB is a fully

Virtual page # Page Offset

Virtual
Address

Tags

PID
Tags

Page Table Entry0
Page Table Entry1
Page Table Entry2

Page Table Entry n

…

Translation Lookaside Buffer

Virtual Address Latch

Page
Table

Walker

0111231

A
H

B
 M

aster IF

From/To
System Bus

Virtual Addr[31:0] Physical Addr [11:0]

Physical Addr [31:12]

PID[31:0] AHB Slave IF From/To
AHB Slave

Figure 5: The structure of the ATU

27

associative table in which the number of entries can be configured from 16

to 32. It has a random replacement policy.

3.5.2 Early Stage Filter

With the help of CDI, our monitor is now able to snoop every write

event generated by the host CPU without suffering from the CIH effect. This

abundant information continuously streaming into the monitor will certainly

enhance the chance to detect cache resident attacks. However, it may also

create an excessively large volume of information flow that will inevitably

impose heavy burdens on the monitor.

Though, if we remind that the monitors usually need to watch only a

subset of the memory events of the host depending on security policies, it

would be wasteful if ATU exhaustively translates all incoming addresses

for the monitor. The problem can be alleviated if we can filter out benign

events based on a security policy. As an example, for one of the policies

considered in our experiments, the monitor is interested in write attempts to

the kernel data. Therefore, any read memory events can be safely discarded

before reaching either the monitor or even ATU. The filter operations in

this case is in fact rather straightforward since memory access types are

easily discernable right after the events occur. However, we often need to

apply more aggressive filtering to the events. As briefly mentioned in Section

3.4, the kernel data of interest occupy relatively small amount of memory

compared to the whole range of main memory. Therefore, the monitor just

needs to watch the access events on this limited region. Unfortunately, it is not

always straightforward to decide whether or not an event just emitting from

28

CDI falls into this region, since its address remains virtual before reaching

ATU.

Nevertheless, there is still a way to provide a solution to this decision

problem. For this, consider Figure 5 where we see that an address translation

step does not require the page offset field; in fact, this field is identical for

both VAs and PAs. Inspired by this fact, we implemented ESF which, being

placed between CDI and ATU, removes unnecessary memory events based

on page offset before the events reach ATU, thereby reducing the number of

events delivered to ATU.

Figure 6 represents the internal block diagram of ESF, which rearranges

the signals from CDI and filters out as many events as possible. The im-

plementation of output rearrangement is somewhat simple in that it merely

reorganizes and extracts signals that are needed for the monitors to detect

attacks. Among the signals introduced in Section 2.1.1, the addresses/values

of memory write instructions and context IDs are selected and rearranged for

monitors.

In the current implementation, ESF has eight 12-bit address range regis-

ter pairs and comparators. The address range register pairs of ESF contain the

REG
 0

REG
 1

……Addr Filter
0

Addr Filter
1

REG
 n

Addr Filter
n

…

Filter
O
utput Reg

Address
Data
Context ID

matched
matched pass_en

Address
Data

Context ID

Early Stage Filter

matched

Figure 6: The overall structure of the early stage filter

29

page offset field of start/end addresses that need to be monitored. The register

values can be configured by the verifier core at any time. Therefore, whenever

the critical kernel regions of interest are updated, the monitor configures the

snooper and ESF simultaneously.

After the configuration, ESF compare the page offset field of a VA that

comes from CDI with the values of address range register pairs. If the address

is included in any of the monitoring regions, ESF enables the filter output

register so that the event can flow to ATU. Otherwise, ESF blocks the address,

thus obviating unnecessary operations in ATU.

As mentioned before, current ESF implementation has 8 pairs of ad-

dress range register, limiting the number of concurrent monitoring regions.

Note that the number of registers can be adjusted for the environment of

deployment. Alternatively, we can loosely set the address range register pairs,

so that each pair contains more than one monitored region. Although it would

produce unnecessary events for ATU to handle, ESF still do not miss any

access to the monitored regions.

3.6 Experimental Results

3.6.1 Prototype System

We have implemented our baseline system as close as possible to the

design proposed in [12], as an FPGA prototype where the host CPU is

the SPARC V8 processor, a 32-bit synthesizable core [54] which uses a

single-issue, in-order, 7-stage pipeline. It has separate 16kB L1 caches for

instruction and data. In addition, the host CPU also has a 256kB L2 cache

30

which employs the write-back policy. The host system bus compliant with

the AMBA2 AHB/APB protocol is used to interconnect all modules in the

system, and Linux 2.6.21.1 is used as the host OS. The snoop-based monitor

system is also implemented with the same processor and the system bus. The

snooper has eight sets of address range registers which can be configured

according to the security policy of the monitor.

To evaluate our approach, we augmented the baseline system with

Extrax. Although our host processor, open-source synthesizable core [54],

provides their own CDI specification, the information comes out of CDI

is quite restricted compared to that of commercial product, such as ARM.

Therefore, we slightly extended it to support the CDI signals equivalent

to those of ARM architecture (see Table 1). Thus, both ESF and ATU are

implemented to be compatible with ARM CDI specification [55]). Since CDI

is connected to both Extrax and OCD, we designed Extrax to disable signals

to OCD when snoop-based monitoring is turned on. ESF is configured to

have 8 address range register pairs. Our ATU, compliant with SPARC V8

Reference MMU [56], has been configured to have 16 TLB entries and 16

input queue entries.

Based on the parameters for the prototype as described above, we syn-

thesized our system onto a prototyping board with a Xilinx SC5VLX330

FPGA. Table 2 provides the area of the baseline system and Extrax in terms

of lookup tables for logic (LUTs), block RAMs (BRAMs) and DSP slices

(DSP48E). It shows that Extrax incurs 12.09% overhead for LUTs as com-

pared to the baseline hardware. Even though the area overhead of our Extrax

seems non-negligible, it is noteworthy here that our baseline system, the

31

Category Component LUTs BRAMs DSP48E
SPARC V8 Core with L1/L2 Cache (Host System) 6856 86 4
SPARC V8 Core with L1 Cache Only (External Monitor) 5878 15 4
Bus components (AHB Buses + AHB/APB bridges) 908 0 0
Memory Controller 57 0 0
Snooper 3318 0 1
Peripherals (TIMER, UART, and etc.) 2480 4 2
Total Baseline System 19497 105 11
Early Stage Filter (ESF) 502 0 0
Address Translator Unit (ATU) including queue 1855 0 0
Total Extrax 2357 0 0
% Extrax over Baseline System 12.09% 0.00% 0.00%

Baseline
System

Extrax

table 2: Synthesis result of the prototype system

open-source synthesizable core based on SPARC V8 architecture [54], has

indeed very small size. Therefore, we claim that the area overhead of Extrax

might be quite acceptable if deployed on the system with commercial CPU

core such as Cortex-A9.

3.6.2 Security Evaluation

To evaluate the security monitoring capability of our approach, we chose

several well-known attack techniques that are employed in real-world rootkits

[11] and implemented four rootkits that target either immutable regions or

kernel mutable objects. Table 3 lists the rootkits, of which the specific target

can be deduced by their names. The first two target immutable regions

while the others, the LKM and virtual file system (VFS) hooking attacks

BaseWT BaseWB Ours-Extrax
IDT Hooking Detected Detected Detected
SCT Hooking Detected Detected Detected
LKM Hiding Detected Not detected Detected
VFS Hooking Detected Not detected Detected

Example Name

Immutable
regions

Mutable
objects

table 3: Rootkit detection result

32

target mutable objects that have invariant value sets. We also implemented

monitoring software that runs on our verifier core to configure the peripheral

units for monitoring, such as the snooper, ESF and ATU. The current address

range registers of ESF is configured to capture memory accesses only on

kernel mutable objects and other related data structures such as page tables

for the objects. Memory events on immutable regions can be safely filtered

out by ESF since, as mentioned before, snooping the system bus would be

enough to catch attacks on immutable regions.

To demonstrate the effectiveness of Extrax, we injected the four rootkits

into three system versions: (BaseWT) the baseline system with write-through

caches as in [12], (BaseWB) the baseline system with write-back caches

and (Ours-Extrax) our proposed system with Extrax. As seen in Table 3,

the monitor in BaseWT could immediately detect all the rootkits since the

host uses a write-through cache, thus immediately sending every write event

onto the system bus. The monitor in BaseWB, however, was unable to detect

attacks on kernel mutable objects because of the CIH effect. Ours-Extrax,

on the contrary, could detect all the attacks (whether cache resident or not),

thanks to our Extrax and CDI support.

Recent attackers tend to avoid launching attacks that are easily de-

tectable like those on immutable regions. Instead, of more importance be-

comes the detection of attacks on mutable regions [25]. We have just seen

that a snoop-based monitor deployed on the host core with a write-back

cache is easily nullified when cache resident attacks are made on mutable

objects. Therefore, we claim that Extrax can play a critical role in assisting

such monitors, thereby increasing the security level of the systems.

33

3.6.3 Performance Analysis

Since CDI does not introduce any performance impact on the host, the

main factor which incurs the overhead is the traffic generated by ATU as

a result of address translation. To measure the performance overhead, we

chose seven applications from the SPEC 2006 benchmark suites [57], and

implemented two versions of the host system: the baseline and the proposed

full system with ESF turned off. The reason of turning ESF off is to strain

the system with the excessive traffic generated by CDI.

Table 4 presents this worst-case performance overhead, which is around

3.24%. The reason for this low overhead might be explained in a way that

even if there seem to be a number of memory events coming from CDI, the

number of events that really need memory translation in ATU is relatively

small because our ATU has TLB and most memory translation end up re-

trieving values from the TLB. We also conducted the same experiment, with

ESF turned on, monitoring the mutable objects related to the VFS hooking

and LKM hiding attacks. As seen in the table, there is virtually no overhead

caused by Extrax because ESF filters out most memory events that do not

access the monitored memory regions.

Since turning off ESF does not cause serious performance overhead

of 3.24%, some might think that ESF is not essential. As explained before,

however, its main goal is to reduce the amount of CRI delivered to ATU.

Reduced number of memory events would not only help ATU decrease the

number of events that need address translation (main memory access), but it

would also drastically reduces the number of TLB accesses, which in turn

34

Application Baseline System Proposed System
with ESF turned-off

Proposed System
with ESF turned-on

h264 10.46s 10.57s 10.46s
bzip2 788.05s 813.62s 788.05s
hmmer 39.96s 39.96s 39.96s
libquantum 10.11s 10.11s 10.11s
parser 1.41s 1.41s 1.41s
omnetpp 969.1s 975.35s 969.1s
xalan 3.43s 3.46s 3.43s

table 4: Performance overhead

might possibly save hugh amount of power consumed by ATU.

As a complementary experiment, the bandwidth of Extrax is shown in

Table 5. This result is acquired by running the STREAM benchmarks [58]

on our proposed system in order to obtain the worst-case bandwidth that

can be produced by ATU, (meaning that no TLB hit occurs) meaning that

it constantly requires page table walk and generates memory traffic on the

system bus. Even in this unrealistically extreme case, the traffic placed on the

system bus by ATU is relatively small compared to that of other components

widely used and attached to the system bus of modern SoCs, indicating that

the performance impact on the host system caused by Extrax should not be a

serious concern.

Component Bandwidth
USB 2.0 HS (High-Speed) ~ 480Mb/s
H.264 Codec (Full HD, 16-bpp, 60fps) ≥ 1.85Gb/s
Camera Input Processing (Full HD, 24-bpp, 60fps ≥ 2.78Gb/s
CPU Security Extension (Running at 200MHz ~ 275Mb/s

table 5: Bandwidth comparison

35

3.6.4 Power Consumption

To assess the power consumption of Extrax, we used Synopsys Design

Compiler, Mentor Graphics ModelSim, and synthesized netlists of Snooper,

ATU and ESF. Switching activity interchange format (SAIF) files were ex-

tracted from Modelsim with synthesized input test sequences that maximizes

the power consumption of each component. Then the SAIF files and netlists

were given as the input to Synopsys Design Compiler with a commercial 45

nm process library to estimate power consumption. The results are presented

in Table 6 with other commodity processors as reference machines. As shown

in the figure, Extrax consumes relatively small power as being compared

to commodity processor cores in products ranging from low- to high-end

computing devices.

3.7 Limitation and Future Work

Our monitoring system could overcome the problem of previous snoop-

based monitors by employing hardware security extension, Extrax, that

provides the external monitor with CRI. Even though our scheme has made a

progress in raising the security level that snoop-based monitors can provide,

the snoop-based monitoring is still not at its full maturity. In this section, we

Component ARM Cortex-A9
(Dual Core,

no L2)

ARM Cortex-A15
(Dual Core,

1MB L2)

SPARC V8
(Single Core,
256KB L2)

Snooper ATU ESF

Process 40nm 30nm 45nm 45nm 45nm 45nm
Power
Consumption

0.5W (@ 800 MHz)
/1.9W (@ 2GHz)

3W
(@ 1.7GHz)

188mW
(@200 MHz)

7.24mW
(@200MHz)

4.84mW
(@200MHz)

560.8uW
(@200MHz)

table 6: Power consumption analysis

36

describe the limitations of our monitoring system.

Our prototype system is currently equipped with a total of 8 pairs

of configuration registers, in both Snooper and ESF, to store the start/end

addresses of monitored regions. Although we can increase the exact number

of registers for the systems that allows it, we cannot say that it is always

possible to store all the address pairs. In such a case, we can set a pair of

registers to represent a memory region that include more than one regions

that we have to watch. This allows us to monitor more than one regions

with a pair of registers, since we still do not miss any access to the memory

regions. Since this loosely set monitoring region would produce unnecessary

memory events, Monitor software should perform extra work to drop these

events. Our future work includes the investigation of trade-offs between the

number of registers, hardware size, and the performance overhead caused by

additional workload of Monitor Processor.

Our current system does not assume a type of attacks that target page

tables, such that a rootkit manipulates the page table to allocate new physical

pages, copy over the content of the physical pages that are being monitored,

and change the mapping to the new physical pages. However, we claim that

Extrax can detect them with slight modification that enables monitoring

both virtual and physical addresses simultaneously. Even though the attack

mentioned above changes the content of page table so that the virtual address

can point to the different physical address, it still uses the same virtual

address. Therefore, the augmented Extrax will be able to detect such type of

attacks.

In this work, DoS attack by attackers who are aware of the existence

37

and internals of Extrax is not considered. Such DoS attacks might be possible

if attackers delicately craft their attacks to satisfy the following criteria. First,

attacks should consist of consecutive memory writes. Second, the target

addresses of the events should have the same 12-bit page-offset to that of

the address monitored by ESF in order for the events to be delivered to the

queue placed in between ESF and ATU. Third, the remaining 20-bit in each

target address is different from each other to avoid TLB hit. Since the current

Extrax is designed to drop events when the queue is full (even though, with

the current setting, the queue never became full in our experiment), attackers

might be able to conceal their trail by placing malicious write events among

the benign consecutive write events that satisfy the above criteria. However,

we claim that detection of such attack is not impossible because, as described

above, the memory access behavior of the attack is quite restricted and have

certain patterns. Therefore, Extrax could be augmented to detect this type of

patterns and notify the monitor so as to log the incident for later inspection.

Our system does not assume attacks that Bahram et. al proposed in

[53]. In their work, the attack named DKSM is introduced to show the vul-

nerability of virtual machine introspection tools. Since the attacks basically

exploit the semantic gap between the external monitor and the host system,

our monitoring system is also vulnerable to such attacks. However, such a

vulnerability is not our monitoring system‘s own weakness, but is an innate

weakness of all external monitors. One possible way to overcome the issue

is to employ in-host agent [53, 59] that can deliver useful information to

external monitors to bridge the semantic gap.

In the current work, we do not consider attacks that are performed by

38

tampering with only processor registers. Even though devising such attacks,

which leave the evidence only in registers but not in memory, caches or

system bus, might seem to be quite difficult, it is theoritically possible. The

most conceivable attack is to change the content of a special register such

as TTBR of ARM or CR3 of x86 architecture [60, 61] to modify the base

address of page global directory (PGD). If such an attack is successfully

launched, our monitor has no way to figure out the exact location of the page

tables that the processes is really using. Since ATU of Extrax rely on the

integrity of the exact location of the page tables, the attack would nullify

Extrax. Our future works include a development of a mechanism that can

safely deliver the content in registers to the outside the host.

Even though our current prototype is implemented with a rather old-

fashioned processor and old linux version, but the implementation is not

restricted to the technology or specific linux version because the purpose of

our work is to show readers the proof of concept of our system. Currently, we

are migrating this prototype system to the platform on which ARM Cortex

series is used as the host processor.

3.8 Conclusion

In this work, we proposed to reuse the CDI feature readily available

for debugging in modern CPU cores in an effort to elevate the effectiveness

of existing snoop-based monitors. We first discussed several implementa-

tion complications involved in the transfer of CDI signals for snoop-based

monitors located outside the host CPU. Then we suggested Extrax which

39

is an ASIC module plugged into CDI in order to convey the host internal

information from CDI to the external monitor. For precise and efficient mon-

itoring, the module performs the tasks of address translations and filtering

out benign memory write events. To validate our proposed design, we have

implemented a prototype on FPGA, and evaluated the security capabilities

in addition to the performance, power and area overhead. Empirical results

showed that our monitor, regardless of the type of caches, successfully detect

all our rootkit samples, which the previous monitoring systems often failed

to catch owing to CIH effect, with modest area and power overhead increase

along with virtually no host performance overhead.

40

Chapter 4

Monitoring Dynamic Information Flow
using Control-Flow/Data-Flow
Information

4.1 Introduction

DIFT detects a variety of malicious system behaviors that intend to

compromise computer systems or leak sensitive information [22]. Generally,

DIFT sets up rules to tag (or taint) internal data of interest and keeps track

of the taintness of their tags throughout the system [31]. At run time, every

data derived from the one with tainted tag has its tag tainted. An alarm will

be triggered as soon as any of the tainted data involves in potentially illegal

activities, such as pointing inside the prohibited code or being included in a

data stream on the output channels. DIFT does not depend on static patterns

or signatures of attackers but on their dynamic behaviors at run time. So,

it is effective to defend against new attacks whose patterns are not known

yet, and to block any unsafe operations on sensitive data even if the data is

encrypted [16].

DIFT has been implemented in various forms of either software or

41

hardware. Most software approaches add instrumented code into the orig-

inal application to track the propagation of tainted data [16, 22]. The key

advantage is that they can perform DIFT simply by programming their algo-

rithms. Not surprisingly, however, they show too large computing overhead

to be deployed in practice. Even after much effort [16, 17], the overhead

still remains one or two orders of magnitude higher than that of hardware

approaches [18, 19] in which extra hardware for DIFT operations is designed

and integrated into an existing processor for acceleration. The hardware typi-

cally consists of logic blocks that monitor the execution of each instruction

in the processor and keep track of tag information flowing from the execution

unit at every cycle.

Unfortunately, the remarkable speed of hardware DIFT comes at a cost.

To maximize the performance, the hardware has been tightly integrated in-

side the processor. However, such integration mandates major modifications

to processor internal components such as registers and pipeline datapaths,

thus substantially increasing the time and cost for re-manufacturing existing

processor core architecture [31]. As alternatives to mitigate this problem,

there have been more recent studies [31, 20, 21] that propose the techniques

aiming to minimize the change to the processor core internal. In their ap-

proaches, the host processor can concentrate on the execution of its own code

while the time-consuming tag propagation work for DIFT is offloaded to the

DIFT hardware device outside the processor. In the literature, they empiri-

cally demonstrated that DIFT can be carried out in a great speed by external

hardware, relieving significant burden for DIFT computation from the host.

However, there still remains a great challenge to overcome for the success

42

of these approaches. The challenge originates from the limited ability of an

external device to monitor every internal state change dynamically made by

the code running on the host. For precise DIFT, the external monitor should

be able to receive from the host virtually all essential runtime information

including branch targets, memory addresses and register moves, which will

incur a tremendous amount of traffic for communication between the two de-

vices. In [21, 20], they report that the communication overhead may account

for up to 30% of the total execution time even after all their optimizations

through hardware communication buffers and special instructions. In [31],

this overhead issue was treated more aggressively by modifying the host

architecture in a way that a customized interface can be embedded into the

processor pipelines. Through this interface, their external device was able to

have a special connection for extracting any runtime information for DIFT

computation directly from the internal pipelines with very little overhead.

In this chapter, we introduce our recent work on building a hardware

DIFT engine. Our approach is similar to those in [21, 20, 31] in that our

engine is also connected externally to the host processor. But looking at the

details, ours is different from them in several aspects. One main difference is

that our approach does not modify internally the host architecture to provide

a DIFT-customized interface or connection for the external engine. In our

system, the engine is connected to the processor via CDI.

Being plugged into CDI, our DIFT engine has full access to the bountiful

information transmitted from CDI. However, as already explained in the

previous chapter, the set of CDI signals cannot be simply fed into the DIFT

engine, and they must be refined and filtered into what are suitable for DIFT

43

computation. Therefore in our design, between the DIFT engine and CDI,

there lies a component, called the CDI filter, which, taking the CDI signals

as input, filters the signals properly before delivering them to the engine.

In Section 4.2, we characterize DIFT computations, and discuss how DIFT

works on our computing system with an external engine for DIFT. Then

in Section 4.3, we describe in detail the hardware structure of our DIFT

engine, and explain how the engine efficiently receives all necessary runtime

information through the CDI filter. Experimental results in Section 4.4 show

that our engine successfully operates at extremely high speed to provide

ample protection against various attacks.

4.2 DIFT Process with an External Hardware Engine

DIFT has been applied to analyze the runtime behaviors of diverse types

of attacks, such as SQL injections, buffer overflows and data leak prevention

(DLP). In this section, as an example, we explain the DIFT process to

guarantee DLP and how it works in our computing framework for DIFT

where a DIFT hardware engine is connected to the host processor.

Generally, the first step of DIFT for DLP is tag initialization where

Attacker Code for Data Leak DIFT for DLP

1. file_ptr = file_open("Password");
2. data = read (file_ptr);
3. encrypted_data = encryption (data);
4. data_leak (encrypted_data);

1. tag [file_ptr] = "sensitive"
2. tag [data] = tag [file_ptr];
3. tag [encrypted_data] = tag [data];
4. if (tag [encrypted_data] == "sensitive")
 Exception!!

(a) (b)

Figure 7: Example for DLP using DIFT

44

the input data from confidential sources are tagged as sensitive. After tag

initialization, follows the tag propagation step in which any new data derived

from the tagged data is also tagged. Tag propagation continues through code

execution. When there is any attempt to extract some data toward outer world,

such as sending data over the network or saving it to a storage device, the

data is checked whether it is tagged or not. If any tagged data is detected at

the tag check step, a security exception will be raised. Figure 7 presents a

code example to illustrate the DIFT process that ensures DLP. Lines 1 and

4 correspond respectively to the tag initialization and tag check stages, and

lines 2 and 3 to the tag propagation stage. In our system, the host OS kernel

takes responsibility of the first two stages, and our engine of the last one

partially because tag propagation is the pivotal and most time-consuming task

in DIFT. To denote the tagging in its tag propagation, our engine associates a

tag bit with each data location such as registers and memory. When data is

tagged, it taints the tag bit by setting the bit on.

We now explain how the attack in the example can be detected by

DIFT whether or not the data is encrypted. First, for tag initialization, certain

files are to be labeled as sensitive sources. In Figure 7, the file Password is

assumed to be sensitive. In the left column, we see that as the first stage of

attack, the adversary code obtains the file pointer after opening the sensitive

file, and then reads sensitive data from the file. To detect this trial of attack,

the kernel compares a file name to the list of sensitive files when the file gets

open. To enable this, we have modified system calls for file accesses, such as

open, so that the kernel can be aware of every access of an application to any

file in the system. Since this step requires interaction between the host and the

45

Original Code Tag Propagation

1
2
3
4
5

ldr r9, [r0, #0x40]
add r3, r9, r3
orr r9, r9, #0xc0
sub r2, r9, #0xf
str r2, [r1]

tag[r9] = tag[r0] or tag[deref[r0]]
tag[r3] = tag[r9] or tag[r3]
tag[r9] = tag[r9]
tag[r2] = tag[r9]
tag[deref[r1]] = tag[r2]

(a) (b)

Figure 8: Example of tag propagation rules

DIFT engine, we have implemented a tag initialization function as a device

driver that basically reports to the engine the location (i.e., register number

or memory address) of the data that need to be tainted. Then the engine, in

return, taints the associated tags for the location in the report delivered from

the kernel. In Figure 7, the file is sensitive, and so the system call initiates a

procedure in which the engine taints the tag of the file pointer by setting the

tag bit on.

For tag propagation, any data read from the file is tainted to denote being

sensitive because its file pointer tag is on. Even when the data is encrypted,

it would be tainted because the outcome of an encrypt function should be

tainted if the input is tainted. A tag is propagated in a machine instruction

from a source operand to the destination operand based on a set of tag

propagation rules which are specified at the granularity of basic operations

such as arithmetic and logical operations. Figure 8 shows a segment of the

host code and its associated propagation rules with operands. In the figure,

the propagation rule at line 2 in (b) depicts that the or operation needs to

be performed on the tags of r9 and r3 before the result is propagated to the

46

tag of r3. In short, two propagation rules, or and =, are applied when the

original code at line 2 is executed. From this example, we learn that for the

generation of a tag propagation rule, the DIFT engine must decode the given

instruction and identify its opcode and operands.

The tag propagation task on our engine is basically determining whether

each tag should be on or off as the host code executes. At the beginning of

the execution, the engine allocates one tag bit per CPU register and memory

word. Every time the host executes an instruction, the engine also carries out

the corresponding propagation rule like those shown in Figure 8. Since this

rule is generated from each instruction at runtime, the engine first fetches

the same instruction from the main memory that the host CPU just did, and

tries to resolve the operand values in order to locate every tag operand for its

tag operations. However, not all values can be resolved only by decoding the

instruction. For instance in Figure 8, the load instruction at line 1 uses two

operands: register and memory. For correct tag operations, the engine must

have the exact register number and memory address. While the former is

trivially found (i.e., r9) right from the instruction, the latter remains unknown

since the value of r0 is hidden inside the host CPU. In our system, therefore,

such hidden information is forced to flow from the host into the DIFT engine

in a stream of the data values which we call runtime traces.

At the last stage of attack, the data will be leaked through network.

The operations in the right column display a sequence of DIFT actions each

corresponding to a statement in the attacker code. At line 4, the data is about

to be transferred outside through an output channel. For DLP, the kernel must

check the tag of the data given to the channel. For this tag checking step, we

47

installed a function into the system calls involved in data output channels,

such as network packet generation. When data is to be carried outside in a

network packet through an output channel, this kernel function checks the

data tag with the assistance of our DIFT engine. As the first step of this

check, the function makes an inquiry to the engine with the location of the

data being transferred out. Upon receiving the inquiry, the engine checks the

tag value, and notifies the host of the tag checking result. Once the kernel

receives the result, it finally checks whether the data is leaked as part of

legitimate operations (e.g., bank transactions) or not. If the tainted data is

leaked as a result of unauthorized operations, the kernel raises an alarm. Note

that deciding the legitimacy of certain operations is in fact beyond the scope

of this work as it is irrelevant to the design of our DIFT engine.

4.3 Building a DIFT Engine for CDI

In this section, we describe how our DIFT engine is implemented to

fully support the three stages of the DIFT process defined in Section 4.2.

4.3.1 Components of the DIFT Engine

The overall SoC design for our DIFT solution is presented in Figure 9

which shows the interconnections between the host CPU core and the DIFT

engine. Within our SoC platform, the engine is connected via CDI and a

generic shared interconnect to the host CPU along with other hardware

modules. It has both the master and slave interfaces so that it cannot only

respond to the interconnect transactions from other modules, but also initiate

48

C
D

I

I-Cache D-Cache

FIFO

Main Controller Instruction/
Tag Cache

InterruptMaster IFMaster IF

Tag Initialization/Check

Instruction and Tag Space Access

Memory
Controller Main Memory

(DDR)

Tag Space

Interconnect

Overall SoC Platform

Tag Register File

Register File

DIFT Engine

Host CPU Core

Tag Propagation Unit

Peripherals

Master IFSlave IF

 OS Kernel DIFT Device
Drivers

CDI Signals C
D

I
Filter

 Application Layer

Figure 9: Overall SoC platform

transactions to access data in the modules. In addition, it can send an interrupt

to the host whenever necessary, which would help to reduce the polling

overhead incurred during communication between the host CPU and the

DIFT engine.

The primary purpose of CDI is to efficiently support the communication

for runtime traces flowing from the host to the DIFT engine. A simple way

for this without CDI is to use a generic shared interconnect used as the

system bus. Of course however, it would consume more bus cycles that

normal data transactions could otherwise use. It should also spend extra CPU

cycles in executing instructions for the delivery. In this work, to reduce these

overheads, we have devised CDI to become a special channel for runtime

traces such that a trace can be transmitted from the host into our engine

consuming neither CPU nor bus cycles.

49

As explained earlier, CDI is a CPU side interface built in various modern

processors, which helps users verify the functionality and/or analyze the

performance of their applications. It is usually connected to the OCD unit

that allows the users to watch the control paths that their target processor

has taken during code execution, and to examine the values in registers

and memory locations. Among the types of signals listed in Table 1 in

Chapter 2, the DIFT engine does not need all these signals as the runtime

traces. Thus, we implemented the CDI filter to drop useless signals before

they reach the engine. In our current implementation, the traces emitting

from the filter include the current process ID (PID), the address of memory

data accessed by a load/store and the program counter (PC) value for the

current instruction address. Another important role of the CDI filter is to infer

the existence of a branch instruction in the current host execution path. In

our implementation, we use a simple heuristic where an abrupt change of the

PC values in runtime traces is a sign of the existence. This heuristic is based

on a common observation that PC is normally incremented by the instruction

word length without (un)conditional branches. As soon as the filter discovers

such an abrupt change, it constructs a pair of addresses, the two PC values

just before and after the change, each of which stands respectively for the

branch address and the target address. These addresses are then delivered to

the engine which uses them to grasp the host execution path from outside

CPU.

The main controller in Figure 8 governs the communication between the

host and the engine as well as all transactions related to DIFT computation.

It is configured by the host to control the DIFT engine. By setting the values

50

of the controller registers, the host can direct the operations of the engine,

such as initialization and assignment of the functions for the tag propagation

unit (TPU). As the central component of our engine, TPU processes all the

tags that are associated with data storage in the host. Each entry in the tag

register file (TRF) represents the tag for an individual register in the host

CPU. Borrowing the idea from [40], the engine reserves a special region,

called the tag space, in memory to stores a long array of bits each of which

represents one word of host data in memory. To reduce the memory latency

for accessing the tag space, TPU has a small cache, called the tag cache [31],

for frequently accessed memory tags.

4.3.2 Tag Propagation Unit

Master Interface

Branch Target Address
Load/Store Address

Interrupt

Slave Interface

Main Controller

DIFT Engine

FIFO

Instruction
Cache Tag Cache

Register File

Security Decode Block

TPU (Tag Propagation Unit)

A
dd

re
ss

L
oo

ku
p

T
ab

le

Tag

ALU

Tag Reg File

Instruction
Fetcher

Tag WB

Main Memory

CDI

Host CPU

Bus Interface

C
D

I
Filter Tag

Fetcher
Tag

Rule

Tag

Figure 10: Microarchitecture of the proposed DIFT engine

Figure 10 represents the internal block diagram of our DIFT engine.

51

For unerring tag propagation, it is crucial that TPU correctly fetches host

instructions from the main memory, following exactly the same execution

path taken by the host CPU. Every fetched instruction enters the security

decode block (SDB), which derives a tag propagation rule from the opcode

and operands of the instruction, as shown in Section 4.2. If the operand

is a register, TPU reads from TRF the tag register value corresponding to

the operand. If the operand is the memory address for a load or store with

register-indirect addressing (see Figure 8), TPU acquires the exact address

from runtime traces by collecting each trace from the FIFO that temporarily

holds all the traces out of the CDI filter. Then, it loads from the tag cache

the tag bit representing the memory address. If a tag cache miss is taken

place, the tag fetcher accesses the tag space allocated in memory to fill the

requested line. Once all the tags are ready, TPU performs the tag propagation

for the fetched instruction, and writes the result back to the tag bit for the

destination operand in the instruction.

The idea of making TPU follow execution trails of the host brings about

a couple of design challenges. One of them is that to follow the trails, TPU

relies on the PC values carried in runtime traces, but the values are virtual

addresses while TPU uses physical addresses to access the host memory.

To resolve the discrepancy in these address spaces, we have the address

lookup table (ALT) in TPU. An entry of ALT consists of the PID for a

process running on the host and the virtual-to-physical address mapping

information for the corresponding process. The mapping is determined by

the host OS kernel when a new page is allocated for the code section of a

process. Therefore, we have slightly modified several system calls related to

52

page allocation in a way that whenever a page is allocated for a process, the

mapping information along with its associated PID can be forwarded to TPU

for ALT update. Fortunately for our design, a process usually holds only a

few entries in ALT. This is because the code section ordinarily occupies a

smaller number of pages than the data section. When a process is terminated,

its entries are removed from ALT. For this procedure, we have also altered

relevant system calls like exit().

Another challenge here is that if TPU should always fetch instructions

from memory, it could not catch up with the CPU speed certainly because

memory is slow. To tackle this, we have the instruction cache (I-cache) in

the DIFT engine. When TPU fetches an instruction, it first tries to load it

from I-cache. If a miss occurs, TPU commands the instruction fetcher to

read the entire cache line containing the instruction from the main memory.

As soon as a branch is detected, TPU orders the fetcher to stop and wait

until the branch result arrives from the host through runtime traces which

continuously carry the PC values. If the branch is taken, the fetcher will load

instructions from the address pointed by the new PC.

4.4 Experiment

To evaluate our approach, we have built a full-system FPGA prototype,

where the host processor is the SPARC V8 processor, a 32-bit synthesizable

core [62] which uses a single-issue, in-order, 7-stage pipeline. It has separate

4K-byte 2-way set associative instruction and data caches. The architecture

of our DIFT engine has been implemented as described in Section 4.3.

53

Category Component LUTs BRAMs
SPARC V8 Core (Host Processor) 4876 18
Bus components 439 0
Memory Controller 405 0
Peripherals (TIMER, UART, and etc.) 963 2
Total Baseline System 6683 20
Address Lookup Table 670 0
AHB Master IF 154 0
CDI Filter 27 0
FIFO 129 0
Instruction Cache 293 10
Instruction/Tag Fetcher 97 0
Main Controller 176 0
Security Decode Block (SDB) 35 0
Tag ALU/Tag Register File 109 0
Tag Cache 180 2
Total DIFT Engine 1870 12
% DIFT Engine over Baseline System 27.98% 60.00%

Baseline
System

DIFT
Engine

table 7: Synthesis result

Even though our host core provides their own CDI specification [62], the

information that comes out of CDI is quite restricted compared to that of

commercial products, such as ARM. Thus, we slightly augmented our core

to support the standard CDI signals that resemble those for the ETM of

ARM [55]. We implemented the tag cache which is a 512-byte, 2-way set-

associative cache with 4-byte cache lines, and the DIFT instruction cache

which is a 4K-byte, 2-way set-associative cache with 32-byte cache lines. The

bus compliant with AMBA2 AHB protocol [63] is used to interconnect all

the modules in our prototype system. Linux 2.6.21.1 is used as our OS kernel

and, as mentioned in the previous sections, it has been slightly modified to

provide supports for our DIFT engine.

54

Based on the parameters for the prototype as described above, we

synthesized our overall SoC Design onto the prototyping board with a Xilinx

XC5VLX330 FPGA and 64MB external SDRAM. Table 7 provides the

design statistics of our hardware prototype. We quantified the resources

necessary for our DIFT engine in terms of lookup tables for logic (LUTs)

and block RAMs. The design statistics shows that, compared to the baseline

SPARC core, the DIFT engine incurs the resource overhead of 60.0% and

27.98% for BRAMs and LUTs, respectively. To complement the result, we

also measured the gate count of the DIFT engine using Synopsys Design

Compiler [64]. Synthesized with a commercial 45nm process library, our

engine increases 11.98% of overall area over the baseline system. Although

it may seem to be a large proportion, the actual gate-count of the engine is

212,051. Considering that recent computing platforms deploy more complex

processors like ARM Cortex series compared to the one [62] we used in

our experiment, we claim that the area overhead due to our security engine

is acceptable in a more realistic hardware. (The gate-count of Cortex-A9

processor with 45 nm process is about 26 M [65].)

To estimate the power consumption of the monitoring engine, we simu-

lated the engine using its synthesized netlists on Modelsim [66]. As a result

of the netlist simulation, the switching activity interchange format (SAIF) file

is generated. Using the file as an input vector, we run the power estimation

tools in Design Compiler with the 45nm process library. The power consump-

tion of the DIFT engine is estimated as 205.4 mW at 1GHz operating clock

frequency.

55

4.4.1 Security Evaluation

To test the security capability of our DIFT engine, we have synthesized

the malware that encrypts a sensitive file named as ”secret.txt” and passes

it through the network. Our malware, which is similar to the Dorifel [67]

malware in the wild, has the ability of evading an intrusion detection system

or signature-based DLP solution by using the AES encryption algorithm.

However, as planned, any attempt to access the file from the malware will

be detected by our modified open system call in the Linux kernel. When

being detected, the kernel invoke the tag initialization function to taint the

tag of the file pointer and to configure TPU to be ready for tag propagation.

The malware naively proceeds and encrypts the data without knowing the

existence of TPU, while our DIFT engine keeps track of the information

flow by propagating tags. When the malware tries to leak the derived data,

it invokes the send system call to transmit a message through the network.

Because the system call is also modified to call the tag checking function,

the kernel receives tags of the data from TPU as explained in Section 3, and

decides whether to allow transfer the data outside or not.

4.4.2 Performance Evaluation

In order to measure the performance of our DIFT solution, we chose

eight applications from the mibench benchmark suite [68]. The performance

of our solution is compared with those of three systems that have different

configurations. The first one, called Native, stands for a system that executes

the original code with DIFT disabled. The Software-only solution employs a

56

Native Software-only Software-DIFT CDI-DIFT

dijkstra 1.000 17.785 1.909 1.028

bitcnt 1.000 9.298 1.631 1.011

rinjndael 1.000 47.193 1.799 1.018

sha 1.000 22.556 1.526 1.012

blowfish 1.000 47.147 1.873 1.015

string-search 1.000 17.102 2.247 1.012

patricia 1.000 16.269 1.740 1.016

qsort 1.000 10.503 1.905 1.015

average 1.000 23.482 1.829 1.016

table 8: Comparison table of execution time normalized to Native

software-instrumentation technique to augment the host code with instruc-

tions that perform DIFT computation on the host. CDI-DIFT refers to our

DIFT solution that has an external DIFT engine connected to the host side

CDI. In addition to these three systems, we added another configuration,

named as Software-DIFT, that makes use of an external DIFT engine for time

consuming tag propagation. The only difference compared to our solution

is that the external DIFT engine does not have a connection via CDI to the

host. Therefore, for the engine, the host must execute additional instructions

to explicitly transmit runtime traces through the system bus. For this, we

instrumented the host code with a set of instructions each of which is inserted

after every branch and load/store instruction to send the updated traces to the

DIFT engine. We used our in-house tool for code instrumentation.

In Table 11, we present the performance comparison of the four con-

figurations. In the table, the host execution time of each configuration is

normalized to that of Native. The results show that th Software-only solution

57

suffers from an excessive performance overhead in that the total runtime is

on average 23 times slower than that of Native. The overhead of Software-

DIFT is less devastating than the Software-only version: it shows drastically

reduced overhead of 82.9% as being compared to that of Native. However, it

yet runs approximately 1.8 times slower than Native. The main cause of such

tremendous overhead in both the configurations is the instructions added to

the host code for delivering traces. On the other hand, CDI-DIFT substan-

tially cuts the overhead down to 1.6% over Native. This amazing achievement

is mainly due to the fact that, with the supplementary information coming out

of CDI, no code instrumentation on the host is needed for our solution. The

small amount of performance loss in CDI-DIFT is ascribed to the resource

competition between the host processor and our DIFT engine because both

are connected to the same interconnect and share the main memory.

dijkstra bitcnt rinjndae
l sha blowfish string-

search patricia qsort average

Native 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Software-only 17.785 9.298 47.193 22.556 47.147 17.102 16.269 10.503 23.482
Software-DIFT 1.909 1.631 1.799 1.526 1.873 2.247 1.740 1.905 1.829
CDI-DIFT 1.028 1.011 1.018 1.012 1.015 1.012 1.016 1.015 1.016

0.000
0.500
1.000
1.500
2.000
2.500
3.000

Figure 11: Graph of execution time normalized to Native

58

4.5 Conclusion

This work presented a dedicated engine for DIFT. Our engine has been

implemented and connected to the host processor interface via a standard

bus interconnect so that no modifications are made to the processor internal.

Nonetheless, being located outside the host system, the engine has limited

visibility into the host internal states, which becomes a major stumbling block

for successful DIFT computations on the engine. To overcome this limitation,

we provide the engine with a separate communication channel through the

existing debugging interface, called CDI, of the host. By receiving only

the essential information filtered for DIFT out of the original CDI signals,

the engine was able to perform its tag propagation task efficiently. Our

experiments on FPGA prototype revealed that the engine successfully detects

synthetic data leakage attacks with encryption, overcoming the limit of

conventional DLP solutions. More importantly, our DIFT engine attains

overwhelmingly low overhead, that is less than 2% for a group of mibench

applications. The experiments also revealed that the area overhead of the

hardware for our DIFT engine is acceptably small even when being compared

to the normal sizes of today’s mobile processors.

59

Chapter 5

Monitoring ROP/JOP Attacks using
Control-Flow Information

5.1 Introduction

Code reuse attack (CRA) is a recently introduced technique that collects

from the existing code blocks a set of small code sequences called gadgets,

and chains them to perform malicious actions. Doing so empowers an adver-

sary to perform Turing-complete computation without any attacker injected

code [69], thus successfully defeating the well-known and widely adopted

technique, generally called the W⊕X (Write XOR eXecute) protection (or

interchangably called the DEP) [28].

As the CRA threat is continuously escalating, many solutions have been

proposed [70, 23, 27, 28, 29]. These solutions have come in various forms of

either software or hardware. The clear advantage of software solutions is that

they can be easily adapted to the present machine platform. Their drawback,

however, is that they may impose tremendous computational loads upon

the host machine mainly because the original program must be augmented

with extra code that will be executed periodically to check abnormal control

60

transfers on the host during runtime [70, 23]. On the other hand, hardware

solutions [27, 28, 29, 30, 1] tend to exhibit high performance by accelerating

the CRA detection process with the assistance of customized hardware logics

for this task. In specific, authors in [27, 28, 29] proposed solutions where the

hardware logics are tightly coupled with the host CPU for close monitoring

of every control transfer during code execution.

Despite their dramatic performance enhancement, the main drawback

of these approaches is that they require the redesign of the existing processor

architecture, which would stymie the direct deployment of these solutions

into commercial smart mobile devices. The reason is that such modification

to the core internal is contradictory to the common design practice for a

smart mobile device in industry today. As the central computing platform

for applications running on the device, an application processor (AP) in

the form of SoC lies in each device. To meet ever-increasing demands for

low design cost, high performance and fast time-to-market, the general

design rule of SoC is now to integrate commodity processors and supporting

IPs (intellectual properties) for specific functions together. Thus, if the AP

vendors adopt some of these hardware solutions for their products, they

will be compelled to restructure the CPU core architectures, contrary to

the general convention, thus resulting in tremendous cost for design and

verification.

To facilitate the acceptance of hardware solutions for the CRA detection

in today’s smart mobile devices, some latest approaches [30, 1] endeavor to

comply with the design rule of SoC. Their security hardware IPs are practical

solutions for CRAs in a sense that they do not require any internal modifi-

61

cations to current host architectures but simply external connections with

the host processor to build an SoC. The biggest challenge of the approaches

however is that, being located outside the host processor, their hardware

IPs are usually difficult to acquire the correct control flow information of

the applications running inside the host, which is essential to monitor the

existence of CRAs. In order to tackle this challenge, they exploit the built-in

debug features to reveal the runtime information of the host to the outside of

the core. Especially, the work by Lee et al. [1] implements a CRA monitoring

hardware using the debug features supported in commercial ARM processors,

which are the de-facto standard CPUs for mobile SoCs today. To provide

the efficient and convenient debug/trace environment to software developers,

virtually all ARM processors including Cortex-A8, A9 and A15 embed the

ARM CoreSight debug architecture [32]. The CoreSight architecture pro-

vides features for continuous collection of the processor execution traces

using the hardware trace unit. Utilizing this unit, the hardware IPs proposed

in the work can obtain the real-time traces of branch outcomes produced

during code execution.

Although these approaches using the tracing hardware could achieve

high performance in CRA detection, they are facing another challenging

problem. In principle, in the debug environment using the hardware inter-

face like CoreSight, it is assumed that the debugger has the same binary

code running on the host. Thus, to reduce the quantity of traces delivered

to the debugger, the interface generally does not provide the information

which could be inferred or simply extracted from the binary code. However,

unfortunately, these omitted pieces of information such as branch types or

62

source addresses for branch instructions are indispensable for accurate CRA

monitoring. To supplement the lacking information, in previous work, they

store in the main memory region the auxiliary information, called the meta-

data, that is necessary for CRA detection, and make the hardware IPs to

read the data at runtime when the detection scheme needs to reference the

data. In spite of the negligible performance overhead, they severely suffer

from the substantial storage overhead due to the additional space for their

meta-data. According to their experiments, the size of the required storage

for meta-data can even be twice bigger than that of the original application.

Another limitation of their hardware implementations is that they are only

capable of detecting return-oriented programming (ROP) attacks, which

corrupt return addresses stored in a stack to chain gadgets. Although ROP

attacks are representative examples of CRAs, there is another breed of CRAs,

called jump-oriented programming (JOP) attacks, whose objective is to alter

the target addresses of indirect calls or jumps. To successfully defend the

system against CRAs, therefore, the CRA monitoring hardware should be

implemented with mechanisms that can detect not only ROP but also JOP

attacks.

In this chapter, we present a hardware-based CRA solution that can

simultaneously monitor both ROP and JOP attacks on the system. To under-

line the applicability of our solution to existing smart devices, this unified

ROP/JOP monitor is implemented as IPs and integrated into an ARM-based

SoC. As in previous work [1], the monitor is connected with the ARM CPU

via the CoreSight interface and system bus to keep track of the host execution

traces from outside in a timely fashion. In addition, for efficient monitoring,

63

we have also made an effort to avoid substantial storage overhead due to

meta-data in the previous work. For this, we analyze the program binary with

the help of compiler analysis techniques and instrument the binary in a way

that missing essential information for CRA monitoring can be efficiently

delivered on the fly from the host CPU via the debug interface, thereby

eliminating the need to store meta-data a priori for our monitor. However, a

problem with this approach is that the two independent interfaces (i.e., the

debug interface and the system bus) through which our external monitoring

IPs receive host’s runtime information are not perfectly synchronized; that

is, when at some point in the code the CPU executes an instruction, proper

pieces of the information for that execution will be generated and eventually

transferred to our monitor through each interface, but not necessarily at the

same time. Obviously, our monitor must correctly puzzle together these in-

formation pieces asynchronously arriving from two different sources to grasp

the exact execution behaviors on the host for CRA detection. To resolve

this issue, we added a special hardware logic to synchronize the incoming

information from the two sources.

The rest of the chapter is organized as follows. Section 5.2.2 first de-

scribes some background information about the ARM architecture and how

ROP/JOP attacks can be launched on ARM, and explains the threat model

with our assumptions. After Section 5.3 presents the overall system architec-

ture for the ROP/JOP detection, Section 5.4 explains in detail how ROP/JOP

attacks are efficiently detected with help of the binary instrumentation in

our approach. Also in this section, the detailed hardware architecture of our

ROP/JOP monitoring modules will be explained. Then, Section 5.5 discusses

64

the experimental setup and results. For the setup, we have used a ARM-based

Zynq FPGA board [71] and prototyped our hardware modules to build a full

SoC platform on the board. The results show that our prototype system offers

a feasible security solution for protecting ARM-based SoCs against CRAs

with high speed and low storage overhead. Finally in Section 5.6, we give

some concluding remarks.

5.2 Background and Assumptions

To better understand our approach prototyped on the ARM-based plat-

form, we will firstly provide a brief explanation on relevant aspects of the

ARM processor architecture and introduce CRA samples targeting the ARM.

After that, we will discuss the attack model we assume.

5.2.1 Background

5.2.1.1 ARM Processor Architecture

In the 32-bit ARM processor, 16 general-purpose registers (r0-r15)

are provided. One noticeable feature of ARM architectures is that all ARM

registers can be accessed directly by general instructions. Since the program

counter PC is also aliased to a general-purpose register(r15), its value can

be changed by various types of instructions including moves, arithmetics or

loads/stores if it is used as a destination register. Therefore, the control flow

of program can be modified by not only instructions of branch/jump type but

also other types of instructions.

The ARM architecture provides two types of instruction sets, 32-bit

65

ARM and 16-bit/32-bit THUMB to support the systems with limited mem-

ory space. It is noticeable that many Linux libraries such as libc or

libwebcore have accepted the use of THUMB instructions [39] to im-

prove the code-density. Since attackers in general gather their gadgets from

the library code which is widely available, most CRA gadgets targeting for

ARM processors tend to contain many THUMB instructions [72]. To indicate

which instruction-set is currently used, ARM has a status bit, called the T-bit,

in current program status register (CPSR).

According to the ARM official document [73], function calls are imple-

mented by bl (branch with link) or blx (branch with link and exchange)

instructions. Both the instructions perform a branch with link operation that

changes PC (or r15) while the return address is saved to the link register LR

(aliased to r14). The blx instruction has another functionality. When bit 0

of the branch target address is set, blx sets the T-bit in CPSR to switch the

instruction mode to THUMB. On the contrary, when the bit 0 is cleared, T-bit

is also cleared to change the operating mode back to ARM. When attackers

find their gadgets in the existing code base, this unique feature of blx can

be exploited. Even when a code binary is written and compiled as 32-bit

ARM by the programmer, the attackers still can forcefully read it as 16-bit

THUMB code by setting the bit 0. Through this distorted code misuse, they

are usually able to discover from the code base a plenty of gadgets consisting

of THUMB instructions which were never meant to exist in the original code.

In the ARM architecture, any instruction that can take PC as its desti-

nation is able to be used as a return. The most common pattern of a return

is to execute a bx (branch exchange) instruction with LR. The "bx lr"

66

instruction replaces PC with the saved return address in LR (r14) while the

T-bit can be also changed according to the address. Another way is to use

the ldm (load multiple) or pop instructions that take PC as the destination

operand. In this case, the return address which was pushed on the stack is

restored to PC. In case of indirect jumps, the bx instruction is executed with

the register operand storing the target address.

5.2.1.2 CRA Examples on ARM Processors

To launch an ROP attack, the adversary usually exploits software vulner-

abilities (e.g., buffer overflow, integer overflow, or use-after-free) to overwrite

a part of a data region in memory (e.g., heap, stack) which contains control

data (e.g., return address, function pointer). Recall that in ARM, by writing a

return address to PC, we can easily manipulate the target of a return to point

to an arbitrary intended location within the existing code. This means that

once vulnerability is found, the attacker may maneuver at her disposal the

control flow transfers during code execution. These pointed snippets of code

become the gadgets of a ROP attack which are linked together to construct a

malicious program. If a sufficiently large code base is given for the attacker,

the ROP attack model can be Turing-complete [74]. Capitalizing on this pow-

erful expressiveness, ROP has been tried in many machine platforms such as

SPARC [75], Atmel AVR [76], PowerPC [77] and ARM processors [78].

Even though the ROP attack model is capable of achieving Turing-

complete computation, it requires tremendous efforts for adversaries to con-

struct a complex program for an elaborated attack since they usually need to

crawl painstakingly over a large code base in search of all necessary gadgets.

67

For this reason, the role of ROP is mainly confined to opening the door for

the attackers to execute the injected code for real attack. To achieve this goal,

they endeavor to build a ROP attack that invokes a system call which either

opens a new shell or changes the attributes of memory pages to execute their

injected code.

Figure 12 shows one such example of ROP attack implemented for the

ARM processor. The purpose of this example code is to invoke a system call

for a new shell with the command "/bin/sh" in Linux OS. To devise the

ROP attack, we have gathered useful gadgets from libc library of ARM

linux kernel 3.8. A part of the gadget chain is shown on the left of the figure.

In ARM, as explained, there is no dedicated return instruction and thus in

this example, pop instructions are used to conduct return operations. We

have placed the return addresses inside the stack in order to chain the gadgets

as shown in the figure. During execution, each gadget performs its primitive

operation such as add, str or mov. Then, the intended return address is

popped from the altered stack, and the control flow is transferred to the next

gadget. At the end, in the last gadget, the svc instruction invokes a system

call with the function arguments fabricated by the attacker. Then it finally

opens a new shell to initiate the attacker’s own code.

Since the ROP attack model was first introduced, a number of defense

measures have been proposed to get rid of its threats by recognizing the

behaviors of ROP code which are distinct from those of normal codes [72].

However, unfortunately, these defenses have soon been neutralized by a new

class of CRAs that are based on JOP techniques [72, 79]. The key difference

of JOP from ROP is that each gadget ends in an indirect jump operation, such

68

add r0, r5, r0;
str r0, [r4, #0x28];
pop {r3, r4, r5, pc};

str r1, [r3];
pop {r4, pc};

mov r1, r3;
add r1, r1, #8;
pop {r4, pc};

pop {r2, r7, pc};

svc #0;
pop {r7, pc};

…

return_address1

return_address2

return_address3

return_address4

…

stackgadget chains

control flow
stack access

Figure 12: A ROP example on ARM processors

as blx and bx in ARM processors. Thus, the original defense mechanisms

that attempt to capture the violations related to the uses of returns become

useless. In ROP, a return instruction can freely access victim’s stack to jump

to the next code snippet in a gadget chain, but in JOP, an indirect jump

has no such capability of accessing the stack. Therefore, the JOP attack

model employs a special type of gadget, called the dispatcher, to create

and manage a virtual stack from which the jump instruction in each gadget

obtains the target address for the next gadget in a chain. For example, a code

snippet adds r6,#4;ldr r5,[r6,#124];blx r5 can be used as a

dispatcher [72]. This gadget increments its virtual stack pointer register r6

69

and then loads the next jump addresses from the stack. After jumping to

the next gadget with the address in r5, the actual primitive operation is

performed, and the control flow is transferred to the dispatcher again. In this

manner, the model can gain its goal even without using return instructions.

5.2.2 Assumptions and Threat Model

We use the same assumptions on CRA taken by previous studies [70, 28].

We first assume that the target mobile device is under the protection of the

W⊕X policy and the OS is trusted. Considering that the modern OSes and

processors usually cooperate to enforce the W⊕X security protection rule [6],

we believe this assumption is reasonable. Under this assumption, to circum-

vent the defense mechanism, the adversaries must gain sufficient privileges

for the first time. We assume that, other than CRAs, there are no other attack

vectors or security holes which can directly escalate adversary’s privilege.

As another assumption, adversaries might have full control over the stack or

heap to exploit common memory vulnerabilities like buffer overflows and

therefore can initiate a code-reuse attack. Also, the OS kernel and hardware

are trusted until the underlying system is compromised through CRAs. We

also assume that adversaries know all implementation details of the target

application, thus being able to locate the exact address of available gadgets.

This means that the adversary can bypass any code randomization techniques

such as ASLR [5]. Lastly, the self-modifying code is not considered in our

assumptions because it conflicts with the W⊕X security protection.

70

5.3 Overall System Architecture

5.3.1 SoC Prototype Overview

Figure 13 depicts our overall SoC design. The monitoring modules for

ROP/JOP detection were designed and implemented as a subsystem, called

the CRA monitor, which is then integrated in a SoC platform with an ARM

CPU. In our platform, the host CPU is an ARM Cortex-A9 processor, which

has been installed in a large number of commercial devices these days. The

host CPU and our monitor are connected via the standard AMBA3 AXI

interconnect. To obtain the results of branch operations performed on the

host, we utilize the built-in hardware modules of the ARM CoreSight debug

architecture, which are the program trace macrocell (PTM) and the trace

port interface unit (TPIU). Being tightly coupled with the host core, the

two modules deliver the branch traces generated from the host to the CRA

monitor.

It is noteworthy that, in terms of hardware design, the goal of our

work is to build a practical and deployable hardware solution for CRAs on

Host Processor

Cortex-A9 Core

PTM TPIU

AXI Interconnect (Master/Slave)

Memory
Controller

PTM
Trace

Analyzer

CRA
Detector

Main
Memory

CRA Monitor

Figure 13: Overall architecture of our SoC design

71

ARM-based smart computing devices. To achieve the goal, we adhere to

the design convention of the commercial SoC platforms, where off-the-shelf

ARM processors and newly designed hardware modules are integrated and

connected only through the existing communication channels, such as the

system interconnect and the debug interface. As shown in the figure, our CRA

monitor is divided into two modules: the PTM Trace Analyzer (PTA) and

the CRA detector. To reduce the amount of transferred data, TPIU basically

provides runtime traces in a highly compressed form. Thus, PTA analyzes

and decompresses the incoming information from TPIU, and delivers to the

CRA detector the refined branch traces which are necessary for the CRA

detection. Upon receiving all the traces from PTA, the detector determines

whether or not the traces exhibit any symptom of CRAs. In Section 5.4, more

details of the hardware modules will be explained.

5.3.2 CRA Detection Process

As stated in Section 5.1, our CRA monitor detects both ROP and JOP at-

tacks. To determine an attack from outside the host CPU, it must be provided

with the necessary runtime information inside the CPU. In our work, to detect

both types of attacks, we have realized in hardware the detection algorithms

based on those proposed in [80] and [27], respectively. For ROP, we copy

the return address of every call instruction in a special stack buffer called the

shadow stack and check the target address of each return instruction with the

value retrieved from the top of the shadow stack. Therefore, the necessary

information to implement the shadow stack into our system are (1) the target

address of return instructions and (2) the source address of call instructions

72

to calculate the address to be returned later. Unlike ROP, JOP usually creates

a code sequence by linking gadgets together with indirect jumps or calls.

Hence, to launch JOP attacks, instead of altering return values stored in the

stack, attackers try to corrupt code pointers such as function pointers, which

will be used as the target addresses of indirect calls or jumps to point to their

gadgets. The JOP detection algorithm is on the ground of a simple invariant

ruling the normal behaviors of branches in a programming language. The

invariant rule says that, in a normal program execution, the target address

of a call instruction should point to the address of a function entry, and that

of each indirect jump should always point to an address within the same

function that the instruction belongs to. To check this legitimacy to detect

JOP attacks, the CRA monitor has to obtain the information about (1) the

target address of call instructions, (2) the target address of indirect jumps

and (3) function boundaries which contain the entry and end addresses of

functions. To summarize, the essential information to simultaneously check

the existences of ROP/JOP attacks from outside the CPU is categorized into

four classifications:

(1) Target address of indirect branches (i.e., indirect calls, indirect jumps

and returns)

(2) Source address of call instructions

(3) Function boundaries

(4) Branch type to classify the branch instructions

Recall that, to reduce the quantity of generated traces, the ARM debug

73

interface generally does not provide the information which can be directly

derived from the binary code. In fact, only the target address of an indirect

branch and the direction (taken/not taken) of a direct branch can be acquired

from the traces coming through the debug interface. Gathering the target

addresses of indirect branches are quite straightforward in our solution as

the ARM debug interface is designed to provide such information. However,

the other classes of information cannot be directly acquired from the debug

interface, and therefore we have devised a special mechanism where we

instrument the original binary to supply the lacking information. For this

purpose, we built an in-house tool called the binary instrumentor that can

statically instrument the target binary (phase 1). It basically analyzes and

generates binary code in a way that all lacking pieces of the information

for CRA detection will be explicitly delivered to the CRA monitor, either

through the ARM debug interface or the system bus. When the program

binary is downloaded by the OS kernel into the local storage such as a disk

or a flash memory, the instrumentor generates the instrumented version of

the binary and stores it into the storage. More detailed explanation will be

given in Section 5.4. After the instrumented code is loaded, the CRA monitor

performs its task of constantly watching the runtime traces gathered from

both TPIU and the system bus and checking if there is any behavior possibly

related to CRAs (phase 2).

74

5.4 IMPLEMENTATION DETAILS

5.4.1 Binary Instrumentation

As briefly discussed in Section 5.3, we propose a binary instrumentation

technique that enables us to derive from the branch traces of the host system

more information including not only the target addresses of indirect branches

but also the branch types and the source addresses of call instructions. As

the first step of the instrumentation, the binary instrumentor scans the entire

code to find all function call instructions, which are executed by either a bl

(branch with link) or a blx (branch with link and exchange) instruction in

the ARM architecture. In order to deliver the information associated with

the call instructions, we introduce a new code section called the trampoline.

Each call instruction in the original code is moved to an associated location in

the trampoline and the original instruction is replaced with an indirect jump

which targets the associated place; specifically, each direct call (bl or blx

with an immediate offset) moved to the trampoline is manipulated by the

instrumentor so that it can target the same address as the original instruction

pointing to. In addition, for each call in the trampoline, there is a unique stub

which contains a direct jump to the next address of the original call. This

stub is the target of the subsequent return instruction executed in the callee

function. In Figure 14, we present an example to explain our instrumentation

technique.

As shown in the Figure, when the address of the trampoline entry is A,

every call instruction is aligned at addresses A+8∗n, while the targets of

return instructions are aligned at A+8∗n+4 (n is an integer and 0 ≤ n <

75

section .text;
main :

.
call foo;
.

foo :
.
indirect_jump;
.
return;

section .text
main :

.
indirect_jump;
.

foo :
store func_info;
.
indirect_jump;
.
return;

section .trampoline:
call foo;
direct_jump;
call bar;
direct_jump;

(b) Instrumented binary(a) Original binary

@A
@A+0x4
@A+0x8
@A+0xC

Binary
Instrumentation

Figure 14: Original vs. instrumented binary (newly added parts are written
in boldface)

total number o f calls) . Using these aligned data, the types of the executed

branch instructions can be classified by simply checking the target address

coming from TPIU. Especially for a call instruction, an indirect jump to

the trampoline can be followed either by a target address or by a direction

(taken/not taken) information. When a target address follows the indirect

jump, the branch type is considered to be an indirect call. Otherwise, it is

decoded as a direct call. Note that all the calls are pointed to by indirect jumps

as a result of the instrumentation. It means that the source address of each

call can now be obtained from TPIU because the target address of the indirect

jump pointing to A+8∗n becomes the source address of the call, allowing

our monitor to calculate the legitimate destinations of return instructions

which are necessary to maintain the shadow stack for ROP detection. Also,

to detect JOP attacks, the function boundary information is indispensable

to check if the target address of an indirect jump falls inside the function

body where the current PC resides. Thus in our instrumentation scheme,

76

each function is transformed in a way that it can start with an annotation

code (store func info; in Figure 14(b)) which writes the entry address

and size of the function to the memory-mapped addresses of our hardware

modules through the system bus. The binary instrumentor can identify the

entry address and size of each function by referring to the symbol tables of

executable formats such as executable and linkable format (ELF).

5.4.2 Hardware Architectures

Figure 15 shows the hardware structure of our CRA monitor including

PTA. In our SoC prototype implementation, the output signals of TPIU are

directly routed to the on-chip ports of our CRA monitor so that we can utilize

the CoreSight modules. As the host CPU generally operates far faster than

other hardware IPs such as our CRA monitor. Therefore, to transfer the PTM

traces from the host to the monitor, we implement an asynchronous buffer,

called the branch trace FIFO, which temporarily stores the traces coming

from TPIU. When the traces are stored in the FIFO, another submodule

in PTA called the trace decoder analyzes the saved traces to obtain the

target addresses of indirect branch instructions and the direction (taken/not

taken) of the direct branches. With this information, the decoder further

extracts the branch types and source addresses of calls as mentioned in

the previous subsection. Finally, for each branch instruction, its type and

associate information (i.e., source addresses for calls and target addresses for

indirect branches) are conveyed to the CRA detector for monitoring CRAs.

Figure 16 shows the unified hardware architecture of our CRA detector

which keeps track of the host execution traces to simultaneously detect both

77

PTM Trace Analyzer
Branch
Trace
FIFO

Trace
Decoder

AXI Interconnect

from TPIU
CRA

Detector

branch type/
source address/
target address

from instrumented binary entry address and size of functions

CRA Monitor

Figure 15: CRA monitor hardware architecture

<MMIO FIFO>

AXI Slave Bus

from
PTA

CRA Detector

Interrupt to the host

POP
EMPTY

ODATA

POP
EMPTY

ODATA

<PTM FIFO>

AXI Slave Interface

CRA
Detector
Controller

FUNC_BOUNDS

REC_CNT

A
X
I M

aster B
u
s

Main
Memory

CRA
Region

<Shadow Stack Manager>

<
Sh

ad
o
w

 C
al

l
St

ac
k>

A
X
I M

aster In
terface

V
IC

TIM
_EN

TR
Y

Trace
Combiner

fr
o
m

sy

st
em

 b
u
s

Figure 16: Hardware architecture of the CRA detector

ROP and JOP attacks. To find the existence of CRAs, our detector relies on

the aforementioned branch information fed by PTA and the entry address

and the size of functions coming through the system bus.

Recalling that the information from different sources (i.e., TPIU and the

system bus) have no ordering restrictions, the CRA detector has to combine

and rearrange the information from the two sources to keep track of the

original program sequence of the application. In order to perform this task, the

detector has two separate First-In-First-Out (FIFO) buffers, called the PTM

78

TYPE(DC)

F.B1 F.B2From the system bus

From PTA

Increasing Time DC : Direct Call, IC : Indirect Call, R : Return, IJ : Indirect Jump
S.A : Return Address, T.A : Target Address, F.B : Function Boundaries

F.B0

Application Starts

S.A

TYPE(IC)

S.A T.A

TYPE(R) TYPE(IJ)

To CDC

T.A T.A

Combined by TC

F.B0 F.B1

TYPE(DC)

S.A

TYPE(R)

T.A

TYPE(IJ)

T.A

F.B2

TYPE(IC)

S.A T.A

Figure 17: Information flow diagram processed by the Trace Combiner

FIFO and the MMIO FIFO, to temporarily store the information received

respectively from PTA and the bus. The output signals of the FIFOs are

given as input to the trace combiner (TC), which is in charge of combining

the information from the two FIFOs and extracting the original program

execution behaviors. We present the example of the information flow from

the two sources and how they are combined by TC in Figure 17.

As exemplified in the figure, when the application begins, the program

flow encounters the initially invoked function (i.e., main()) for the first

time. This special event is notified to TC via the MMIO FIFO so that TC

can start operation (presented in Figure 17 as F.B0). At runtime, when the

program runs into a call instruction, the instrumented code at a function

prologue is executed right after the call instruction, thus delivering the branch

information (branch type and the associated information) and the function

boundary information via the PTA and the system bus, respectively. When

any of these events arrives and is stored in either the MMIO FIFO or the PTM

79

FIFO, TC reads it to take an appropriate action. If the function boundary

information is written to the MMIO FIFO, TC waits for an event to come

from the PTM FIFO. Once the PTM FIFO gets an entry, TC checks the

branch type, and if it is either a direct or an indirect call, TC combines the

pieces of information from the both FIFOs (i.e., the branch type, the function

boundary information and the source address for a direct call as shown in

Figure 17); otherwise, only the information from the PTM FIFO is selected.

The information is then delivered to the CRA detector controller (CDC)

whose mission is to make the final decision about the existence of CRAs.

After the application starts, CDC expects the information of the initially

invoked function fed by TC before anything else. Upon receiving the infor-

mation, CDC calculates the entry and end address (= entry address + size)

of the callee function and stores them into a register called FUNC BOUNDS.

Later when the branch type coming from TC is a call, CDC also obtains

the entry address and size of the callee function from TC. Especially for an

indirect call, if its target address is not matched with the incoming function

entry address, it means that the call jumped to an unknown address, which

is a typical behavior exhibited by a JOP attack. If the call instruction is

a direct one or verified to benign, CDC pushes the concatenated value of

the return address (= source address + 0x4) and FUNC BOUNDS onto the

shadow call stack, whose job is to maintain a shadow copy of the call stack

on the host. The reason why FUNC BOUNDS is saved into the stack is that its

value should be restored when the callee function returns later. At the same

time, CDC overwrites FUNC BOUNDS with the newly calculated entry and

end addresses of the callee function. When a function returns, CDC pops

80

the top entry of the stack and compares the saved return address against

the target address coming from TC. If there is a mismatch, it means that

the return address in the host stack is maliciously manipulated by ROP at-

tacks, and consequently CDC issues an interrupt. Otherwise, CDC overwrites

FUNC BOUNDS again with the saved function boundaries. When an indirect

jump is made in the host, CDC will check whether or not its target address

falls between the entry and end addresses of the currently running function

by referring to FUNC BOUNDS. If the address points to outside the function

boundaries, CDC deems that this is the act of a JOP attack, and spontaneously

notifies the host of this attack by setting the interrupt signal on.

Note that the shadow call stack has a finite number of entries, 16 in this

work. Therefore, it would be overflown if the target application has more than

16 times nested function calls. To cope with this limitation, we implemented

a special stack management module called the shadow stack manager (SSM).

When the shadow call stack fills up with deeply nested calls, SSM copies the

oldest 8 entries to the pre-defined region, called the CRA region, in the main

memory through the AXI Master Interface in SSM. Also, we implemented a

register called VICTIM ENTRY which plays a role as a victim cache storage

to temporarily store the most recently evicted 8 entries. Moreover, there is an

exceptional case that the host program calls the same function recursively.

For handling this case, CDC has a counter register, which we refer to as

REC CNT, to store the number of recursive calls. When the same function is

called in a row, CDC increase the counter value by one without pushing any

value onto the stack. When the function returns and REC CNT has a non-zero

value, CDC decreases the counter value by one instead of reading the top

81

stack value.

5.5 EXPERIMENTAL RESULTS

To evaluate our approach, we implemented a full SoC prototype on the

Xilinx Zynq-7000 XC7Z020 evaluation board, which is equipped with a dual-

core ARM Cortex-A9 processor, AMBA3 AXI interconnect, 1GB DDR3

SDRAM, an FPGA chip and other peripherals. We used Linaro Ubuntu Linux

version 3.8.0 as our host kernel. Also, we enabled the CoreSight modules

(i.e., PTM and TPIU) in the host processor and controlled them with the

device driver which is extended according to our purpose. Our CRA monitor

and the host CPU commonly operate at 60 MHz. Based on the above design

parameters for the prototype, we synthesized the CRA monitor onto the

FPGA chip and measured the required logic count in terms of lookup tables

for logic (LUTs) and memory elements. The synthesis result shows that our

CRA monitor occupies 10.12% (5,387/53,200) of total LUTs and 0.13%

(24/17,400) of total memory elements.

To measure the detection capability of our monitor, we implemented five

CRA instances based on the Shell-storm shellcode [81] as shown in Table 9.

Especially, A2 and A5 contain long-gadgets to bypass the signature-based

CRA solutions proposed in [28, 70], which use the small number of instruc-

tions in a gadget as the distinctive feature of CRAs. libraries (i.e., libwebcore

in Android 4.2.2, libc-2.13 in Xilinx-linux and libc-2.15 in Ubuntu) as our

code base.

With the implemented attacks, we tested the detection capability of our

82

Attack No. Type Goal Advanced Skill Detection
A1 ROP Open a shell - √
A2 ROP Open a shell Long-gadget √
A3 ROP Invoke a mprotect system call - √
A4 JOP Open a shell - √
A5 JOP Open a shell Long-gadget √

table 9: The description of implemented CRAs and detection results of the
attacks

monitor. As expected, all the ROP samples (A1-A3) are detected by our CRA

monitor. Since they violate the general convention of the function invocation,

their malicious behaviors are detected by our CRA monitor even when the

attacks contain long-gadgets which is an advanced skill for circumventing

the state-of-the-art CRA detection schemes. The JOP samples (A4-A5) are

crafted by using blx (indirect call) or bx (indirect jump) instructions of

ARM ISA to link their gadgets. In these attacks, every blx instruction used

to link gadgets does not target an entry of a function. Similarly, all the target

addresses of bx instructions are always beyond the current function bounds.

Consequently, all their illegal behaviors are detected by our CRA monitor.

Based on this result, we assert that our CRA monitor can protect the target

system from any type of CRAs.

To measure the performance overhead of our CRA monitor, we chose

eight applications from the SPEC CPU2006 benchmark suite [57]. We com-

pared the running time for the applications using two configurations. The

first one is Base which acts as the control group where the execution of the

original code runs on the host processor with the CRA monitor disabled, thus

being exposed to CRA attacks. The other is wCRA that refers to the same

83

1.0151
1.0027

1.0175

1.0954

1.0494

1.0123

1.1068

1.0614
1.0451

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

1.12

Figure 18: Benchmark execution time when the CRA monitor is enabled

code execution with the CRA monitor enabled. We show the performance

numbers of wCRA in Figure 18 where the execution time of each application

with wCRA is normalized to that of Base. The empirical results show the

running time overhead of 4.51%/10.68% (average/max) over Base.

Also, we compared the storage overhead due to our instrumentation

with the overhead incurred by the meta-data proposed in [1]. Even though

the meta-data has been introduced to accelerate the overall detection process,

it induces substantial storage overhead proportional to the code size of the

target application. Although our approach also requires the binary code

running on the host CPU to be instrumented with additional instructions,

we argue that the amount of additional code is rather small compared to the

previous approaches. To support this argument, we measured the amount

of memory required for the CRA detection suggested in [1] and ours, as

presented in Table 10. As seen in the figure, our approach needs slightly

more memory than the original, uninstrumented code, but requires far less

84

increased code (b) (b)/(a) meta-data (c) (c)/(a)
bzip2 503,664 88,020 0.1748 797,144 1.5827
mcf 464,775 82,836 0.1782 725,992 1.5620
milc 588,408 114,564 0.1947 1,169,487 1.9875

gobmk 3,973,190 286,032 0.0720 1,856,400 0.4672
hmmer 764,042 156,472 0.2048 1,147,512 1.5019

libquantum 561,254 96,804 0.1725 863,652 1.5388
h264ref 1,000,235 143,916 0.1439 1,474,460 1.4741

astar 579,187 107,604 0.1858 885,456 1.5288
average 0.1658 1.4554

Ours [8]
Benchmark Original size (a)

table 10: Comparison of binary sizes between ours and [1]

memory (on average 16.58%) than that of the technique proposed in [1] (on

average 145.54%).

The above results clearly show the advantage of our approach over the

previous work [1] in terms of memory usage. The removal of the meta-data

also gives us another advantage that our hardware IPs no longer need to read

a large quantity of data from the main memory at runtime. Although the

experiment in [1] reported that their performance overhead is about 3% due

mainly to memory contention between the host and their monitor, which

is slightly better than ours, we have discovered that their approach relying

on massive memory accesses for meta-data inherently entails a serious flaw.

In their work, the latency to the main memory such as DDR has to be

paid for processing each branch trace coming from the debug interface.

Since it requires the reference to the meta-data, the processing capability of

the monitoring hardware is severely limited. This trend gets more obvious

when the user wants to increase the CPU frequency for the higher host

performance or decreases the DDR frequency for the less power consumption.

85

ARM CLK:IP CLK 1:1 2:1 3:1 4:1 5:1
Ours o o o o o
[1] o x x x x

table 11: Frequency gap tolerance of ours and [1]
(IP CLK is for both the monitor and the DDR memory)

In these conditions, branch traces are more likely to be dropped without being

analyzed. To put forward evidence to support the hypothesis, we measured

the operable frequency gap between the host CPU and our CRA monitor.

For this experiment, we implemented the ROP monitor in [1] and checks

how slow their monitor can operate while correctly performing the CRA

detection. Then, we compared the result with that of ours in Table 11. Both

of them are configured to have the same depth of the input buffers (32 in

this experiment) to temporarily store the incoming traces from TPIU. As we

expected, ours tolerates up to the 5:1 frequency gap without overflowing the

buffer. On the other hand, the work in [1] cannot stand even the 2:1 frequency

gap. This result indicates that their solution does not function correctly for

more realistic SoC architecture models where the host CPU is much faster

than external devices like our monitor. In this sense, we believe that our

approach is more acceptable in real-world systems such as APs of modern

smartphones [82] whose frequency gaps between the host CPU and other

auxiliary IPs are typically configured up to 5:1.

5.6 Conclusion

We have discussed how our hardware solution has been integrated into

an ARM-based SoC to defend the system against ROP and JOP attacks at the

86

same time. The solution incurs very low performance overhead for runtime

detection of CRAs by implementing the unified hardware IPs to efficiently

detect both types of attacks. Our solution does not require any modification

in the host ARM processor internal. Therefore, our hardware modules can

be easily integrated with a commodity ARM processor core, observing the

conventional SoC design rules so that our solution can be easily implanted to

commercial mobile SoCs. Moreover, our key contribution is that ours reduces

the storage overhead dramatically compared to the previous work. To achieve

this, we propose an instrumentation technique which enables us to make the

most use of the existing debug interface. The experiments revealed that our

current implementation successfully detects synthetic ROP/JOP attacks, and

that the storage overhead incurred by our solution is acceptably small when

being compared to the previous work.

87

Chapter 6

Conclusion

This thesis presents a new security monitoring solution in which an

external hardware monitor is deployed in the system and connected to the

host processor via a standard debug interface, CDI, so that the monitor can be

fed with bountiful information generated from the host. Our solution inherits

the advantage of recently proposed hardware-based monitoring solutions in

that the computation-intensive tasks are offloaded to the specialized external

hardware engine, thus reducing the burden of the host processor introduced

by the monitoring tasks. In addition, our solution establishes a separate

communication channel between the host and the external monitor via CDI,

which provides, at real-time, the monitor with information relavant to the

control-flow and/or data-flow of the target program running on the host. This

functionality provides a key to design various security monitors that can

attain both high level of security and low performance overhead, without

necessity of changing the host system internals.

To show the validity of our solution, in this thesis, we realized three

security monitoring systems each of which addresses different types of

attacks. The first system concerns the cache resident attack that intends to

88

break the integrity of an OS kernel. Under the vigilance of our proposed

snoop-based monitor and thanks to the data-flow information transferred via

CDI, no cache resident attack can succeed in compromising the kernel. The

second system uses the control-flow information coming from CDI to detect

any suspicious activities that violate a set of rules which code-reuse attacks

(JOP/ROP) may break. With the information, our system can successfully

detect majority JOP and ROP attacks, except for the newly developed call-

oriented programing style attacks, which no known defense mechanism has

succeeded in detecting. The last system uses both control-flow and data-flow

information to monitor the trace of secret data. At runtime, every data derived

from the secret data is tainted and tracked throughout the operation, and if

any tainted data is involed in potentially illegal activities, our monitoring

system raises an alarm.

The experiment results in each section evince that, implemented and

verified on a FPGA prototyping board, the solutions can successfully catch

various attacks deployed on the system. Moreover, the performance estima-

tion with a group of benchmark applications shows that our systems do not

suffer from severe performance loss. The experiment results also reveal that

the area overhead of the hardware is acceptably small when compared to the

normal sizes of today’s mobile processors. We believe that our solution can be

applied to establish more wide range of security monitoring schemes, which

need to observe the processor internal states to detect malicious behaviors of

attacks.

89

Reference

[1] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practi-

cal solution to detect code reuse attacks on arm mobile devices,” in

Proceedings of the Fourth Workshop on Hardware and Architectural

Support for Security and Privacy, p. 3, ACM, 2015.

[2] ISO, “Trusted Platform Module,” 2009.

[3] LINUX, “Address Space Layout Randomization,” 2009.

[4] MS, “Address Space Layout Randomization,” 2007.

[5] PaX Team, “Address Space Layout Randomization,” 2003.

[6] S. Andersen and V. Abella, “Data execution prevention. changes to

functionality in microsoft windows xp service pack 2, part 3: Memory

protection technologies,” 2004.

[7] Y. Bulygin and D. Samyde, “Chipset based approach to detect virtual-

ization malware,” BlackHat Briefings USA, 2008.

[8] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “Ensuring

operating system kernel integrity with osck,” in ACM SIGPLAN Notices,

vol. 46, pp. 279–290, ACM, 2011.

[9] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide

lifetime hypervisor control-flow integrity,” in Security and Privacy (SP),

2010 IEEE Symposium on, pp. 380–395, IEEE, 2010.

[10] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:

toward snoop-based kernel integrity monitor,” in Proceedings of the

2012 ACM conference on Computer and communications security,

pp. 28–37, ACM, 2012.

90

[11] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi, “Cpu transparent

protection of os kernel and hypervisor integrity with programmable

dram,” in Proceedings of the 40th Annual International Symposium on

Computer Architecture, pp. 392–403, ACM, 2013.

[12] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang,

“Ki-mon: a hardware-assisted event-triggered monitoring platform for

mutable kernel object,” in USENIX conference on Security, USENIX

Association, 2013.

[13] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-

a coprocessor-based kernel runtime integrity monitor.,” in USENIX

Security Symposium, pp. 179–194, 2004.

[14] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent kernel

control-flow attacks,” in Proceedings of the 14th ACM conference on

Computer and communications security, pp. 103–115, ACM, 2007.

[15] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-

tegrity,” in Proceedings of the 12th ACM conference on Computer and

communications security, pp. 340–353, ACM, 2005.

[16] W. Cheng et al., “Tainttrace: Efficient flow tracing with dynamic binary

rewriting,” in ISCC ’06, 2006.

[17] F. Qin et al., “Lift: A low-overhead practical information flow tracking

system for detecting security attacks,” in 2006. MICRO-39., 2006.

[18] G. E. Suh et al., “Secure program execution via dynamic information

flow tracking,” ASPLOS XI, ACM, 2004.

[19] M. Dalton et al., “Raksha: a flexible information flow architecture for

software security,” ISCA ’07, ACM, 2007.

[20] S. Chen et al., “Flexible hardware acceleration for instruction-grain

program monitoring,” ISCA ’08, 2008.

91

[21] V. Nagarajan et al., “Dynamic information flow tracking on multicores,”

2008.

[22] J. Newsome et al., “Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software,”

in Proceedings of the 12th Annual Network and Distributed System

Security Symposium, 2005.

[23] P. Chen et al., “DROP: Detecting return-oriented programming mali-

cious code,” in Information Systems Security, pp. 163–177, Springer,

2009.

[24] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and en-

forcement of kernel data structure invariants,” in Computer Security

Applications Conference, 2008. ACSAC 2008. Annual, pp. 77–86, IEEE,

2008.

[25] N. L. Petroni Jr, T. Fraser, A. Walters, and W. A. Arbaugh, “An archi-

tecture for specification-based detection of semantic integrity violations

in kernel dynamic data,” in USENIX Security Symposium, 2006.

[26] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-

tracker: Efficient and programmable support for memory access moni-

toring and debugging,” in High Performance Computer Architecture,

2007. HPCA 2007. IEEE 13th International Symposium on, pp. 273–

284, IEEE, 2007.

[27] M. Kayaalp et al., “Branch regulation: Low-overhead protection from

code reuse attacks,” in Computer Architecture (ISCA), International

Symposium on, pp. 94–105, June 2012.

[28] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-

Ghazaleh, “Scrap: Architecture for signature-based protection from

code reuse attacks,” in High Performance Computer Architecture, 2013

IEEE 19th International Symposium on, pp. 258–269, Feb 2013.

92

[29] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sulli-

van, O. Arias, and Y. Jin, “HAFIX: Hardware-assisted flow integrity

extension,” in Proceedings of the The 52nd Annual Design Automation

Conference on Design Automation Conference, pp. 1–6, June 2015.

[30] Z. Guo, R. Bhakta, and I. G. Harris, “Control-flow checking for intru-

sion detection via a real-time debug interface,” in Smart Computing

Workshops (SMARTCOMP Workshops), 2014 International Conference

on, pp. 87–92, IEEE, 2014.

[31] H. Kannan et al., “Decoupling dynamic information flow tracking with

a dedicated coprocessor,” in DSN ’09., 2009.

[32] ARM co., LTD, “ARM CoreSight Architecture Specification v2.0,”

2013.

[33] Intel, “Intel 64 and IA-32 Architectures Software Developer Manuals.”

[34] Xilinx, MicroBlaze Processor Reference Guide, Apr 2012.

[35] W. Orme, “Debug and trace for multicore socs,” Sep 2008.

[36] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:

capturing system-wide information flow for malware detection and

analysis,” CCS ’07, ACM, 2007.

[37] Y. Zhu, J. Jung, S. Dawn, T. Kohno, and D. Wetherall, “Privacy scope: A

precise information flow tracking system for finding application leaks,”

in Tech. Rep. EECS-2009-145, Department of Computer Science, UC

Berkeley, 2009.

[38] N. Nethercote et al., “Valgrind: a framework for heavyweight dynamic

binary instrumentation,” PLDI ’07, ACM, 2007.

[39] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,

S. Nürnberger, and A.-R. Sadeghi, “Mocfi: A framework to mitigate

control-flow attacks on smartphones.,” in NDSS, 2012.

93

[40] G. Venkataramani et al., “Flexitaint: A programmable accelerator for

dynamic taint propagation,” in HPCA, 2008.

[41] I. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek, “Im-

plementing an application-specific instruction-set processor for system-

level dynamic program analysis engines,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 20, no. 4, p. 53, 2015.

[42] D. Hollingworth and T. Redmond, “Enhancing operating system resis-

tance to information warfare,” in MILCOM 2000. 21st Century Military

Communications Conference Proceedings, vol. 2, pp. 1037–1041, IEEE,

2000.

[43] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure

coprocessor-based intrusion detection,” in Proceedings of the 10th

workshop on ACM SIGOPS European workshop, pp. 239–242, ACM,

2002.

[44] M. Rebaudengo and M. S. Reorda, “Evaluating the fault tolerance

capabilities of embedded systems via bdm,” in VLSI Test Symposium,

1999. Proceedings. 17th IEEE, pp. 452–457, IEEE, 1999.

[45] J. Peng, J. Ma, B. Hong, and C. Yuan, “Validation of fault toler-

ance mechanisms of an onboard system,” in Systems and Control in

Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International

Symposium on, pp. 5–pp, IEEE, 2006.

[46] A. V. Fidalgo, G. R. Alves, and J. M. Ferreira, “Real time fault injection

using a modified debugging infrastructure,” in On-Line Testing Sym-

posium, 2006. IOLTS 2006. 12th IEEE International, pp. 6–pp, IEEE,

2006.

[47] M. Portela-Garcı́a, C. López-Ongil, M. G. Valderas, and L. Entrena,

“Fault injection in modern microprocessors using on-chip debugging in-

frastructures,” Dependable and Secure Computing, IEEE Transactions

on, vol. 8, no. 2, pp. 308–314, 2011.

94

[48] M. Grosso, M. S. Reorda, M. Portela-Garcı́a, M. Garcı́a-Valderas,

C. López-Ongil, and L. Entrena, “An on-line fault detection technique

based on embedded debug features,” in On-Line Testing Symposium

(IOLTS), 2010 IEEE 16th International, pp. 167–172, IEEE, 2010.

[49] M. Gallardo-Campos, M. Portela-Garcia, C. Lopez-Ongil, L. En-

trena, M. Grosso, and M. S. Reorda, “Enhanced observability in

microprocessor-based systems for permanent and transient fault re-

silience,” in Conference on Design of Circuits and Integrated Systems

(DCIS), pp. 240–246, 2010.

[50] M. Portela-Garcı́a, M. Grosso, M. Gallardo-Campos, M. Sonza Reorda,

L. Entrena, M. Garcı́a-Valderas, and C. López-Ongil, “On the use of

embedded debug features for permanent and transient fault resilience

in microprocessors,” Microprocessors and Microsystems, vol. 36, no. 5,

pp. 334–343, 2012.

[51] “The blue pill, doi=http://theinvisiblethings.

blogspot.com/2008/07/0wing-xen-invegas.html,”

[52] “Vmware: Vulnerability statistics,”

[53] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee,

and D. Xu, “Dksm: Subverting virtual machine introspection for fun and

profit,” in Reliable Distributed Systems, 2010 29th IEEE Symposium

on, pp. 82–91, IEEE, 2010.

[54] Aeroflex Gaisle, GRLIB IP Core User’s Manual, January 2012.

[55] ARM, Embedded Trace Macrocell Architecture Specification, 2011.

[56] SPARC International, Inc., The SPARC Architecture Manual, 1992.

[57] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, pp. 1–17, Sept. 2006.

95

[58] J. D. McCalpin, “Memory bandwidth and machine balance in current

high performance computers,” IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.

1995.

[59] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring

using hardware virtualization,” in Proceedings of the 16th ACM confer-

ence on Computer and communications security, pp. 477–487, ACM,

2009.

[60] A. ARM, “Architecture reference manual (armv7-a and armv7-r edi-

tion),” ARM DDI C, vol. 406, 2008.

[61] I. Intel, “http://www.intel.com/content/www/us/en/architecture-and-

technology/64-ia-32-architectures-software-developer-instruction-set-

reference-manual-325383.html,” Intel64, vol. 406, 2014.

[62] “Leon3 processor user’s manual, gaisler research,” 2004.

[63] ARM, AMBA Specification, 1999.

[64] D. C. U. Guide, “Version c-2009.06,” Synopsys.(a)(b)(c), 2009.

[65] S.-W. Olle et al., “Evaluation of the energy efficiency of arm based

processors for cloud infrastructure,” Turku Centre for Computer Science,

2010.

[66] M. Graphics, “Modelsim,” 2007.

[67] K. Lab, “Dorifel Malware Encrypts Files, Steals Financial Data, May

Be Related to Zeus or Citadel,” 2012.

[68] M. Guthaus et al., “Mibench: A free, commercially representative em-

bedded benchmark suite,” in Workload Characterization, 2001. WWC-4.

2001 IEEE International Workshop on, 2001.

[69] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86),” in Proceedings of the 14th

96

ACM conference on Computer and communications security, pp. 552–

561, ACM, 2007.

[70] V. Pappas et al., “Transparent ROP exploit mitigation using indirect

branch tracing,” in Proceedings of the 22Nd USENIX Conference on

Security, pp. 447–462, USENIX Association, August 2013.

[71] Features, ZC702 Board, “ZC702 evaluation board features,” ZC702

Evaluation Board for the Zynq-7000 XC7Z020 Extensible Processing

Platform, 2012.

[72] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,

and M. Winandy, “Return-oriented programming without returns,” in

Proceedings of the 17th ACM conference on Computer and communi-

cations security, pp. 559–572, ACM, 2010.

[73] ARM co., LTD, “Procedure call standard for the arm architecture,”

2012.

[74] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On

the expressiveness of return-into-libc attacks,” in Recent Advances in

Intrusion Detection, pp. 121–141, Springer, 2011.

[75] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good

instructions go bad: Generalizing return-oriented programming to risc,”

in Proceedings of the 15th ACM conference on Computer and commu-

nications security, pp. 27–38, ACM, 2008.

[76] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-

architecture devices,” in Proceedings of the 15th ACM conference on

Computer and communications security, pp. 15–26, ACM, 2008.

[77] F. Lindner, “Developments in cisco ios forensics. confidence 2.0,” 2009.

[78] T. Kornau, “Return oriented programming for the arm architecture,”

Master’s thesis, Ruhr-Universitat Bochum, 2010.

97

[79] T. Bletsch et al., “Jump-oriented programming: A new class of code-

reuse attack,” in Proceedings of the 6th ACM Symposium on Informa-

tion, Computer and Communications Security, pp. 30–40, ACM, March

2011.

[80] H. Özdoganoglu, T. Vijaykumar, C. E. Brodley, B. Kuperman, A. Jalote,

et al., “Smashguard: A hardware solution to prevent security attacks on

the function return address,” Computers, IEEE Transactions on, vol. 55,

no. 10, pp. 1271–1285, 2006.

[81] The shell storm linux shellcode repository, 2014.

[82] Samsung Electronics co., LTD, “Exynos,” 2015.

98

초록

하드웨어기반보안모니터링을
위한호스트시스템의정보추출

이진용

전기컴퓨터공학부

서울대학교대학원

기술이발전함에따라우리의삶에서전자기기들이차지하는비중이점점

증가하고 있다. 이러한 현상은 IoT 환경이 도래함에 따라 더욱 가속화될

것으로예상되며이에따라이러한기기들이다루게될민감한정보의양

도 크게 증가할 것으로 예상되고 있다. 이러한 정보들을 보호하기 위해

다양한관점에서디바이스의보안성을높이려는연구들이진행되어왔지

만 이들 중 극소수의 연구들만이 실제 기기들에 적용이 되었고 대부분의

연구들은 가능성만을 보이는데 그쳐왔다. 이는 제안된 보안 메커니즘이

실제로 우리가 사용하는 기기들에 빠르게 적용되기 위해서는 전체 시스

템에 미치는 성능 저하가 충분히 작아야 할 뿐만 아니라 전체 시스템의

디자인시간및비용의절감을위해감시대상이되는호스트프로세서의

구조를크게변경하지않는방법이어야하기때문이다.최근제안되는하

드웨어 기반의 보안 모니터링 시스템은 높은 보안성을 자랑하는 동시에

모니터링에 특화된 하드웨어의 사용을 통해 전체 시스템의 성능 저하도

최소화할수있다는점에서각광을받고있다.하지만최근발표된연구의

99

결과에따르면모니터링을위한하드웨어가호스트프로세서의내부에밀

접하게결합되어있지않은경우모니터하드웨어가호스트프로세서에서

수행되고있는코드의실행정보및호스트의상태를제대로알수가없기

때문에모니터링할수있는이벤트가크게줄어들어모니터링하드웨어의

효용성이크게떨어질수밖에없게된다.이를피하기위해호스트프로세

서와 모니터링 하드웨어가 메모리 등의 자원을 공유하는 형태로 정보를

주고 받게 되면 빈번한 정보의 교환 때문에 상당한 성능 저하가 발생하

게 된다. 이러한 문제를 해결하기 위해 우리는 이 논문에서 새로운 보안

모니터링 솔루션을 제안한다. 이 솔루션은 이전에 제안된 보안 모니터링

기법들과 마찬가지로 외부 하드웨어 기반의 모니터의 이용을 제안한다.

하지만 이에 추가적으로 이 솔루션은 호스트와 모니터링 하드웨어 간의

정보 교환을 위해 공유 메모리와 같은 시스템 자원을 이용하기보다는 최

신 프로세서에 이미 탑재되어 있는 디버그 인터페이스를 이용하는 것을

제안한다.디버그인터페이스는호스트프로세서의코드수행정보및메

모리접근에대한정보를디버깅목적으로외부로전송할수있는기능을

가지고있다.이디버그인터페이스에연결되게되면외부모니터하드웨

어는 본래 디버깅 용으로 만들어진 다양한 정보를 받아 보안 모니터링에

사용할 수 있는 가능성을 갖게 된다. 본 논문의 3-5장에서는 제안된 모

니터링솔루션의유효성을체크하고디버그인터페이스로부터전달받은

여러 정보들을 이용해 보안 모니터를 구현하게 되는 경우 어떠한 점들이

고려되어야하는지알아보기위해세가지의잘알려진보안문제를풀수

있는외부하드웨어기반모니터링시스템을구축해그결과를보여준다.

이러한보안모니터링의실제구현을통해우리는우리가제안한솔루션,

즉 디버그 인터페이스를 이용해 보안 모니터링 시스템을 구현하는 경우

높은성능및보안성뿐만아니라호스트프로세서의내부를수정하지않

100

는다는장점을갖는다는것을보여줄수있었다.

키워드 : 정보보안,하드웨어기반보안모니터링,디버그인터페이스

학번 : 2011-30250

101

	Chapter 1. Introduction
	Chapter 2. Background and RelatedWork
	2.1 Background
	2.1.1 Core Debug Interface

	2.2 Related Work
	2.2.1 Software-based Monitoring solutions
	2.2.2 Hardware-based Monitoring with Invasive Modification
	2.2.3 Hardware-based Monitoring with Minimal Modification
	2.2.4 Hardware-based Kernel Integrity Monitors
	2.2.5 Utilizing debug interface

	Chapter 3. Monitoring the Integrity of OS Kernels with Data-Flow Information
	3.1 Introduction
	3.2 Motivational Example
	3.3 Assumptions and Threat Models
	3.4 The Baseline System
	3.4.1 The Overall System Design
	3.4.2 Periodic Cache Flush for Cache Resident Attacks

	3.5 Extrax design
	3.5.1 Address Translation Unit
	3.5.2 Early Stage Filter

	3.6 Experimental Results
	3.6.1 Prototype System
	3.6.2 Security Evaluation
	3.6.3 Performance Analysis
	3.6.4 Power Consumption

	3.7 Limitation and Future Work
	3.8 Conclusion

	Chapter 4. Monitoring Dynamic Information Flow using Control-Flow/Data-Flow Information
	4.1 Introduction
	4.2 DIFT Process with an External Hardware Engine
	4.3 Building a DIFT Engine for CDI
	4.3.1 Components of the DIFT Engine
	4.3.2 Tag Propagation Unit

	4.4 Experiment
	4.4.1 Security Evaluation
	4.4.2 Performance Evaluation

	4.5 Conclusion

	Chapter 5. Monitoring ROP/JOP Attacks using Control-Flow Information
	5.1 Introduction
	5.2 Background and Assumptions
	5.2.1 Background
	5.2.2 Assumptions and Threat Model

	5.3 Overall System Architecture
	5.3.1 SoC Prototype Overview
	5.3.2 CRA Detection Process

	5.4 IMPLEMENTATION DETAILS
	5.4.1 Binary Instrumentation
	5.4.2 Hardware Architectures

	5.5 EXPERIMENTAL RESULTS
	5.6 Conclusion

	Chapter 6. Conclusion
	Bibliography
	초 록

<startpage>10
Chapter 1. Introduction 1
Chapter 2. Background and RelatedWork 8
 2.1 Background 8
 2.1.1 Core Debug Interface 8
 2.2 Related Work 9
 2.2.1 Software-based Monitoring solutions 10
 2.2.2 Hardware-based Monitoring with Invasive Modification 10
 2.2.3 Hardware-based Monitoring with Minimal Modification 11
 2.2.4 Hardware-based Kernel Integrity Monitors 12
 2.2.5 Utilizing debug interface 13
Chapter 3. Monitoring the Integrity of OS Kernels with Data-Flow Information 15
 3.1 Introduction 15
 3.2 Motivational Example 19
 3.3 Assumptions and Threat Models 20
 3.4 The Baseline System 21
 3.4.1 The Overall System Design 21
 3.4.2 Periodic Cache Flush for Cache Resident Attacks 23
 3.5 Extrax design 25
 3.5.1 Address Translation Unit 26
 3.5.2 Early Stage Filter 28
 3.6 Experimental Results 30
 3.6.1 Prototype System 30
 3.6.2 Security Evaluation 32
 3.6.3 Performance Analysis 34
 3.6.4 Power Consumption 36
 3.7 Limitation and Future Work 36
 3.8 Conclusion 39
Chapter 4. Monitoring Dynamic Information Flow using Control-Flow/Data-Flow Information 41
 4.1 Introduction 41
 4.2 DIFT Process with an External Hardware Engine 44
 4.3 Building a DIFT Engine for CDI 48
 4.3.1 Components of the DIFT Engine 48
 4.3.2 Tag Propagation Unit 51
 4.4 Experiment 53
 4.4.1 Security Evaluation 56
 4.4.2 Performance Evaluation 56
 4.5 Conclusion 59
Chapter 5. Monitoring ROP/JOP Attacks using Control-Flow Information 60
 5.1 Introduction 60
 5.2 Background and Assumptions 65
 5.2.1 Background 65
 5.2.2 Assumptions and Threat Model 70
 5.3 Overall System Architecture 71
 5.3.1 SoC Prototype Overview 71
 5.3.2 CRA Detection Process 72
 5.4 IMPLEMENTATION DETAILS 75
 5.4.1 Binary Instrumentation 75
 5.4.2 Hardware Architectures 77
 5.5 EXPERIMENTAL RESULTS 82
 5.6 Conclusion 86
Chapter 6. Conclusion 88
Bibliography 90
ÃÊ ·Ï 99
</body>

