38 research outputs found

    ๋“€์–ผ ํ”ฝ์…€ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ์ œ๋กœ์ƒท ๋””ํฌ์ปค์Šค ๋””๋ธ”๋Ÿฌ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ๊ณต์ง€๋Šฅ์ „๊ณต, 2022. 8. ํ•œ๋ณดํ˜•.Defocus deblurring in dual-pixel (DP) images is a challenging problem due to diverse camera optics and scene structures. Most of the existing algorithms rely on supervised learning approaches trained on the Canon DSLR dataset but often suffer from weak generalizability to out-of-distribution images including the ones captured by smartphones. We propose a novel zero-shot defocus deblurring algorithm, which only requires a pair of DP images without any training data and a pre-calibrated ground-truth blur kernel. Specifically, our approach first initializes a sharp latent map using a parametric blur kernel with a symmetry constraint. It then uses a convolutional neural network (CNN) to estimate the defocus map that best describes the observed DP image. Finally, it employs a generative model to learn scene-specific non-uniform blur kernels to compute the final enhanced images. We demonstrate that the proposed unsupervised technique outperforms the counterparts based on supervised learning when training and testing run in different datasets. We also present that our model achieves competitive accuracy when tested on in-distribution data.๋“€์–ผ ํ”ฝ์…€(DP) ์ด๋ฏธ์ง€ ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์Šค๋งˆํŠธํฐ์—์„œ์˜ Defocus Blur ํ˜„์ƒ์€ ๋‹ค์–‘ํ•œ ์นด๋ฉ”๋ผ ๊ด‘ํ•™ ๊ตฌ์กฐ์™€ ๋ฌผ์ฒด์˜ ๊นŠ์ด ๋งˆ๋‹ค ๋‹ค๋ฅธ ํ๋ฆฟํ•จ ์ •๋„๋กœ ์ธํ•ด ์› ์˜์ƒ ๋ณต์›์ด ์‰ฝ์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๋ชจ๋‘ Canon DSLR ๋ฐ์ดํ„ฐ์—์„œ ํ›ˆ๋ จ๋œ ์ง€๋„ ํ•™์Šต ์ ‘๊ทผ ๋ฐฉ์‹์— ์˜์กดํ•˜์—ฌ ์Šค๋งˆํŠธํฐ์œผ๋กœ ์ดฌ์˜๋œ ์‚ฌ์ง„์—์„œ๋Š” ์ž˜ ์ผ๋ฐ˜ํ™”๊ฐ€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ์‚ฌ์ „ ๋ณด์ •๋œ ์‹ค์ œ Blur ์ปค๋„ ์—†์ด๋„, ํ•œ ์Œ์˜ DP ์‚ฌ์ง„๋งŒ์œผ๋กœ๋„ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•œ Zero-shot Defocus Deblurring ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋Œ€์นญ์ ์œผ๋กœ ๋ชจ๋ธ๋ง ๋œ Blur Kernel์„ ์‚ฌ์šฉํ•˜์—ฌ ์ดˆ๊ธฐ ์˜์ƒ์„ ๋ณต์›ํ•˜๋ฉฐ, ์ดํ›„ CNN(Convolutional Neural Network)์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ด€์ฐฐ๋œ DP ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์žฅ ์ž˜ ์„ค๋ช…ํ•˜๋Š” Defocus Map์„ ์ถ”์ •ํ•ฉ๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•˜์—ฌ ์žฅ๋ฉด ๋ณ„ Non-uniformํ•œ Blur Kernel์„ ํ•™์Šตํ•˜์—ฌ ์ตœ์ข… ๋ณต์› ์˜์ƒ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต๊ณผ ์ถ”๋ก ์ด ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ์‹คํ–‰๋  ๋•Œ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋น„์ง€๋„ ๊ธฐ์ˆ  ์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ตœ๊ทผ์— ๋ฐœํ‘œ๋œ ์ง€๋„ ํ•™์Šต์„ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋˜ํ•œ ํ•™์Šต ๋œ ๊ฒƒ๊ณผ ๊ฐ™์€ ๋ถ„ํฌ ๋‚ด ๋ฐ์ดํ„ฐ์—์„œ ์ถ”๋ก ํ•  ๋•Œ๋„ ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๋“ค๊ณผ ์ •๋Ÿ‰์  ๋˜๋Š” ์ •์„ฑ์ ์œผ๋กœ ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.1. Introduction 6 1.1. Background 6 1.2. Overview 9 1.3. Contribution 11 2. Related Works 12 2.1.Defocus Deblurring 12 2.2.Defocus Map 13 2.3.Multiplane Image Representation 14 2.4.DP Blur Kernel 14 3. Proposed Methods 16 3.1. Latent Map Initialization 17 3.2. Defocus Map Estimation 20 3.3. Learning Blur Kernel s 22 3.4. Implementation Details 25 4. Experiments 28 4.1. Dataset 28 4.2. Quantitative Results 29 4.3. Qualitative Results 31 5. Conclusions 37 5.1.Summary 37 5.2. Discussion 38์„

    Synthesis and Properties of Strontium W-type Hexagonal Ferrite

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2014. 2. ์œ ์ƒ์ž„.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณต๊ธฐ ์ค‘ ๊ณ ์˜จ์˜์—ญ์—์„œ๋งŒ ์•ˆ์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ƒ์˜จ์—์„œ ๋‹จ์ผ์ƒ์„ ์–ป๊ธฐ๊ฐ€ ํž˜๋“ค๋‹ค๊ณ  ์•Œ๋ ค์ง„ ์ŠคํŠธ๋ก ํŠฌ W-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ(SrFe18O27SrW)์˜ ๋‹จ์ผ์ƒ์„ ํ•ฉ์„ฑํ•˜๊ณ , ๊ทธ ๋ฌผ์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์‹œํŽธ์€ ๊ณ ์ƒ๋ฐ˜์‘๋ฒ•์œผ๋กœ ์ œ์กฐ ํ•˜์˜€์œผ๋ฉฐ, SrCO3์™€ Fe2O3๋ฅผ 1:9์˜ ๋น„์œจ๋กœ ์„ž์€ ๋ถ„๋ง์„ ๊ณต๊ธฐ ์ค‘ 1150โ„ƒ์—์„œ 8์‹œ๊ฐ„์˜ 1์ฐจ ํ•˜์†Œ๋ฅผ ํ•œ ํ›„, ๊ณต๊ธฐ ์ค‘, N2๊ฐ€์Šค ๋ถ„์œ„๊ธฐ(PO2 = 5 ร— 10-8 atm) ๊ทธ๋ฆฌ๊ณ  1000ppm์˜ ์‚ฐ์†Œ๋†๋„๋ฅผ ๊ฐ–๋Š” O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ(PO2 = 10-3 atm)์ค‘ ๊ณ ์˜จ์˜์—ญ์—์„œ ๊ฐ๊ฐ 2์‹œ๊ฐ„ ๋™์•ˆ ์—ด์ฒ˜๋ฆฌ ํ›„ ๋กœ๋ƒ‰ํ•˜์˜€๋‹ค. ๊ณต๊ธฐ ์ค‘ ์—ด์ฒ˜๋ฆฌ ํ›„ ๋กœ๋ƒ‰์‹œ์—๋Š” ๋ƒ‰๊ฐ ๊ณผ์ • ์ค‘ ์ผ์–ด๋‚˜๋Š” ์ƒ๋ถ„ํ•ด๋กœ ์ธํ•ด ์ƒ์˜จ์—์„œ SrW์˜ ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜๊ฐ€ ์—†์—ˆ๊ณ , ์ŠคํŠธ๋ก ํŠฌ M-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ(SrFe12O19SrM)์™€ Fe2O3๊ฐ€ ํ•จ๊ป˜ ์กด์žฌํ•˜๋Š” ํ˜ผํ•ฉ์ƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ณต๊ธฐ ์ค‘ 1400โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌํ•œ ํ›„ ์ˆ˜๋ƒ‰ํ•œ ๊ฒฝ์šฐ ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ์œผ๋‚˜ ์—ด ์ถฉ๊ฒฉ์œผ๋กœ ์ธํ•ด ์‹œํŽธ์ด ๋ถ€์„œ์ง€๋Š” ํ˜„์ƒ์„ ๋ง‰์„ ์ˆ˜ ์—†์—ˆ๋‹ค. 0.05ppm์˜ ์‚ฐ์†Œ๋†๋„๋ฅผ ๊ฐ–๋Š” N2๊ฐ€์Šค(PO2 = 5 ร— 10-8 atm)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ด์ฒ˜๋ฆฌํ•œ ๊ฒฝ์šฐ 1275, 1300โ„ƒ์˜ ์˜จ๋„์—์„œ SrW์˜ ์ƒ์ด ํ•ฉ์„ฑ๋˜์—ˆ์ง€๋งŒ ์†Œ๋Ÿ‰์˜ Fe3O4๊ฐ€ ์ด์ฐจ์ƒ์œผ๋กœ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. 1325โ„ƒ์ด์ƒ์˜ ์˜จ๋„์—์„œ ์—ด์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ๋Š” Fe3O4์™€ ์•ก์ƒ์—์„œ ์‘๊ณ ๋œ ๋‹ค๋ฅธ ์ƒ๋“ค์ด ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ, 1250โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ๋Š” SrW์˜ ์ƒ์ด ํ•ฉ์„ฑ๋˜์ง€ ์•Š๊ณ  SrM๊ณผ Fe3O4์˜ ์ƒ์ด ํ•ฉ์„ฑ ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. 1000ppm์˜ ์‚ฐ์†Œ๋†๋„๋ฅผ ๊ฐ–๋Š” O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค(PO2 = 10-3 atm)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ด์ฒ˜๋ฆฌํ•œ ๊ฒฐ๊ณผ 1300โ€“1350โ„ƒ์˜ ์˜จ๋„์˜์—ญ์—์„œ SrW๋ฅผ ํ•ฉ์„ฑํ•œ ํ›„ ๋กœ๋ƒ‰ํ•˜์—ฌ ์ƒ๋ถ„ํ•ด ์—†์ด ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 1275โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ๋Š” ์†Œ๋Ÿ‰์˜ SrM๊ณผ Fe2O3์˜ ์ด์ฐจ์ƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๊ณ , 1250โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ๋Š” SrW์˜ ์ƒ์ด ํ•ฉ์„ฑ๋˜์ง€ ์•Š๊ณ  SrM๊ณผ Fe2O3์˜ ์ƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ์—ด์ฒ˜๋ฆฌ์˜จ๋„๋ฅผ 1375 โ„ƒ๊นŒ์ง€ ์ƒ์Šน์‹œ์ผฐ์„ ๋•Œ๋Š” Fe3O4์™€ ์•ก์ƒ์—์„œ ์‘๊ณ ๋œ ๋‹ค๋ฅธ ์ƒ๋“ค์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. SrW์˜ ์ƒ ์•ˆ์ •์˜์—ญ์„ ์ข€ ๋” ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 1275-1300 โ„ƒ์˜ ์˜จ๋„๊ตฌ๊ฐ„๊ณผ 1350-1375 โ„ƒ์˜ ์˜จ๋„๊ตฌ๊ฐ„์—์„œ ์ถ”๊ฐ€ ์‹คํ—˜์„ ์ง„ํ–‰ํ•œ ๊ฒฐ๊ณผ 1000ppm์˜ ์‚ฐ์†Œ ๋ถ„์••(PO2 = 10-3 atm)์—์„œ์˜ SrW์˜ ์ƒ ์•ˆ์ • ์˜จ๋„์˜์—ญ์€ 1297.5 ยฑ 2.5โ„ƒ ์ด์ƒ 1352.5 ยฑ 2.5โ„ƒ์ดํ•˜์ž„์„ ๊ทœ๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ณต๊ธฐ ์ค‘ 1์ฐจ ํ•˜์†Œ ํ›„ O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ์ค‘ 1300, 1325, 1350โ„ƒ์—์„œ ์—ด์ฒ˜๋ฆฌํ•œ ์‹œํŽธ๋“ค์€ ๊ฐ๊ฐ 71.5, 73.9, 72.1 emu/g์˜ Ms๊ฐ’๊ณผ 79.4, 82.7 91.7%์˜ ๋‹ค์†Œ ๋‚ฎ์€ ์ƒ๋Œ€ ๋ฐ€๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ(PO2 = 10-3 atm)์ค‘ 1300โ„ƒ๋ฅผ 2์ฐจ ํ•˜์†Œ ์˜จ๋„๋กœ ์ •ํ•˜๊ณ  2์ฐจ ํ•˜์†Œ๋ฅผ ๊ฑฐ์นœ ๋ถ„๋ง์„ 1300, 1325, 1350โ„ƒ์˜ ์˜จ๋„์—์„œ ์†Œ๊ฒฐ ์—ด์ฒ˜๋ฆฌํ•œ ์‹œํŽธ์˜ ๊ฒฝ์šฐ ๊ฐ๊ฐ 70.8, 72.8, 72.4 emu/g์˜ Ms๊ฐ’๊ณผ 79.2, 85.0, 93.6%์˜ ์—ฌ์ „ํžˆ ๋‚ฎ์€ ์ƒ๋Œ€ ๋ฐ€๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋‚ฎ์€ ์ƒ๋Œ€๋ฐ€๋„์˜ ์›์ธ์€ ์‹œํŽธ์— ๋‹ค์ˆ˜ ์กด์žฌํ•˜๋Š” ๊ธฐ๊ณต ๋•Œ๋ฌธ์ด๋ฉฐ ์ด๋Š” ์Šน์˜จ๊ณผ์ • ์ค‘ ๋น ๋ฅธ ์†๋„๋กœ ์ƒ์˜ ๋ถ„ํ•ด๊ฐ€ ์ผ์–ด๋‚ฌ๋‹ค๊ฐ€ ๋‹ค์‹œ ํ•ฉ์„ฑ๋˜๋Š” ๊ณผ์ • ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๊ณต๊ธฐ ์ค‘ ๋กœ๋ƒ‰์œผ๋กœ ์ƒ์˜จ์—์„œ ์–ป๊ธฐ๊ฐ€ ํž˜๋“  SrW์˜ ๋‹จ์ผ์ƒ์„ 1000ppm(PO2 = 10-3 atm)๊ณผ ๊ฐ™์€ ๋‚ฎ์€ ์‚ฐ์†Œ๋ถ„์••์—์„œ ํ•ฉ์„ฑํ•˜๊ณ  ๊ทธ ๋ถ„์œ„๊ธฐ์—์„œ ๋กœ๋ƒ‰์„ ํ†ตํ•ด XRD์ƒ์œผ๋กœ ์ƒ์˜จ์—์„œ ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๋‚ฎ์€ ์‚ฐ์†Œ๋ถ„์••์—์„œ SrW์˜ ์ƒ ์•ˆ์ •์˜์—ญ์„ ์‹คํ—˜์ ์œผ๋กœ ์ •ํ™•ํžˆ ๊ทœ๋ช…ํ•˜์˜€๋Š”๋ฐ, ์ด ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ SrW์˜ ์ƒ ์•ˆ์ •์˜์—ญ์ด ๊ณต๊ธฐ ์ค‘๋ณด๋‹ค ๋‚ฎ์€ ์˜จ๋„ ์˜์—ญ์œผ๋กœ ์ด๋™ํ•œ๋‹ค๋Š” ๊ฒƒ๊ณผ ๊ณต๊ธฐ ์ค‘ ๋กœ๋ƒ‰์‹œ์— ๋ฐœ์ƒํ•˜๋Š” ์ƒ๋ถ„ํ•ด๋ฅผ ๋‚ฎ์€ ์‚ฐ์†Œ๋ถ„์••์—์„œ ๋กœ๋ƒ‰์‹œ ์–ต์ œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.In this study, we tried to synthesize the single phase of strontium W-type hexagonal ferrite(SrFe18O27SrW) which is known difficult to obtain a single phase at room temperature because it is stable only at high temperature region of 1350-1440 โ„ƒ in air, and also to identify its physical properties. The samples were prepared by the standard solid state reaction. The powder of SrCO3 and Fe2O3 were mixed together with a ratio of 1 : 9, and then calcined at 1150 โ„ƒ for 8 h in air. As-calcined powder was pressed into pellets, and then annealed at various high temperatures for 2 h in air, N2(PO2 = 5 ร— 10-8 atm), and O2/N2(PO2 = 10-3 atm) atmosphere, respectively. When the samples were annealed in air, the SrW single phase was not obtained due to the phase decomposition during furnace-cooling. Instead, the mixed phases of strontium M-type hexagonal ferrite(SrFe12O19SrM) and Fe2O3 were obtained. When the sample was water-quenched after annealing at 1400 โ„ƒ in air for 2 h, while the SrW single phase could be obtained, the sample was broken due to a thermal shock. The samples annealed at 1275 and 1300 โ„ƒ in N2 atmosphere(PO2 = 5 ร— 10-8 atm) by using N2 gas having an oxygen concentration of 0.05 ppm, consisted of SrW with a small amount of Fe3O4. When samples were annealed at 1325 โ„ƒ, Fe3O4 and other phases solidified from a liquid phase were found, and SrM and Fe3O4 were detected for the samples annealed at the temperatures below 1250 โ„ƒ. The single phase of SrW could be obtained by annealing at the temperature region of 1300-1350 โ„ƒ in O2/N2 atmosphere(PO2 = 10-3 atm) and then followed by furnace-cooling without phase decomposition. When the sample was annealed at 1275 โ„ƒ, small amount of SrM and Fe2O3 were found as second phases. When the annealing temperature was increased up to 1375 โ„ƒ, Fe3O4 and other phases solidified from a liquid phase were found. In order to determine the phase stability region of SrW in PO2 = 10-3 atm more accurately, annealing was performed at the temperature region of 1275-1300 โ„ƒ and 1350-1375 โ„ƒ. We determined the stability temperature region of SrW in PO2 = 10-3 atm as 1352.5 ยฑ 2.5 โ„ƒ - 1297.5 ยฑ 2.5 โ„ƒ. The samples annealed in O2/N2 atmosphere after calcination in air, showed Ms values of 71.5, 73.9, 72.1 emu/g and rather low relative densities of 79.4, 82.7 91.7%, respectively. To improve the relative density, secondary calcination was performed at 1300 โ„ƒ for 2 h in O2/N2 atmosphere, and followed by sintering at the temperature region of 1300, 1325, 1350 โ„ƒ in PO2 = 10-3 atm. The samples showed Ms values of 70.8, 72.4, 72.8 emu/g and still low relative densities of 79.2, 85.0, 93.6%, respectively. The cause of such a low relative density is pores present in the sample which might be attributed to the phase decomposition during the heating process. As a result, we could obtain a single phase of SrW at room temperature by annealing followed by furnace-cooling in low oxygen pressure, such as 1000 ppm(PO2 = 10-3 atm). Furthermore, we determined the phase stability temperature region of SrW in PO2 = 10-3 atm, and from this result, it was confirmed that the phase stability temperature region was shifted to lower temperature when compared to that of in air. And also we could inhibit the phase decomposition of SrW during the furnace-cooling.1. ์„œ๋ก  5 2. ๋ฌธํ—Œ์—ฐ๊ตฌ 6 2.1. ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ 7 2.1.1. ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ์ข…๋ฅ˜์™€ ํŠน์„ฑ 7 2.1.2. W-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ํŠน์„ฑ 11 2.2. ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ• 15 3. ์‹คํ—˜ ๋ฐฉ๋ฒ• 16 3.1. ์ŠคํŠธ๋ก ํŠฌ W-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ํ•ฉ์„ฑ 16 3.1.1. ์ŠคํŠธ๋ก ํŠฌ W-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ์ œ์กฐ๊ณต์ • 16 3.2. ์ŠคํŠธ๋ก ํŠฌ W-type ์œก๋ฐฉ์ • ํŽ˜๋ผ์ดํŠธ์˜ ํŠน์„ฑ ๋ถ„์„ 17 3.2.1. ๊ฒฐ์ •๊ตฌ์กฐ์™€ ์ƒ ๋ถ„์„ 17 3.2.2. ๋ฏธ์„ธ์กฐ์ง ๊ด€์ฐฐ 17 3.2.3. ์†Œ๊ฒฐ๋ฐ€๋„ ์ธก์ • 17 3.2.4. ์ž๊ธฐ์  ํŠน์„ฑ 18 4. ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 19 4.1. ์ƒ ํ•ฉ์„ฑ ๋ฐ ํŠน์„ฑ ํ‰๊ฐ€ 19 4.1.1. ๊ณต๊ธฐ ์ค‘ ํ•˜์†Œ ํ›„ ๊ณต๊ธฐ ์ค‘์—์„œ์˜ ์ƒ ํ•ฉ์„ฑ 19 4.1.2. ๊ณต๊ธฐ ์ค‘ ํ•˜์†Œ ํ›„ N2๊ฐ€์Šค ๋ถ„์œ„๊ธฐ์—์„œ์˜ ์ƒ ํ•ฉ์„ฑ 24 4.1.3. ๊ณต๊ธฐ ์ค‘ ํ•˜์†Œ ํ›„ O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ์—์„œ์˜ ์ƒ ํ•ฉ์„ฑ ๋ฐ ํŠน์„ฑ 28 4.1.4. O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ์—์„œ ํ•˜์†Œ ํ›„ O2/N2ํ˜ผํ•ฉ๊ฐ€์Šค ๋ถ„์œ„๊ธฐ์—์„œ์˜ ์ƒ ํ•ฉ์„ฑ ๋ฐ ํŠน์„ฑ 45 5. ๊ฒฐ๋ก  52 6. ์ฐธ๊ณ ๋ฌธํ—Œ 54 Abstract 58Maste

    Breeding for resistance to tobacco mosaic virus in chili pepper(capsicum annuum L.)

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋†ํ•™๊ณผ ์ž‘๋ฌผ์œ ์ „์œก์ข…ํ•™ ์ „๊ณต ,2003.Docto

    Zn์น˜ํ™”๋œ W, Y-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์˜ ์ž๊ธฐ์  ํŠน์„ฑ ๋ฐ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2019. 2. ์œ ์ƒ์ž„.์ •๋ณด ํ†ต์‹  ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ๊ณ ์„ฑ๋Šฅ ํœด๋Œ€ ์ „ํ™”, ๊ฐ€์ „์ œํ’ˆ ๋ฐ ์ฒจ๋‹จ ์ „์ž๊ธฐ๊ธฐ์˜ ์‚ฌ์šฉ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „์ž๊ธฐ๊ธฐ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์ง€๊ณ  ์ž‘๋™ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ ์  ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ „์ž๊ธฐ๊ธฐ์— ์˜ํ•ด ๋ฐฉ์ถœ๋˜๋Š” ์ „์ž๊ธฐํŒŒ๊ฐ€ ์ธ์ ‘ํ•œ ์ „์ž๊ธฐ๊ธฐ์˜ ๋™์ž‘์„ ๋ฐฉํ•ดํ•˜์—ฌ ์˜ค์ž‘๋™์„ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ „์ž๊ธฐ ์žฅํ•ด(EMI)๊ฐ€ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋กœ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ EMI ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ž…์‚ฌ ์ „์žํŒŒ๋ฅผ ์ฐจํํ•˜๊ณ  ์ „์ž๊ธฐ๊ธฐ๋ฅผ ๋ณดํ˜ธํ•˜๋Š” ์ „์žํŒŒ ์ฐจํ ๊ธฐ์ˆ ์˜ ์‚ฐ์—…์  ์ˆ˜์š”๊ฐ€ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ์ „์žํŒŒ ์ฐจํ ๊ธฐ์ˆ  ์ค‘์—์„œ๋„ ๋ถˆํ•„์š”ํ•œ ์ž…์‚ฌ ์ „์ž๊ธฐํŒŒ, ํŠนํžˆ GHz ๋Œ€์—ญ์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ–๋Š” ๋งˆ์ดํฌ๋กœํŒŒ๋ฅผ ํก์ˆ˜ ๋˜๋Š” ๊ฐ์‡ ์‹œํ‚ค๋Š” ์ „์ž๊ธฐํŒŒ ํก์ˆ˜ ๊ธฐ์ˆ ์ด ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์˜ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜์ฒด์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์€ ์ฃผ๋กœ ํก์ˆ˜ ๋ฌผ์งˆ์˜ ๋ณต์†Œ ํˆฌ์ž์œจ (ฮผr = ฮผสน โˆ’ jฮผสนสน) ๋ฐ ์œ ์ „์œจ (ฮตr = ฮตสน โˆ’ jฮตสนสน)์— ์˜ํ•ด ๊ฒฐ์ •๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์œ ์ „์ฒด ๋ฐ ์ž์„ฑ์ฒด๊ฐ€ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜์ฒด ์‘์šฉ์„ ์œ„ํ•ด ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ๋‹ค์–‘ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ์žฌ๋ฃŒ ํ›„๋ณด๊ตฐ ์ค‘์—์„œ ๊ฐ•์ž์„ฑ ์‚ฐํ™”๋ฌผ ์ž์„ฑ์ฒด์ธ ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋Š” GHz ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์ ๋‹นํ•œ ฮผr ๋ฐ ฮตr ๊ฐ’์„ ๋‚˜ํƒ€๋‚ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋›ฐ์–ด๋‚œ ํ™”ํ•™์  ์•ˆ์ •์„ฑ ๋ฐ ๋‚ฎ์€ ์ƒ์‚ฐ ๋น„์šฉ ๋•์— ์œ ๋งํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ์žฌ๋ฃŒ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กœ์šด ํ™”ํ•™ ์กฐ์„ฑ์„ ๊ฐ–๋Š” W ๋ฐ Y-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ  ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ์ตœ์ดˆ๋กœ ์‚ดํŽด๋ณด์•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‚ฎ์€ ์‚ฐ์†Œ ์••๋ ฅ (PO2)์—์„œ์˜ ์†Œ๊ฒฐ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด Fe2+์ด์˜จ ์ž๋ฆฌ๋ฅผ Zn2+์ด์˜จ์ด ๋ถ€๋ถ„์ ์œผ๋กœ ์น˜ํ™˜ํ•œ ํ˜•ํƒœ์˜ W ๋ฐ Y-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ๋˜ํ•œ ๊ทธ๋“ค์˜ ์ƒ ์•ˆ์ •์„ฑ, ์ž๊ธฐ์  ํŠน์„ฑ ๋ฐ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ์‚ดํŽด๋ณด์•˜์œผ๋ฉฐ ์ฃผ์š” ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Zn2+์ด์˜จ์˜ Fe2+์ด์˜จ์— ๋Œ€ํ•œ ๋ถ€๋ถ„ ์น˜ํ™˜์— ๋”ฐ๋ผ ๋‚จ๊ฒจ์ง„ Fe2+์ด์˜จ์€ ๊ณต๊ธฐ ์ค‘์—์„œ ์‰ฝ๊ฒŒ Fe3+์ด์˜จ์œผ๋กœ ์‚ฐํ™”๋˜์–ด ์ƒ๋ถ„ํ•ด๋ฅผ ์œ ๋ฐœํ•˜๊ธฐ ๋•Œ๋ฌธ์— Zn๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์น˜ํ™˜๋œ ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋ฅผ ํ•ฉ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ƒˆ๋กœ์šด ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, Zn2+์ด์˜จ์˜ ๋ถ€๋ถ„ ์น˜ํ™˜์— ์•ž์„œ์„œ 10-3โ€“10-2 atm์˜ ๋‚ฎ์€ PO2์—์„œ ์†Œ๊ฒฐ ๋ฐ ๋…ธ๋ƒ‰์„ ํ†ตํ•ด ์น˜ํ™˜๋˜์ง€ ์•Š์€ ์ŠคํŠธ๋ก ํŠฌ W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ (SrFe18O27SrW)์˜ ํ•ฉ์„ฑ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๋‹ค๊ฒฐ์ •์˜ SrW ๋‹จ์ผ์ƒ ์‹œํŽธ์€ 10-3 atm์˜ PO2 ๋ถ„์œ„๊ธฐ ์•„๋ž˜1300-1315โ„ƒ์—์„œ ์†Œ๊ฒฐ ํ›„ ๋…ธ๋ƒ‰ํ•จ์œผ๋กœ์จ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ SrW ์ƒ์€ 10-3์˜ PO2์—์„œ 1245 ยฑ 5์™€ 1320 ยฑ 5โ„ƒ ์‚ฌ์ด์˜ ์˜จ๋„ ์˜์—ญ์—์„œ, 10-2์˜ PO2์—์„œ 1275 ยฑ 5์™€ 1380 ยฑ 5 โ„ƒ ์‚ฌ์ด์˜ ์˜จ๋„ ์˜์—ญ์—์„œ ์•ˆ์ •ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ฒฐ์ •๋œ ์ƒ ์•ˆ์ • ์˜จ๋„ ์˜์—ญ์„ ํ† ๋Œ€๋กœ SrW์˜ ์ƒ ์•ˆ์ •๋„๋ฅผ 10-3-0.21 atm์˜ PO2 ์˜์—ญ์—์„œ ๊ทธ๋ฆด ์ˆ˜ ์žˆ์—ˆ๋‹ค. SrW์˜ ๋‹จ์ผ์ƒ์ด 10-3atm์˜ PO2์—์„œ ์†Œ๊ฒฐ ๋ฐ ๋…ธ๋ƒ‰์— ์˜ํ•ด ์–ป์–ด์ง์— ๋”ฐ๋ผ, Zn๊ฐ€ ์น˜ํ™˜๋œ ์ŠคํŠธ๋ก ํŠฌ W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ (SrZnxFe2-xFe16O27SrZnxFe2-xW, 0.5 โ‰ค x โ‰ค 2.0) ๋‹ค๊ฒฐ์ • ์‹œํŽธ์„ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ํ•ฉ์„ฑํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, x = 1.0๊นŒ์ง€ SrZnxFe2-xW-ํƒ€์ž… ๊ณ ์šฉ์ฒด (0.0 โ‰ค x โ‰ค 1.0)๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๊ณ , x โ‰ฅ 1.25์˜ ๊ฒฝ์šฐ SrZnFeFe16O27๊ณผ ZnFe2O4์˜ ๋‘ ์ƒ์ด ํ˜ผํ•ฉ๋œ ์‹œํŽธ์ด ์–ป์–ด์กŒ๋‹ค. ๋˜ํ•œ 10-3atm์˜ PO2์—์„œ SrZnxFe2-xW ์ƒ์˜ ์ƒ ์•ˆ์ • ์˜์—ญ์€ x = 0.0, 0.5 ๋ฐ 1.0์ผ ๋•Œ ๊ฐ๊ฐ 1245 ยฑ 5-1320 ยฑ 5 โ„ƒ, 1210 ยฑ 5-1285 ยฑ 5 โ„ƒ, ๋ฐ 1190 ยฑ 5-1255 ยฑ 5 โ„ƒ,์ธ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ž๊ธฐ์  ํŠน์„ฑ ์ธก์ • ๊ฒฐ๊ณผ, Fe2+์ด์˜จ ์ž๋ฆฌ์— ๋Œ€ํ•œ Zn2+์ด์˜จ์˜ ์น˜ํ™˜์ด ์ŠคํŠธ๋ก ํŠฌ W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์˜ ํฌํ™” ์žํ™” ๊ฐ’ (Ms)์˜ ํ–ฅ์ƒ์— ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ๋‹ค. x๊ฐ€ 1.0๊นŒ์ง€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, Ms ๊ฐ’์ด ์ฆ๊ฐ€ํ•˜์˜€๊ณ , 1250โ„ƒ์—์„œ ์†Œ๊ฒฐ๋œ x = 1.0์˜ ์‹œํŽธ์œผ๋กœ๋ถ€ํ„ฐ ์ตœ๋Œ€87.7emu/g์˜ Ms ๊ฐ’์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์ˆœ์ˆ˜ํ•œ ์‚ฐ์†Œ ๋ถ„์œ„๊ธฐ ์•„๋ž˜ 300โ„ƒ์—์„œ ์‹ค์‹œํ•œ ์‹œํŽธ์˜ ์‚ฐ์†Œ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์†Œ๊ฒฐ ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‹œํŽธ์˜ ์‚ฐ์†Œ ๋น„ํ™”ํ•™๋Ÿ‰๋ก ์ด ์ฆ๊ฐ€ํ•˜๋ฉฐ Ms, ๋‹จ์œ„ ์…€ ๋ถ€ํ”ผ ๋ฐ ์ „๊ธฐ ์ „๋„๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ Zn๊ฐ€ ์น˜ํ™˜๋œ ๋ฐ”๋ฅจ Y-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ (Ba2ZnxFe2-xFe12O22, Ba2ZnxFe2-xY, 0.5 โ‰ค x โ‰ค 2.0) ๋˜ํ•œ 10-3atm์˜ PO2์—์„œ ์†Œ๊ฒฐ ํ›„ ๋…ธ๋ƒ‰์„ ํ†ตํ•ด ํ•ฉ์„ฑ๋˜์—ˆ๋‹ค. x๊ฐ€ 0.5, 1.0 ๋ฐ 1.5์ผ ๋•Œ PO2 = 10-3 atm์—์„œ ๊ณ ์˜จ ์†Œ๊ฒฐ ๋ฐ ๋…ธ๋ƒ‰์„ ํ†ตํ•ด ์„ฑ๊ณต์ ์œผ๋กœ ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ, x = 2.0 ์ธ ๊ฒฝ์šฐ์—๋Š” ๊ณต๊ธฐ ์ค‘์—์„œ์˜ ์†Œ๊ฒฐ์„ ํ†ตํ•ด์„œ๋งŒ ๊ทธ ๋‹จ์ผ์ƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. Ms ๊ฐ’์€ x๊ฐ€ 0.5์—์„œ 1.0์œผ๋กœ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜๋‹ค๊ฐ€ ์ดํ›„, x๊ฐ€ 2.0๊นŒ์ง€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, 10-3atm์˜ PO2 ๋ถ„์œ„๊ธฐ ์•„๋ž˜ 1300 โ„ƒ์—์„œ 2 ์‹œ๊ฐ„ ๋™์•ˆ ์†Œ๊ฒฐ๋œ x = 1.0์˜ ์‹œํŽธ์œผ๋กœ๋ถ€ํ„ฐ 44.7 emu/g์˜ ๊ฐ€์žฅ ๋†’์€ Ms ๊ฐ’์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. SrZnxFe2-xW์™€ Ba2ZnxFe2-xY์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ 0.5-18 GHz์˜ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ ์‚ดํŽด๋ณด์•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์—ํญ์‹œ ์ˆ˜์ง€๋ฅผ ๋ชจ์ฒด๋กœ ํ•˜๊ณ , 30, 50, 70 ๋ฐ 90 vol%์˜ ๋ถ€ํ”ผ ๋ถ„์œจ์„ ๊ฐ–๋Š” SrZnxFe2-xW (x = 0.0, 0.5, 1.0 ๋ฐ 2.0) ๋ฐ Ba2ZnxFe2-xY (x = 0.5, 1.0, 1.5 ๋ฐ 2.0)๋ฅผ ์ถฉ์ง„์žฌ๋กœ ํ•˜๋Š” ๋ณตํ•ฉ์ฒด๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, SrZnxFe2-xW (x = 0.0, 0.5 ๋ฐ 1.0) ๋ฐ Ba2ZnxFe2-xY (x = 0.5, 1.0 ๋ฐ 1.5)๋กœ ๋งŒ๋“ค์–ด์ง„ ๋ณตํ•ฉ ์ฒด๋Š” ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ SrZn2W (x = 2.0) ๋ฐ Ba2Zn2Y (x = 2.0)๋กœ ์ œ์กฐ๋œ ๋ณตํ•ฉ์ฒด์— ๋น„ํ•ด ํฐ ฮตr๊ฐ’์„ ๋‚˜ํƒ€๋ƒˆ๋Š”๋ฐ, ์ด๋Š” Fe2+์ด์˜จ๊ณผ Fe3+์ด์˜จ ๊ฐ„์˜ ์ „์ž ๋„์•ฝ์— ๋”ฐ๋ฅธ ๋ถ„๊ทน์˜ ์ฆ๊ฐ€ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ธ๋‹ค. SrZnxFe2-xW (x = 0.0, 0.5 ๋ฐ 1.0) ๋ฐ Ba2ZnxFe2-xY (x = 0.5, 1.0 ๋ฐ 1.5)๋กœ ์ œ์กฐ ๋œ ๋ณตํ•ฉ์ฒด์˜ ฮผr๊ฐ’ ๋˜ํ•œ SrZn2W ๋ฐ Ba2Zn2FeY์˜ ๋ณตํ•ฉ์ฒด๋ณด๋‹ค ๋” ์ปธ๋‹ค. ํ–ฅ์ƒ๋œ ฮผr ๋ฐ ฮตr๋•Œ๋ฌธ์—, Zn๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ์น˜ํ™˜๋œ W ๋ฐ Y-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋กœ ์ œ์กฐ ๋œ ๋ณตํ•ฉ์ฒด๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ํŽ˜๋ผ์ดํŠธ ๋ถ€ํ”ผ ๋ถ„์œจ ๋ฐ ๋‘๊ป˜๋กœ๋„ ํ–ฅ์ƒ๋œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, Zn2+์ด์˜จ์˜ ๋ถ€๋ถ„ ์น˜ํ™˜์€ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์˜ ํ–ฅ์ƒ๊ณผ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜์ฒด์˜ ์ค‘๋Ÿ‰ ๋ฐ ๋‘๊ป˜์˜ ๊ฐ์†Œ์— ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.With the development of information and communication technology, the use of high-performance mobile phones, household appliances, and advanced electronic devices are increasing. However, along with the fact that the sizes of electronic devices become smaller and more complicated with increasing their working frequencies, the electromagnetic interference (EMI) becomes a serious problem as electromagnetic waves emitted by electronic devices may interfere the operation of adjacent electronic devices causing malfunction. Therefore, the industrial demand for electromagnetic shielding technique that shields the incident electromagnetic signals and protects the electronic devices is growing in order to cope with the EMI problem. Among the electromagnetic shielding technique, the electromagnetic wave absorbing technique that absorbs or attenuate the unwanted incident electromagnetic waves, particularly the microwaves having GHz frequencies has drawn the attention of many researchers. As the microwave absorption properties of microwave absorber mainly depend on the relative complex permeability (ฮผr = ฮผสน โˆ’ jฮผสนสน) and permittivity (ฮตr = ฮตสน โˆ’ jฮตสนสน) of the absorbing materials, various dielectric and magnetic materials have been extensively studied for microwave absorber applications. Among the various microwave absorbing materials, ferromagnetic oxide materials of hexaferrites are one of the promising candidates for microwave absorber application as they exhibit suitable ฮผr and ฮตr values at the GHz frequency region and as well as excellent chemical stability and low production cost. Thus in this study, we tried to synthesize the W and Y-type hexaferrites having novel chemical compositions and investigate their microwave absorption properties for the first time. To this end, the partial substitution of Zn2+ for Fe2+ leaving Fe2+ ions behind was carried out for the W and Y-type hexaferrites by sintering in the low oxygen pressure (PO2). Moreover, their phase stability, magnetic properties and microwave absorption properties were investigated. The major results are as the followings. Since the partial substitution of Zn2+ for Fe2+ leaves Fe2+ ions behind, and the Fe2+ ions are easily oxidized to Fe3+ inducing phase decomposition, a novel synthesis method is necessary for the synthesis of partially Zn-substituted hexaferrites. Therefore, the synthesis of non-substituted strontium W-type hexaferrite (SrFe18O27SrW) was attempted by sintering and subsequent furnace-cooling in the low PO2 of 10-3โ€“10-2 atm before the conduction of partial substitution of Zn2+. As a result, the single phase of SrW polycrystalline samples were obtainable by sintering at 1300โ€“1315หšC and subsequent furnace-cooling to room temperature in the PO2 of 10-3 atm. In addition, the SrW phase was found to be stable at the temperature region between 1245 ยฑ 5 and 1320 ยฑ 5หšC in the PO2 of 10-3, and between 1275 ยฑ 5 and 1380 ยฑ 5หšC in the PO2 of 10-2 atm. With the determined phase stability regions, a stability phase diagram of SrW on the PO2 versus 10,000/T (K) plot in the PO2 region of 10-3โ€“0.21 atm was constructed. As the SrW single phase was obtained by sintering and subsequent furnace-cooling in the PO2 of 10-3 atm, the Zn-substituted strontium W-type hexaferrite (SrZnxFe2-xFe16O27SrZnxFe2-xW, 0.5 โ‰ค x โ‰ค 2.0) polycrystalline samples were tried to be prepared in the same manner. As a result, SrZnxFe2-xW-type solid solutions (0.0 โ‰ค x โ‰ค 1.0) could be obtained up to x = 1.0, while two-phase mixture of SrZnFeFe16O27 and ZnFe2O4 was obtainable for x โ‰ฅ 1.25. And also, the phase stability regions of SrZnxFe2-xW phase in the PO2 of 10-3 atm was found to be 1245 ยฑ 5โ€“1320 ยฑ 5หšC, 1210 ยฑ 5โ€“1285 ยฑ 5หšC, and 1190 ยฑ 5โ€“1255 ยฑ 5หšC, for x = 0.0, 0.5, and 1.0, respectively. The magnetic property measurement revealed that the Zn2+ substitution for the Fe2+ site was found to be effective for the improvement of the saturation magnetization (Ms) of strontium W-type hexaferrite (SrFe18O27). With increasing x up to 1.0, Ms values were monotonously increased and the highest Ms value of 87.7 emu/g was obtained from the sample of x = 1.0 sintered at 1250หšC. In addition, post-annealing heat treatments of samples for oxygenation at 300หšC in pure oxygen gas revealed that oxygen non-stoichiometry increased with increasing the sintering temperature, leading to the increase in Ms, unit cell volume, and electrical conductivity. Furthermore, the Zn-substituted barium Y-type hexaferrites (Ba2ZnxFe2-xFe12O22Ba2ZnxFe2-xY, 0.5 โ‰ค x โ‰ค 2.0) were also prepared by sintering and subsequent furnace-cooling in the PO2 of 10-3 atm. After high-temperature sintering and subsequent furnace-cooling in the PO2 = 10โˆ’3 atm, the single-phase samples of x = 0.5, 1.0, and 1.5 were successfully prepared while the single-phase sample with x = 2.0 was obtainable only by sintering in air. The Ms value was first increased with increasing x from 0.5 to 1.0 and then decreased with further increasing x up to x = 2.0. As a result, the highest Ms value of 44.7 emu/g was obtainable from the sample of x = 1.0 sintered at 1300ยฐC for 2 h in the PO2 of 10โˆ’3 atm. The microwave absorption properties of SrZnxFe2-xW and Ba2ZnxFe2-xY in the frequency range of 0.5โ€“18 GHz were investigated. For this, the composites having epoxy resin as a matrix, and SrZnxFe2-xW (x = 0.0, 0.5, 1.0, and 2.0) and Ba2ZnxFe2-xY (x = 0.5, 1.0, 1.5, and 2.0) as magnetic fillers were fabricated with the ferrite volume fractions of 30, 50, 70, and 90 vol%. As a result, the composites made of SrZnxFe2-xW (x = 0.0, 0.5, and 1.0), and Ba2ZnxFe2-xY (x = 0.5, 1.0, and 1.5) exhibited larger ฮตr values in the measured frequency range than the composite made of SrZn2W (x = 2.0) and Ba2Zn2Y (x = 2.0) that is attributable to the enhanced polarization due to the electron hopping between Fe2+ and Fe3+ ions. The ฮผr values of the composites made of SrZnxFe2-xW (x = 0.0, 0.5, and 1.0), and Ba2ZnxFe2-xY (x = 0.5, 1.0, and 1.5) were also larger than the composites of SrZn2W and Ba2Zn2FeY. Owing to the increased ฮผr and ฮตr, the composites made of the partially Zn-substituted W and Y-type hexaferrites exhibited enhanced microwave absorption properties even with a lower ferrite volume fraction and absorber thickness. Consequently, the partial substitution of Zn2+ was found to be effective in the reduction of microwave absorber weight and absorber thickness with enhanced microwave absorption properties.Chapter 1. Introduction 1 Chapter 2. General background 11 2.1 Hexaferrites 11 2.2 Theory of microwave absorption 14 2.3 Microwave absorbing materials 18 Chapter 3. Synthesis of strontium W-type hexaferrites in low oxygen pressure and their phase stability 29 3.1 Introduction 29 3.2 Experimental 30 3.3 Results and discussion 32 3.3.1 Preparation of SrW in air 32 3.3.2 Preparation of SrW in PO2 = 10-3 atm 32 3.3.3 Determination of the lower phase boundary of SrW in PO2 = 10-3 atm 35 3.3.4 Determination of the upper phase boundary of SrW in PO2 = 10-3 atm 37 3.3.5 Phase stability of SrW in PO2 = 10-2 atm 38 3.3.6 Stability phase diagram of SrW in PO2 = 10-30.21 atm 40 3.4 Summary 42 Chapter 4. Synthesis of Zn-substituted W-type hexaferrites in the PO2 of 10-3 atm and their magnetic properties 59 4.1 Introduction 59 4.2 Experimental 60 4.3 Results and discussion 61 4.3.1 Synthesis of SrZnxFe2-xW (x = 0.0, 0.5, 1.0, 1.25, 1.5, and 2.0) in PO2 = 10-3 atm 61 4.3.2 Phase stability of SrZnxFe2-xW (x = 0.0, 0.5, and 1.0) in PO2 = 10-3 atm 63 4.3.3 Structural and magnetic properties of SrZnxFe2-xW (x = 0.0, 0.5, and 1.0) in PO2 = 10-3 atm 67 4.4 Summary 75 Chapter 5. Synthesis of Zn-substituted Y-type hexaferrites in the PO2 of 10-3 atm and their magnetic properties 93 5.1 Introduction 93 5.2 Experimental 95 5.3 Results and discussion 96 5.4 Summary 104 Chapter 6. Microwave absorption properties of Zn-substituted W and Y-type hexaferrites 121 6.1 Introduction 121 6.2 Experimental 122 6.3 Results and discussion 123 6.3.1 Complex permittivity and permeability spectra 123 6.3.2 Microwave absorption properties 128 6.4 Summary 135 Chapter 7. Conclusion 169 Appendices 173 A. Measurement of complex permittivity and permeability 173 B. Impedance matching solution map 181 Abstract in Korean 191 Achievement 195Docto

    Imperforate Cloacal Membrane(Two Autopsy cases report)

    No full text
    Congenital malformations of ano-recturn are relatively common and have many variation in the level of obstruction and presence or type of fistula. Ladd and Gross (1934), Wilkinson (1972) classified these anomalies and their classifications are widely used clinically and pathologically. Cheng et al. (1974) reported 5 cases of persistent cloaca with review of 50 cases reported previously. All of these cases have single perineal opening and the rectums are connected either to bladder or to vagina. Because of the fact that 362 out of 507 cases with imperforate anus have rectovaginal, rectovesical or rectourethral fistula (Gross, 1934), it is often difficult to distinguish the persistent cloaca from imperforate anus with fistula formation. And most of the fistula found in patients with imperforate anus are likely to be the unobliterated cloacal canal. We report two cases of imperforate anus of another variety that could best be understood along with imperforate cloacal membrane. These patients were deficient of both anus and urethral opening, and the bladder and rectum had free communication. Case 1 was a full-term male infant who died soon after birth. He had rudimentary phallus without opening. Midline fold of buttock was absent. No perineal opening was found. Both feet had four digits each. Abdominal cavity contained two cystic masses and two kidneys. Two ureters of the kidneys drained into one of the cysts, and the other cyst was connected to the rectum. Between these two cysts there was free communication with a large opening. Neither urethral opening nor anal opening were found in and outside the cysts. Case 2 was a baby who was delivered by Cvsection at 6 months of gestational age. External genitalia and anal canal could not be seen externally. The abdomen was markedly distended and was near-totally replaced by huge cyst containing yellowish fluid. Both ureters and rectum were connected to this huge abdominal cyst

    Incidence of so-called in situ Neuroblastoma in the Fetal Adrenals

    No full text
    Neuroblastic cell nests seen in infant adrenal gland are often called in situ neuroblastoma. The significance of these neuroblastic cell nests in adrenals of neonates is still in debate. It has been the mainpoint of discussion whether these neuroblastic cell nests could develop into clinical neuroblastoma, and if so, what would be chance? It was our purpose to examine the fetal adrenal glands to determine the incidence of neuroblastic cell nests in varying gestational periods. A total 113 pairs of adrenal from fetuses ranging from 10 to 42 weeks and 13 neonates within one week of age were removed at autopsy and serially sectioned. The following results were obtained: l. Neuroblastic cell nests were fairly commonly seen in fetal adrenal glands, being 37. 2% in overall incidence. 2. The incidence of neuroblastic cell nests in fetal adrenals was remarkably different by different gestational periods. In general the earlier the gestational age, more often these cell nests were observed. Full term fetuses and neonates were almost completely devoid of neuroblastic cell nests in adrenal glands. 3. Although cytologically neuroblastic cell nests seen in this study are indistinguishable from clinical neuroblastoma, these cell nests showed a tendency of regression in terms of frequency of finding neuroblastic cell nests as fetal age advances. 4. Neuroblastic cell nests seen in fetal adrenal do not appear to be normal embryological phenomenon of adrenal medullary maturation

    Proactive Virtual Network Function Live Migration using Machine Learning

    No full text
    VM (Virtual Machine) live migration์€ VM์—์„œ ๋™์ž‘ํ•˜๋Š” ์„œ๋น„์Šค์˜ downtime์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ํ•ด๋‹น VM์„ ๋‹ค๋ฅธ ์„œ๋ฒ„ ๋…ธ๋“œ๋กœ ์ด์ „์‹œํ‚ค๋Š” ์„œ๋ฒ„ ๊ฐ€์ƒํ™” ๊ธฐ์ˆ ์ด๋‹ค. ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ์„ผํ„ฐ์—์„œ๋Š” ๋กœ๋“œ๋ฐธ๋Ÿฐ์‹ฑ, ํŠน์ • ์œ„์น˜ ์„œ๋ฒ„๋กœ์˜ consolidation ํ†ตํ•œ ์ „๋ ฅ ์†Œ๋น„ ๊ฐ์†Œ, ์„œ๋ฒ„ ์œ ์ง€๋ณด์ˆ˜(maintenance) ์ž‘์—… ์ค‘์—๋„ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋ฌด์ค‘๋‹จ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์  ๋“ฑ์œผ๋กœ VM live migration ๊ธฐ์ˆ ์ด ํ™œ๋ฐœํžˆ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๊ณ ์žฅ ๋ฐ ์žฅ์•  ์ƒํ™ฉ์ด ์˜ˆ์ธก๋˜๊ฑฐ๋‚˜ ๊ทธ ์ง•ํ›„๊ฐ€ ํƒ์ง€๋˜๋Š” ๊ฒฝ์šฐ, ์˜ˆ๋ฐฉ ๋ฐ ์™„ํ™” ์ˆ˜๋‹จ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋‘ ๊ฐ€์ง€ ์„ ์ œ์ (proactive) VNF live migration ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์€ ์„œ๋ฒ„ ๋กœ๋“œ๋ฐธ๋Ÿฐ์‹ฑ์— VNF live migration ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์€ ๊ณ ์žฅ ์˜ˆ์ธก์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ณ ์žฅ ํšŒํ”ผ ๋ชฉ์ ์œผ๋กœ VNF live migration์„ ์‚ฌ์šฉํ•œ๋‹ค. ์„ ์ œ์  migration์„ ์œ„ํ•œ ์˜ˆ์ธก์— ๋จธ์‹ ๋Ÿฌ๋‹(๊ธฐ๊ณ„ํ•™์Šต)์„ ํ™œ์šฉํ•˜๋ฉฐ ์‹คํ—˜์„ ํ†ตํ•ด ๊ทธ ์‹คํšจ์„ฑ์„ ๊ฒ€์ฆํ•œ๋‹ค. ํŠนํžˆ ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด vEPC (Virtual Evolved Packet Core)์˜ ๊ณ ์žฅ ์ƒํ™ฉ์„ case studyํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•œ๋‹ค.22Nkc
    corecore