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Abstract 

 
Defocus deblurring in dual-pixel (DP) images is a challenging 

problem due to diverse camera optics and scene structures. Most of 

the existing algorithms rely on supervised learning approaches 

trained on the Canon DSLR dataset but often suffer from weak 

generalizability to out-of-distribution images including the ones 

captured by smartphones. We propose a novel zero-shot defocus 

deblurring algorithm, which only requires a pair of DP images without 

any training data and a pre-calibrated ground-truth blur kernel. 

Specifically, our approach first initializes a sharp latent map using a 

parametric blur kernel with a symmetry constraint. It then uses a 

convolutional neural network (CNN) to estimate the defocus map that 

best describes the observed DP image. Finally, it employs a 

generative model to learn scene-specific non-uniform blur kernels 

to compute the final enhanced images. We demonstrate that the 

proposed unsupervised technique outperforms the counterparts 

based on supervised learning when training and testing run in 

different datasets. We also present that our model achieves 

competitive accuracy when tested on in-distribution data.  

 

Keyword : Dual-pixel sensor, defocus deblurring, zero-shot 

learning, non-uniform blur kernels. 
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Chapter 1. Introduction 
 

 

1.1. Background 

 

Image deblurring is a classical ill-posed inverse problem, which 

has been studied for a long time [18, 28]. In general, the problem can 

be formulated as,  

 

𝑦 = 𝑥 ∗ 𝑘 + 𝑛,                       (1) 

 

where 𝑦 is the observed blurry image, 𝑥 is the latent sharp image, 

𝑘 is the blur kernel, and 𝑛 is the noise. Non-blind deblurring [19, 

26] methods take a two-step approach: Estimate the blur kernel first 

and then restore the image. In other words, non-blind image 

deblurring restores the sharp latent 𝑥 from its observation 𝑦 given 

blur kernel 𝑘 . Restoring sharp latent is mostly based on the 

maximum-a-posterior framework, and various image priors [5, 9] 

for improving the image quality have been proposed. However, these 

optimization-based approaches are difficult to work around and do 

not successfully restore images. 

In this paper, we tackle non-blind defocus deblurring using a 

dual-pixel (DP) sensor. Defocus deblurring is a subtask of image 

deblurring that occurs when an image is captured with a shallow 

depth of field (DOF). We use a DP sensor to solve defocus deblurring 

by using defocus cues on both left and right images. The DP sensor 

has two photodiodes with separate lenses per pixel capturing two 
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sub-aperture left-right images at once. Canon first proposed the DP   

design to improve autofocus in their mirrorless camera. DP is useful 

for autofocus as an in-focus scene induces equal intensity between 

the two views, while an out-of-focus area causes defocus blur 

causing a disparity between the left and right DP sub-aperture views 

(Fig. 1.1). DP sensors have now become the mainstream of 

smartphone cameras, and their applications include: depth estimation 

[7, 15, 31], synthetic bokeh [1, 27], and defocus deblurring [2-4]. 

However, the number of datasets is limited because camera 

manufacturers do not provide access to the raw DP data. 

Defocus deblurring is difficult to solve due to non-uniform 

blurring (i.e. spatially varying). Unlike motion blur, where a blur 

 

 

 

 

 

 

 

Fig 1.1: A dual-pixel (DP) image formulation. The out-of-focus 

objects exhibit different amount of defocus disparity between left 

and right image. On the other hand, in-focus objects do not cause 

defocus disparity between two image. 
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kernel that is uniform across the image may be sufficient to reflect 

camera shake during exposure, defocus blur is mostly affected by the 

distance from the camera focal plane to the target object. The size of 

the blur increases as the object moves away from the camera focal 

plane. Because the depth of the image is not uniform across the image, 

defocus deblurring requires a spatially varying non-uniform blur 

kernel. Thus, the defocus deblurring of a DP sensor can be modeled 

as, 

 

𝑦𝐿 = 𝑥 ∗ 𝑓𝐿(𝑑),                       (2) 

𝑦𝑅 = 𝑥 ∗ 𝑓𝑅(𝑑),                       (2) 

 

where 𝑑 is the defocus map which encodes the magnitude of the 

blur or the signed distance from the camera focal plane, and 𝑓 is the 

camera-dependent non-uniform blur kernel function, as the 

characteristics of the camera optic can also affect the blur kernel. 

Therefore, defocus deblurring is equivalent to estimating a defocus 

map 𝑑, when we have prior information about 𝑓. Note that we do not 

consider the noise term from Eq. (1) in our work. 

On the other hand, data-driven defocus deblurring [2-4, 10, 11, 

15, 29] using the deep neural network has dominated conventional 

optimization-based methods. Abuolaim et al. [2] first introduced a 

large-scale DP dataset based on Canon DSLR and a U-Net-like 

network for defocus deblurring using DP images. Since then, various 

learning frameworks and neural network architecture benchmarked 

on the Canon dataset was introduced. Although such data-driven 

supervised learning achieves improved performance, it is still 
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questionable whether it generalizes well to images from other camera 

optics. Few works address the generalization problem of DP defocus 

deblurring, as the Canon dataset is currently the only one available 

for training. Xin et al. [29] showed that their unsupervised 

optimization framework can restore sharp edges better for 

smartphone cameras than the supervised methods trained using 

DSLR cameras. They carefully calibrate the blur kernel of the target 

smartphone camera and use it for optimization. Their work is 

impressive, but requires a pre-calibration step for each camera, 

which is tedious and difficult for non-professionals. Moreover, their 

method is not fully unsupervised since they use a ground-truth non-

uniform blur kernel for optimization. 

Recently, Ren et al. [17] proposed a neural blind deconvolution 

method that jointly estimates the motion blur kernel and sharp latent 

without relying on massive training data. Although the task is limited 

to uniform blur models, the proposed zero-shot learning framework 

using a CNN directly generates a sharp latent and a blur kernel that 

maximizes a posteriori given the observed image.  

 

1.2. Overview 

 

Inspired by [17, 29], we propose a zero-shot defocus deblurring 

method using only a DP image pair at test time. To solve this fully-

unsupervised problem, we utilize the symmetric constraints [16] of 

the DP blur kernel in the initialization phase. Using a symmetrically 
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modeled blur kernels for left-right DP images, the proposed method   

blurs the initial latent map. Each layer of the latent map is then 

optimized to maximizes a posteriori probability of observed blurry DP 

image pairs. After the optimization, the in-focus areas for each layer 

of the latent map are restored due to the symmetric constraint from 

the left-right blur kernels. Then, the initialized latent map is soft-

blended by the estimated defocus map, and outputs a defocus 

deblurred latent image. For estimating the defocus map, we use a 

convolutional neural network (CNN) that takes DP image pairs as an 

 

Fig 1.2: An overview of our approach. We propose a zero-shot 

defocus deblurring only using an observed blurry image 𝑦𝐿 and 

𝑦𝑅 . The framework outputs 𝑦̂𝐿  and 𝑦̂𝑅  by blurrying the latent 

map 𝑿̂ using the blur kernel 𝑭̂ and soft-blend it by defocus map 

𝑫̂. Then, we minimize the 𝐿2 loss between the observation (𝑦) 

and estimation(𝑦̂) to train CNNs and the latent map 𝑿̂. 
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input. The defocus map estimation network is trained to maximize a 

posteriori given the observed blurry DP images. For further 

improvement, we incorporate blur kernel estimation network to learn 

scene-specific and non-uniform blur kernels. 

 

1.3. Contribution 

 

Our contributions are summarized as below: 

 

1. We propose a zero-shot defocus deblurring method using DP 

images. Our fully unsupervised framework first exploits the 

symmetric property of the DP blur kernel and then learns 

scene-specific non-uniform blur kernels. 

2. We extend the prior work by introducing a more generalized 

framework that can handle both front and back defocus blur 

without a pre-calibration step for the target camera. By 

adopting the neural network with proper initialization, our 

method runs 20× faster than the previous work. 

3. Our method generalizes better than the supervised method on 

unseen data and shows competitive performance to the 

supervised method on public benchmark dataset. 
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Chapter 2. Related Works 
 

 

2.1. Defocus Deblurring 

 

Single image defocus deblurring has been studied for a long time 

and various methods have been proposed ranging from classical 

approaches [8, 9] to more recent deep learning-based approaches 

[11, 34]. Karaali et al. [8] proposed a classical approach using edge-

based gradient method for estimating spatially varying defocus blur 

using a single image. Moving into the era of deep learning, Lee et al. 

[11] proposed a deblurring filters based on neural network, 

composed of stacks of small-sized separable filters applied 

iteratively for effectively managing large defocus blur. Son et al. [34] 

proposed another deep learning approach exploiting the 

characteristics of inverse kernels. They utilize the property that the 

shape of inverse kernel remains the same and only the size changes 

as the amount of defocus blur changes.  

Defocus deblurring using dual images from the DP sensor was 

recently introduced. Abuolaim et al. [2] provided the first high-

resolution defocused DP image pairs with the corresponding all-in-

focus ground-truths images using a Canon DSLR camera. Also, to 

predict an all-in-focus-image from the DP image pair, they train a 

Dual-Pixel Defocus deblurring Network (DPDNet) which adapts a 

U-Net-like architecture. Lee et al. [11] proposed an Iterative Filter 
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Adaptive Network (IFAN) which incorporates iterative adaptive 

convolution layers to handle large defocus blur in a spatially-varying 

manner. In addition, because DP data is limited and difficult to acquire, 

there is also a line of research for mathematically modeling and 

simulating the DP image formation pipeline to generate realistic DP 

data to address the problem of data scarcity [3, 15]. Leveraging 

these synthetic DP images, Abuolaim et al. [3] proposed a Recurrent 

Dual-Pixel Deblurring (RDPD) method using CNN-LSTM 

architecture that improves the deblurring results.  

Recently, Xin et al. [29] introduced a non-blind defocus 

deblurring based on an optimization framework to recover an all-in-

focus image using a pair of observed DP images and a carefully 

captured ground-truth blur kernel. Their work has been shown to 

restore high-frequency details better than the DPDNet in images 

captured by smartphone cameras, without using any training datasets. 

In contrast to these prior works, our method tackles defocus 

deblurring without using real blur kernels and large training datasets. 

 

2.2. Defocus Map 

 

Estimating the defocus map is important for estimating the 

defocus deblurring of an image. This is because the amount of 

defocus blur is heavily dependent on the defocus map which encodes 

the relative depth from the focal plane. Zhou et al. [35] proposed a 

simple approach to estimate the amount of defocus blur at edges by 
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re-blurring the defocused image using a Gaussian kernel and 

measuring the ratio of gradients between defocused and re-blurred 

images. Lee et al. [10] proposed the first end-to-end defocus map 

estimation network using domain adaptation with the new large-scale 

dataset for supervised learning. Punnappurath et al. [16] proposed to 

recover a depth estimation by using a point spread function to model 

the defocus disparity from the DP sensors, Using the symmetry 

property of the model, they proposed unsupervised method that does 

not require ground truth depth. 

 

2.3. Multiplane Image Representation 

 

Multiplane image (MPI) is a 3-dimensional layered representation 

of the scene to produce a view that are spatially consistent [22]. MPI 

is widely used in scene rendering [21, 24, 33] because its soft 

blending supports differentiable optimization properties along with 

the ability to represent occlusion. MPI can also be used for defocus 

deblurring [29] since the size of the blur kernel is positively related 

to the distance to the focal plane of the camera. Hence, each layer of 

MPI can represent the size of the blur kernel which increases as it 

reaches to the last layer. 

 

2.4. DP Blur Kernel 

 

Non-blind defocus deblurring used parametric blur models such 
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as disk [6] or Gaussian kernel [8, 14]. As non-blind deblurring is 

susceptible to errors in blur kernel, several works [12, 13] estimate 

camera-dependent blur kernels from calibration patterns. For 

modeling blur kernels in the DP sensor, Punnappurath et al. [16] used 

Canon DSLR and a pre-defined calibration pattern to estimate the 

ground truth point spread function (PSF) for left and right DP view. 

Then, they introduced a translating disk-shaped blur kernel based 

on the derived PSF which exhibits symmetric property between left 

and right. To provide a more realistic blur kernel that exhibits a 

donut-shaped depletion due to optical aberrations [23], Abuolaim et 

al. [3] proposed a parametric model based on the 2D Butterworth 

filter. To reflect the spatially-varying property, their work can 

generate many representative PSF by varying the parameter of the 

filter. 

Recently, Ren et al. [17] proposed a joint optimization algorithm 

to solve for both estimating uniform blur kernel and generating sharp 

latent in blind motion deblurring task. Inspired by their work, we 

introduce to learn non-uniform blur kernels jointly with a sharp 

latent after some initialization step using the parametric DP blur 

model [3]. 
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Chapter 3. Proposed Methods 
 

 

This thesis proposes a scene-specific defocus deblurring method 

using DP images. The optimization is based on a zero-shot learning 

framework [20] that trains a scene-by-scene CNNs at test time 

using only the input image (i.e., blurred DP images). The proposed 

method does not require the ground-truth sharp image or ground-

truth blur kernel. The unsupervised learning concept for defocus 

deblurring was first proposed by Xin et al. [29], where they jointly 

optimize for both latent image and the defocus map, given the 

ground-truth blur kernels. While their method only focuses on the 

front focus (i.e., objects behind the focal plane) defocus blur, we 

propose a more general approach to deal with the front and back 

focus using CNNs and without requiring the ground-truth blur kernel. 

Instead of co-optimizing the latent image and defocus map, we 

optimize each one sequentially to make our problem easy to solve. 

First, we show that sharp image can be restored by only using a 

symmetrically property of parametric modeled blur kernel and 

describe on how to initialize the sharp latent map. Next, we introduce 

a method for estimating the defocus map by maximizing a posteriori 

probability of observed blurry image, given the initialized sharp latent 

map and the parametric modeled blur kernel. Finally, we further 

improve our model by learning scene-specific non-uniform blur 

kernel.  
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3.1. Latent Map Initialization 

 

The multiplane image (MPI) representation [22] consists of a 

latent map 𝑿̂ ∈ ℝ(𝑁+1)×𝐻×𝑊 and alpha map 𝜶̂ ∈ ℝ(𝑁+1)×𝐻×𝑊, each with 

𝑁 fronto-parallel planes where the pixels in each plane are fixed at 

certain depth (i.e., or also in certain blur size). MPI can be used for 

defocus deblurring [29] since the size of the blur kernel is positively 

 

Fig 3.1: A sharp image can be restored using only the input image 

and a parameterized blur kernel of the correct size. A convolution 

is applied to a random vector 𝒁 with a left-right symmetric blur 

kernel to obtain a pair of blurry DP images. Then, the outputs of 

convolutions are optimized to minimize loss with respect to the 

input image. Because the parameterized left and right blur kernels 

are symmetric, we can restore sharp image, despite not using a 

ground-truth blur kernel. 
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related to the distance to the focal plane of the camera. Hence, each 

layer of MPI can represent the size of the blur kernel which increases 

as it reaches the last layer. 

Now, let 𝑋̂𝑖 ∈ ℝ𝐻×𝑊  be the 𝑖𝑡ℎ  layer of a latent map and 𝑓𝑖
𝐿 ∈

ℝ(2𝑖+1)×(2𝑖+1)  and 𝑓𝑖
𝑅 ∈ ℝ(2𝑖+1)×(2𝑖+1)  be the corresponding left-right 

blur kernel. Following Eq. (2), we can derive the uniformly-blurred 

DP images 𝑦̂𝑖
𝐿 ∈ ℝ𝐻×𝑊  and 𝑦̂𝑖

𝑅 ∈ ℝ𝐻×𝑊  for each layer by applying 

convolution to 𝑋̂𝑖 with 𝑓𝑖
𝐿 and 𝑓𝑖

𝑅, respectively. 

 

𝑦̂𝑖
𝐿 = 𝑋̂𝑖 ∗ 𝑓𝑖

𝐿 ,                             (2) 

𝑦̂𝑖
𝑅 = 𝑋̂𝑖 ∗ 𝑓𝑖

𝑅 ,                        (3) 

 

where the blur kernel for each layer can be obtained by linearly 

downsizing from the maximum size kernel 𝑓𝑁
𝐿 ∈ ℝ(2𝑁+1)×(2𝑁+1)  and 

𝑓𝑁
𝑅 ∈ ℝ(2𝑁+1)×(2𝑁+1) , and zero-padding afterward. Now using the 

downsized blur kernel for each layer, we can optimize for 𝑋̂𝑖  by 

maximizing a posteriori probability given the observed blurry image. 

By minimizing the loss between 𝑦̂𝑖 and the observed blurry image 𝑦, 

we can restore a partially sharp image for each and every layer of 

the latent map as shown in Fig. 3.1 (i.e., only the in-focus region for 

each layer will be restored). Although a parameterized blur kernel 

may not correctly represent the real blur kernel, its symmetric 

properties help and successfully restores sharp images. 

Based on the above properties, we initialize the partially sharp 

latent map by optimizing every layer to maximize a posteriori of 

observed blurry image. Formally, we minimize the L2 loss as below,  
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ℒ = ∑ (‖𝑦𝐿 − 𝑦̂𝑖
𝐿‖

2

2
+ ‖𝑦𝑅 − 𝑦̂𝑖

𝑅‖
2

2
)𝑁

𝑖=0 .              (4) 

 

The result of the latent map initialization can be seen in Fig. 3.2. 

Because the scene depth is not uniform, the amount of defocus blur 

varies across the image. Therefore, applying a uniform blur kernel to 

each layer results in successful deblurring in some in-focus regions 

(i.e., the correct size of blur kernel applied), while other regions are 

not. This means that in order to achieve image-level defocus 

deblurring, it is necessary to estimate the defocus map that encodes 

blur amount information for each pixel. 

 

Fig 3.2: Visualization of the initialized latent map 𝑿̂  of MPI 

representation. Each layer 𝑋𝑖 is blurred using a blur kernel of the 

corresponding size and optimized to minimize the loss as shown 

in Fig. 3.1. After the optimization, the in-focus regions of 𝑋𝑖 are 

deblurred while other regions are not. The initialized latent map 

𝑿̂ is then used for the defocus map estimation. 
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3.2. Defocus Map Estimation 

 

In MPI representation, the latent image 𝑥 ∈ ℝ𝐻×𝑊 can be derived 

by soft-blending the latent map 𝑿̂ with the alpha map 𝜶̂ using the 

over operator as below, 

 

𝑥𝑘 = ∑ (𝑋̂𝑖,𝑘𝛼̂𝑖,𝑘 ∏ (1 − 𝛼̂𝑗,𝑘)𝑁
𝑖+1 )𝑁

𝑖=0 ,               (5) 

 

where 𝑘 is the index for each pixel.  

In soft-blending the latent map to the latent image, the alpha map 

should put more weights on in-focus layer of an MPI for each pixel. 

Therefore, estimating the index of an in-focus layer can be also seen 

as finding the correct blur kernel size for each pixel in a non-uniform 

defocus deblurring scenario. This aligns well with the defocus map 

estimation used in the literature where the defocus map is used to 

encode the amount of defocus blur per pixel in a defocus blurred 

image. In this thesis, we refer the term defocus map as 𝑫̂ ∈

ℝ(𝑁+1)×𝐻×𝑊 and define using the alpha map as below, 

 

𝐷̂𝑖,𝑘 =  𝛼̂𝑖,𝑘 ∏ (1 − 𝛼̂𝑗,𝑘)𝑁
𝑖+1 ,                   (6) 

 

where 𝐷̂𝑖,𝑘 ∈ ℝ denotes the 𝑘𝑡ℎ pixel value from 𝑖𝑡ℎ layer of defocus 

map. In addition, the index to the pixel position will be omitted from 

hereafter. Then, Eq. (5) can be rephrased as, 

 

𝑥 =  ∑ 𝑋̂𝑖 ⊙ 𝐷̂𝑖
𝑁
𝑖=0 ,                       (7) 

 

where ⊙  denotes the element-wise product,  𝑋̂𝑖 ∈ ℝ𝐻×𝑊 , and 𝐷̂𝑖 ∈

ℝ𝐻×𝑊. For estimating the defocus map 𝑫̂, we train a CNN that takes 
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DP image pair as an input. To be specific, the CNN 𝐺𝐷  uses DP 

images for utilizing the intrinsic focus cue and outputs an alpha map.  

 

𝛼̂ =  𝐺𝐷(𝑦𝐿, 𝑦𝑅).                       (8) 

 

The alpha map is then translated to a defocus map 𝑫̂ using Eq. 

(6). Then, we blur each layer of the initialized latent map 𝑿̂ with 

corresponding blur kernel 𝑓𝑖
𝐿 and 𝑓𝑖

𝑅 followed by the soft-blending 

using 𝑫̂, from Eq. (7). Our final output is the non-uniform blurred 

DP images 𝑦̂𝐿 and 𝑦̂𝑅, 

 

𝑦̂𝐿 = 𝑋̂0 ⊙ 𝐷̂0 + ∑ (𝑋̂𝑖 ∗ 𝑓𝑖
𝐿) ⊙ 𝐷̂𝑖

𝑁
𝑖=1 ,              (2) 

𝑦̂𝑅 = 𝑋̂0 ⊙ 𝐷̂0 + ∑ (𝑋̂𝑖 ∗ 𝑓𝑖
𝑅) ⊙ 𝐷̂𝑖

𝑁
𝑖=1 ,             (9) 

 

where 𝐷̂0  and 𝑋̂0  mean the layer without a defocus disparity for 

defocus map and latent map, respectively. By maximizing a posteriori 

probability given observed blurry images 𝑦𝐿 and 𝑦𝑅, our framework 

can estimate the defocus map without using any ground-truth labels.  

For training the defocus map estimation network 𝐺𝐷, we minimize the 

𝐿2 loss as below, 

 

ℒ = ‖𝑦𝐿 − 𝑦̂𝐿‖2
2 + ‖𝑦𝐿 − 𝑦̂𝑅‖2

2.               (10) 

 

 

Generalization for front and back focus 

 

The overall shape of the blur is flipped horizontally depending on 

whether the scene point is in front or behind the focal plane of the 

DP image [16]. Following the work [3], we define front focus when 
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the blurry object is behind the focal plane and back focus when it is 

in front of the focal plane. Note that Eq. (9) and the prior work [29] 

is based on front-focus scenario only. 

However, most images contain both front and back focus areas. 

Hence, we generalize Eq. (9) to adopt both the front and back focus 

of the scene. We define the latent map as 𝑿̂ ∈ ℝ(2𝑁+1)×𝐻×𝑊, defocus 

map 𝑫̂ ∈ ℝ(2𝑁+1)×𝐻×𝑊, back focus blur kernel as 𝑏𝑵 ∈ ℝ(2𝑁+1)×(2𝑁+1), 

and the front focus blur kernel 𝑓𝑵 ∈ ℝ(2𝑁+1)×(2𝑁+1). As the actual blur 

kernel for front and back focus differs [3, 29], two types of blur 

kernel should be considered. Then, Eq. (9) extends to, 

 

𝑦̂𝐿 = ∑ (𝑋̂𝑖 ∗ 𝑏𝑖
𝐿) ⊙ 𝐷̂𝑖

−1
𝑖=−𝑁 + 𝑋̂0 ⊙ 𝐷̂0 + ∑ (𝑋̂𝑖 ∗ 𝑓𝑖

𝐿) ⊙ 𝐷̂𝑖
𝑁
𝑖=1 ,          ) 

𝑦̂𝑅 = ∑ (𝑋̂𝑖 ∗ 𝑏𝑖
𝑅) ⊙ 𝐷̂𝑖

−1
𝑖=−𝑁 + 𝑋̂0 ⊙ 𝐷̂0 + ∑ (𝑋̂𝑖 ∗ 𝑓𝑖

𝑅) ⊙ 𝐷̂𝑖
𝑁
𝑖=1 .     (11) 

 

 

3.3. Learning Blur Kernels 

 

Defocus blur is known to be non-uniform (i.e., spatially-varying), 

where its shape and density vary across the image. Also, the aspect 

of defocus blur can vary depending on the camera optic 

characteristics. Hence, it is not appropriate to apply a uniform blur 

kernel across images for defocus deblurring. After initializing the 

latent map and estimating the defocus map with a uniform 

parameterized blur kernel, we further improve our method by 

learning scene-specific non-uniform blur kernels. 

Ren et al. [17] proposed to use a fully-connected network (FCN) 

to generate a uniform blur kernel using the DIP framework [25]. 
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Although FCN is still a good option, the computation and memory 

requirements increase linearly as we have to estimate multiple non-

uniform blur kernels. Furthermore, the defocus deblurring dataset is 

comprised of high-resolution images. Therefore, we find CNN more 

suitable as it requires fewer resources compared to FCN by taking 

advantage of spatial locality. 

For front focus-only scenes, we train two generative networks 

𝐺𝐹
𝐿 and 𝐺𝐹

𝑅 to predict left and right blur kernels. In the initialization 

phase, a symmetrically modeled blur kernel is used and only one 

network is required to estimate it. However, for further improvement, 

we found that it is better to use two separate networks for each blur 

kernel to compensate for some asymmetric properties that occur in 

the outer part of the image [29]. Each network takes a random tensor 

𝒁 ∈ ℝ𝑃×(8𝑁+4)×(8𝑁+4)  as an input and outputs estimated blur kernel 

𝑭̂𝑵 ∈ ℝ𝑃×(2𝑁+1)×(2𝑁+1) as below, 

 

𝑭̂𝑁
𝐿 = 𝐺𝐹

𝐿(𝒁𝐿),                  (         ) 

𝑭̂𝑁
𝑅 = 𝐺𝐹

𝑅(𝒁𝑅).                           (12) 

 

Then, we apply the softmax layer to an output of the network to 

guarantee non-negativity and satisfy equality constraints that blur 

kernel should sum to 1 . Note that the 𝑃  is the number of non-

uniform blur kernels. Next, we divide the latent map into 𝑃 patches 

where each patch is blurred using corresponding blur kernels. The 

non-uniformly blurred latent map is then blended to latent image 

using the defocus map as in Eq. (9). Again, by minimizing the loss 

from Eq. (10), we learn to generate the scene-specific non-uniform 
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blur kernels as shown in Fig. 3.3. Note that the defocus map 

estimation network 𝐺𝐷  is fixed, while 𝐺𝐹
𝐿  and 𝐺𝐹

𝑅  are jointly 

optimized with the latent map 𝑿̂. To ease the optimization, we first 

initialize the network to predict the parameterized blur kernel. We 

also found that co-optimizing the input random tensor 𝒁 can make 

the network smaller and shorten the training time. For scenes that 

contain both front and back focus, we train four networks to predict 

left and right kernels for front and back focus blur, respectively. 

 

Fig 3.3: Visualization of non-uniform left blur kernels learned 

using a generative network. The network is first initialized to 

predict the parameterized blur kernel before the training. The 

latent map is divided into 8 × 6  patches, where each patch is 

blurred using a corresponding blur kernel to derive a blurred 

latent map. Then, we learn scene-specific non-uniform blur 

kernels by minimizing the loss from Eq. (10). 
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3.4. Implementation Details 

 

Network Architecture 

 

We train a convolutional neural network (CNN) 𝐺𝐷 for estimating 

the defocus map 𝑫̂. 𝐺𝐷 uses concatenated DP image as an input to 

utilize the intrinsic focus cue and outputs an alpha map 𝜶̂. The alpha 

map is then translated to the defocus map by Eq. (6), followed by a 

bilinear upsampling to match the spatial resolution of the original DP 

image. Then, interpolated defocus map is used for estimating the 

blurry DP image pairs 𝑦̂𝐿 and ŷ𝑅, given the initialized latent map and 

the parameterized blur kernels as shown in Eq. (9). The detailed 

architecture for 𝐺𝐷 is presented in Fig. 3.4. 

Also, we train CNNs for generating scene-specific non-uniform 

blur kernels. For front focus-only scenes, we train two generative 

networks 𝐺𝐹
𝐿 and 𝐺𝐹

𝑅 to estimate blur kernels for left and right DP 

images. Each network takes a randomly initialized trainable tensor 

𝒁̂ ∈ ℝ𝑃×(8𝑁+4)×(8𝑁+4) as an input and outputs estimated blur kernels 

𝑭̂𝑵 ∈ ℝ𝑃×(2𝑁+1)×(2𝑁+1) followed by the softmax layer. The blur kernel 

from each layer (i.e. or channel) of 𝑭̂𝑵 is then applied to 𝑃 patches 

of the latent map. The detailed architecture for 𝐺𝐹 is also shown in 

Fig. 3.4. 
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Regularization Terms 

 

We introduce two regularization terms that was effective in 

improving the performance of the proposed method: Smoothness on 

𝐷𝑃 𝐼𝑚𝑎𝑔𝑒 (𝐶𝑜𝑛𝑐𝑎𝑡) 

Conv(32)-Leaky RELU 

Conv(32)-Leaky RELU 

Conv(32)-Leaky RELU 

Conv(64)-Leaky RELU 

MaxPool(2x2) 

Conv(64)-Leaky RELU 

Conv(64)-Leaky RELU 

Conv(64)-Leaky RELU 

Conv(128)-Leaky RELU 

MaxPool(2x2) 

Conv(128)-Leaky RELU 

Conv(128)-Leaky RELU 

Conv(128)-Leaky RELU 

Conv(256)-Leaky RELU 

MaxPool(2x2) 

Conv(N)-Leaky RELU 

Sigmoid 

𝜶̂ ∈ ℝ(𝑁+1)×𝐻×𝑊 

𝒁̂ ∈ ℝ𝑃×(8𝑁+4)×(8𝑁+4) 

Conv(4P, Stride=2) 

Conv(4P, Stride=1) 

Conv(16P, Stride=2) 

Conv(16P, Stride=1) 

Conv(P, Stride=1) 

Softmax 

𝑭̂𝑵 ∈ ℝ𝑃×(2𝑁+1)×(2𝑁+1) 

Fig 3.4: A detailed architecture for 𝐺𝐷  (Left) and 𝐺𝐹  (Right). 

Left: 𝐺𝐷 takes concatenated DP image as an input and outputs 

estimated alpha map which is translated to a defocus map. Right: 

𝐺𝐹  estimates the non-uniform blur kernels from randomly 

initialized tensor 𝒛̂, which is jointly optimized with the network. 

𝐺𝐷 

𝐺𝐹 



 

 ２７ 

defocus image and latent image. The defocus image 𝑑̂ ∈ ℝ𝐻×𝑊 can be 

derived from the defocus map 𝑫̂ ∈ ℝ(𝑁+1)×𝐻×𝑊 as below, 

 

𝑑̂𝑘 =  ∑ (2𝑖 + 1)𝐷̂𝑘
𝑁
𝑖=0 ,                        (13) 

 

where 𝑑̂𝒌 ∈ ℝ and 𝐷̂𝒌 ∈ ℝ𝑁+1 denotes the 𝑘𝑡ℎ pixel value. Then, we 

apply Total Variation (TV) regularization on 𝑑̂𝒌 as below, 

 

ℒ𝑑𝑒𝑓𝑜𝑐𝑢𝑠 =  
1

𝐻×𝑊
∑ 𝑇𝑉(𝑑̂𝑘)𝑘 .                     (14) 

 

Also, to encourage smoothness on the latent sharp image 𝑥 ∈

ℝ𝐻×𝑊 , we adopt an edge-aware smoothness regularization term 

defined as below, 

 

ℒ𝑙𝑎𝑡𝑒𝑛𝑡 =  
1

𝐻×𝑊
∑ 𝑉𝐸(𝑥̂, 𝐸(𝑥))𝑘 .                  (15) 

 

where 𝐸  means an edge map and 𝑉𝐸  refers to the edge-aware 

smoothness term introduced in [29]. The ablation study of 

regularization terms is presented in Table 3.1. 

 

Table 3.1: Ablation study on the regularization terms. ℒ refers to 

the loss term from Eq. (10). 

Method 
Google Pixel dataset 

PSNR↑ SSIM↑ MAE↓ 

ℒ + ℒ𝑙𝑎𝑡𝑒𝑛𝑡 32.549 0.866 0.0145 

ℒ + ℒ𝑑𝑒𝑓𝑜𝑐𝑢𝑠 32.637 0.867 0.0140 

ℒ + ℒ𝑑𝑒𝑓𝑜𝑐𝑢𝑠 + ℒ𝑙𝑎𝑡𝑒𝑛𝑡 32.730 0.872 0.0139 
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Chapter 4. Experiments 
 

We evaluate our method on the Canon DSLR dataset [2] and the 

Google Pixel dataset from [29]. To check the generalization 

performance, we first compare our method with recent state-of-

the-art defocus deblurring models [2, 3, 11, 29] on the Pixel dataset, 

where supervised methods are all trained using the Canon dataset. 

We then demonstrate the general in-distribution performance of our 

method on the Canon dataset, which serves as a public benchmark 

for DP defocus deblurring. 

 

4.1. Dataset 

 

Google Pixel Dataset 

 

Smartphone cameras have a fixed narrow aperture and exhibit a 

large depth of field (DOF) that differs from the variable aperture of 

a DSLR camera. Smartphone cameras use a focus motor to adjust 

focus by changing the distance between the lens and the image 

sensor [32] when the DSLR camera adjusts the aperture size. Hence, 

the aspect of defocus deblur is different between the two cameras 

[16, 29]. Xin et al. [29] captured a uniformly sampled focus stack 

with the nearest focal distance corresponding to 13.7𝑐𝑚  and the 

furthest to the infinity. Then, they generate ground-truth sharp 

images and defocus maps using commercial software. The dataset 

provides 17 front focus-only scenes, including indoor and outdoor, 
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for evaluation. The image is in grayscale raw format and cropped to 

1008 × 1344 resolution with vignetting correction. 

 

Canon DSLR Dataset 

 

DSLR cameras change aperture size to adjust the focus. A wide 

aperture gets more light at the expense of a shallow DOF that causes 

defocus blur in areas outside the DOF. On the other hand, a narrower 

aperture results in a greater DOF, but at the expense of light. 

Abuolaim et al. [2] captured a pair of DP images of the same static 

scene at two aperture sizes: the widest and narrowest aperture size 

possible in a lens configuration. The image captured at the narrowest 

aperture is used as a ground-truth sharp image and the image 

captured at the widest aperture serves as a blurry image to construct 

the dataset. The dataset includes both front-focused and back-

focused scenes, providing 500 pairs of indoor and outdoor scenes in 

sRGB format at 1120 × 1680 resolution. 

 

4.2. Quantitative Results 

 

Google Pixel Dataset 

 

For the Pixel dataset, we use an MPI with 18  layers with a 

maximum blur kernel of size 35 × 35 . Due to the sequential 

optimization pipeline and the use of CNNs, the full optimization takes  
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6 minutes on NVIDIA A100 GPU, which is 20 × faster than [29]. Our 

method outperforms all the other supervised methods [2, 3, 11] in 

quantitative metrics as shown in Table 4.1. Therefore, it can be said 

that data-driven approaches using one type of camera do not 

generalize well to other types of cameras. 

 

Canon DSLR Dataset 

 

As we ran our experiments, we found that the size of defocus blur 

on a DSLR camera is about twice the size of defocus blur from a 

smartphone camera. Hence, the maximum blur kernel size should 

reach around 60 − 70 pixels to properly remove the defocus blur. 

Table 4.1: Quantitative comparison with the recent defocus 

deblurring methods [2, 3, 11, 29] on the Google Pixel dataset. The 

supervised methods are trained using Canon dataset and tested 

on the raw DP images captured from a smartphone camera. Our 

method is better in every image quality metrics, despite being 

unsupervised. 

Method 
Google Pixel dataset 

Learning 
PSNR↑ SSIM↑ MAE↓ 

Xin et al. [29] 30.150 0.826 0.0166 Unsupervised 

DPDNet [2] 31.559 0.849 0.0165 Supervised 

RDPD [3] 32.246 0.861 0.0149 Supervised 

IFAN [11] 31.985 0.862 0.0150 Supervised 

Ours 32.730 0.872 0.0139 Unsupervised 
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Furthermore, we should consider the front-back focus scene for the 

Canon dataset, doubling the number of layers used in MPI. This made 

it difficult to apply our method and had to halve the image resolution 

in each dimension. By reducing the resolution, we were able to use 

an MPI with 35 layers with a maximum blur kernel of size 35 × 35.  

Although our method is unsupervised, the quantitative performance 

in for in-distribution data is competitive to other supervised methods.  

 

4.3. Qualitative Results 

 

We provide visualizations of defocus deblurred images and 

qualitative comparison with other supervised methods in this section., 

The proposed method is capable of restoring defocus deblurred 

Table 4.2: Quantitative comparison with recent supervised 

defocus deblurring methods [2, 3, 11] on the Canon DSLR dataset. 

Note that the performance is measured at 560 × 848 which is half 

the resolution of the original image. Although our method is 

unsupervised, the performance is competitive to other supervised 

methods. 

Method 
Canon DSLR Dataset 

Learning 
PSNR↑ SSIM↑ MAE↓ 

DPDNet [2] 25.47 0.805 0.040 Supervised 

RDPD [3] 25.60 0.783 0.040 Supervised 

IFAN [11] 26.54 0.828 0.036 Supervised 

Ours 25.52 0.800 0.041 Unsupervised 
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images without using any ground-truth labels, as shown in Fig. 4.1. 

 

Input Ours Ground-truth 
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Also, our method is better than recent supervised methods in 

qualitative point of view as shown in Fig. 4.2. For out-of-distribution 

scenarios, trained on DSLR image and tested on smartphone images, 

Fig 4.1: Visualization of the proposed defocus deblurring method. 

The first column is the blurry image, second is the restored image, 

and the last column is the ground-truth image. 
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supervised methods fail to restore some areas and introduce aliasing. 

Therefore, it shows that data-driven approaches using one type of 

camera do not generalize well to other types of cameras.  
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Despite being unsupervised, the proposed methods also shows 

competitive image quality compared to supervised methods for in-

distribution scenario. When trained and tested on the Canon DSLR 

dataset, our method is robust and fails less than the other supervised 

methods, as shown in Fig. 4.3. 

 

 

Fig 4.2: We compare with supervised methods [2, 3, 11] on the 

Google Pixel dataset. The first row is the blurry image and the 

last row is the ground-truth image. Our method shows less failure 

in defocus deblurring compared to other supervised methods. 
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Fig 4.3: Qualitative comparisons with supervised methods [2, 3] 

on the Canon DSLR dataset. The first row is the blurry image and 

the last row is the ground-truth image. Our method shows 

competitive performance to supervised methods, despite being 

unsupervised. 
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Chapter 5. Conclusions 
 

 

5.1. Summary 

 

This thesis proposed a zero-shot defocus deblurring method 

using DP images. Proposed method does not require training data and 

can be used in defocus deblurring smartphone DP images, where it is 

difficult to collect large datasets. It shows competitive performance 

to other supervised methods, despite being unsupervised. We utilize 

the parametric blur kernel and its symmetric property in defocus 

deblurring. Although real DP blur kernels may be symmetric only to 

some extent [3, 29], we showed that symmetric modeling can still 

help to restore sharp image. By initializing a latent map first and then 

using a CNN for estimating the defocus map, we were able to speed 

up the optimization time by 20× compared with [29]. Then, we fix 

the defocus map and learn for scene-specific left and right non-

uniform blur kernels using CNNs while jointly optimizing for the sharp 

latent image. 

 

5.2. Discussion 

 

In this thesis, we demonstrated that current state-of-the-art 

supervised defocus deblurring models [2, 3, 11] do not generalize 

well on defocus blurred images captured from the different cameras 
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it was trained on. Because our method does not require a ground-

truth blur kernel, it can be easily used in the absence of training data 

for smartphone cameras. Even in the presence of training data, it is 

difficult to handle various smartphone cameras because of different 

optical designs due to various pixel structures (i.e. Non-bayer CFAs) 

and smaller pixel size. Hence, collecting device-dependent training 

data will become very expensive and labor-intensive task. Therefore, 

we think that future research for the supervised defocus deblurring 

should also consider camera-agnostic methods. We believe that the 

proposed method can play an important role in such direction.  
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Abstract in Korean 

 

 

듀얼 픽셀(DP) 이미지 센서를 사용하는 스마트폰에서의 Defocus 

Blur 현상은 다양한 카메라 광학 구조와 물체의 깊이 마다 다른 흐릿함 

정도로 인해 원 영상 복원이 쉽지 않습니다. 기존 알고리즘들은 모두 

Canon DSLR 데이터에서 훈련된 지도 학습 접근 방식에 의존하여 스마

트폰으로 촬영된 사진에서는 잘 일반화가 되지 않습니다. 본 논문에서는 

훈련 데이터와 사전 보정된 실제 Blur 커널 없이도, 한 쌍의 DP 사진만

으로도 학습이 가능한 Zero-shot Defocus Deblurring 알고리즘을 제안

합니다. 특히, 본 논문에서는 대칭적으로 모델링 된 Blur Kernel을 사용

하여 초기 영상을 복원하며, 이후 CNN(Convolutional Neural Network)

을 사용하여 관찰된 DP 이미지를 가장 잘 설명하는 Defocus Map을 추

정합니다. 마지막으로 CNN을 사용하여 장면 별 Non-uniform한 Blur 

Kernel을 학습하여 최종 복원 영상의 성능을 개선합니다. 학습과 추론

이 다른 데이터 세트에서 실행될 때, 제안된 방법은 비지도 기술 임에도 

불구하고 최근에 발표된 지도 학습을 기반의 방법들보다 우수한 성능을 

보여줍니다. 또한 학습 된 것과 같은 분포 내 데이터에서 추론할 때도 

지도 학습 기반의 방법들과 정량적 또는 정성적으로 비슷한 성능을 보이

는 것을 확인할 수 있었습니다. 
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