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Abstract

Defocus deblurring in dual—pixel (DP) images is a challenging
problem due to diverse camera optics and scene structures. Most of
the existing algorithms rely on supervised learning approaches
trained on the Canon DSLR dataset but often suffer from weak
generalizability to out—of—distribution images including the ones
captured by smartphones. We propose a novel zero—shot defocus
deblurring algorithm, which only requires a pair of DP images without
any training data and a pre—calibrated ground—truth blur kernel.
Specifically, our approach first initializes a sharp latent map using a
parametric blur kernel with a symmetry constraint. It then uses a
convolutional neural network (CNN) to estimate the defocus map that
best describes the observed DP image. Finally, it employs a
generative model to learn scene—specific non—uniform blur kernels
to compute the final enhanced images. We demonstrate that the
proposed unsupervised technique outperforms the counterparts
based on supervised learning when training and testing run in
different datasets. We also present that our model achieves

competitive accuracy when tested on in—distribution data.

Keyword : Dual—pixel sensor, defocus deblurring, zero—shot
learning, non—uniform blur kernels.
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Chapter 1. Introduction

1.1. Background

Image deblurring is a classical ill—posed inverse problem, which
has been studied for a long time [18, 28]. In general, the problem can

be formulated as,
y=xx*xk+n, @Y

where y is the observed blurry image, x is the latent sharp image,
k is the blur kernel, and n is the noise. Non—blind deblurring [19,
26] methods take a two—step approach: Estimate the blur kernel first
and then restore the image. In other words, non—blind image
deblurring restores the sharp latent x from its observation y given
blur kernel k. Restoring sharp latent is mostly based on the
maximum—a—posterior framework, and various image priors [5, 9]
for improving the image quality have been proposed. However, these
optimization—based approaches are difficult to work around and do
not successfully restore images.

In this paper, we tackle non—blind defocus deblurring using a
dual—pixel (DP) sensor. Defocus deblurring is a subtask of image
deblurring that occurs when an image is captured with a shallow
depth of field (DOF). We use a DP sensor to solve defocus deblurring
by using defocus cues on both left and right images. The DP sensor
has two photodiodes with separate lenses per pixel captur_lingl two
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Out-of-focus
=

Left Pixel +—  Right Pixel
Defocus Disparity

In-focus

Y

Focal Plane DP Sensor Left Pixel = Right Pixel

Fig 1.1: A dual—pixel (DP) image formulation. The out—of—focus
objects exhibit different amount of defocus disparity between left
and right image. On the other hand, in—focus objects do not cause

defocus disparity between two image.

sub—aperture left—right images at once. Canon first proposed the DP
design to improve autofocus in their mirrorless camera. DP is useful
for autofocus as an in—focus scene induces equal intensity between
the two views, while an out—of—focus area causes defocus blur
causing a disparity between the left and right DP sub—aperture views
(Fig. 1.1). DP sensors have now become the mainstream of
smartphone cameras, and their applications include: depth estimation
[7, 15, 311, synthetic bokeh [1, 27], and defocus deblurring [2—4].
However, the number of datasets is limited because camera
manufacturers do not provide access to the raw DP data.

Defocus deblurring is difficult to solve due to non—uniform

blurring (i.e. spatially varying). Unlike motion blur, where a blur
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kernel that is uniform across the image may be sufficient to reflect
camera shake during exposure, defocus blur is mostly affected by the
distance from the camera focal plane to the target object. The size of
the blur increases as the object moves away from the camera focal
plane. Because the depth of the image is not uniform across the image,
defocus deblurring requires a spatially varying non—uniform blur
kernel. Thus, the defocus deblurring of a DP sensor can be modeled

as,

yt=xxf(d),
yR=xxfR(d), (2)

where d is the defocus map which encodes the magnitude of the
blur or the signed distance from the camera focal plane, and f is the
camera—dependent non—uniform blur kernel function, as the
characteristics of the camera optic can also affect the blur kernel.
Therefore, defocus deblurring is equivalent to estimating a defocus
map d, when we have prior information about f. Note that we do not
consider the noise term from Eq. (1) in our work.

On the other hand, data—driven defocus deblurring [2—4, 10, 11,
15, 29] using the deep neural network has dominated conventional
optimization—based methods. Abuolaim et al. [2] first introduced a
large—scale DP dataset based on Canon DSLR and a U—Net—like
network for defocus deblurring using DP images. Since then, various
learning frameworks and neural network architecture benchmarked
on the Canon dataset was introduced. Although such data—driven

supervised learning achieves improved performance, it is still
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questionable whether it generalizes well to images from other camera
optics. Few works address the generalization problem of DP defocus
deblurring, as the Canon dataset is currently the only one available
for training. Xin et al. [29] showed that their unsupervised
optimization framework can restore sharp edges better for
smartphone cameras than the supervised methods trained using
DSLR cameras. They carefully calibrate the blur kernel of the target
smartphone camera and use it for optimization. Their work is
impressive, but requires a pre—calibration step for each camera,
which is tedious and difficult for non—professionals. Moreover, their
method is not fully unsupervised since they use a ground—truth non—
uniform blur kernel for optimization.

Recently, Ren et al. [17] proposed a neural blind deconvolution
method that jointly estimates the motion blur kernel and sharp latent
without relying on massive training data. Although the task is limited
to uniform blur models, the proposed zero—shot learning framework
using a CNN directly generates a sharp latent and a blur kernel that

maximizes a posteriori given the observed image.

1.2. Overview

Inspired by [17, 29], we propose a zero—shot defocus deblurring
method using only a DP image pair at test time. To solve this fully—
unsupervised problem, we utilize the symmetric constraints [16] of

the DP blur kernel in the initialization phase. Using a symmetrically

9 .-':rxq e

3 =11 =1
|-1-'l| .J!'



L2 loss

Fig 1.2: An overview of our approach. We propose a zero—shot
defocus deblurring only using an observed blurry image y’ and
yR. The framework outputs $L and $% by blurrying the latent
map X using the blur kernel F and soft—blend it by defocus map
D. Then, we minimize the L2 loss between the observation (y)

and estimation () to train CNNs and the latent map X.

modeled blur kernels for left—right DP images, the proposed method
blurs the initial latent map. Each layer of the latent map is then
optimized to maximizes a posteriori probability of observed blurry DP
image pairs. After the optimization, the in—focus areas for each layer
of the latent map are restored due to the symmetric constraint from
the left—right blur kernels. Then, the initialized latent map is soft—
blended by the estimated defocus map, and outputs a defocus
deblurred latent image. For estimating the defocus map, we use a
convolutional neural network (CNN) that takes DP image pairs as an
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input. The defocus map estimation network is trained to maximize a
posteriori given the observed blurry DP images. For further
improvement, we incorporate blur kernel estimation network to learn

scene—specific and non—uniform blur kernels.
1.3. Contribution

Our contributions are summarized as below:

1. We propose a zero—shot defocus deblurring method using DP
images. Our fully unsupervised framework first exploits the
symmetric property of the DP blur kernel and then learns
scene—specific non—uniform blur kernels.

2. We extend the prior work by introducing a more generalized
framework that can handle both front and back defocus blur
without a pre—calibration step for the target camera. By
adopting the neural network with proper Iinitialization, our
method runs 20x faster than the previous work.

3. Our method generalizes better than the supervised method on
unseen data and shows competitive performance to the

supervised method on public benchmark dataset.
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Chapter 2. Related Works

2.1. Defocus Deblurring

Single image defocus deblurring has been studied for a long time
and various methods have been proposed ranging from classical
approaches [8, 9] to more recent deep learning—based approaches
[11, 34]. Karaali et al. [8] proposed a classical approach using edge—
based gradient method for estimating spatially varying defocus blur
using a single image. Moving into the era of deep learning, Lee et al.
[11] proposed a deblurring filters based on neural network,
composed of stacks of small—sized separable filters applied
iteratively for effectively managing large defocus blur. Son et al. [34]
proposed another deep learning approach exploiting the
characteristics of inverse kernels. They utilize the property that the
shape of inverse kernel remains the same and only the size changes
as the amount of defocus blur changes.

Defocus deblurring using dual images from the DP sensor was
recently introduced. Abuolaim et al. [2] provided the first high—
resolution defocused DP image pairs with the corresponding all—in—
focus ground—truths images using a Canon DSLR camera. Also, to
predict an all—-in—focus—image from the DP image pair, they train a
Dual—Pixel Defocus deblurring Network (DPDNet) which adapts a

U—Net—like architecture. Lee et al. [11] proposed an Iterative Filter
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Adaptive Network (IFAN) which incorporates iterative adaptive
convolution layers to handle large defocus blur in a spatially —varying
manner. In addition, because DP data is limited and difficult to acquire,
there i1s also a line of research for mathematically modeling and
simulating the DP image formation pipeline to generate realistic DP
data to address the problem of data scarcity [3, 15]. Leveraging
these synthetic DP images, Abuolaim et al. [3] proposed a Recurrent
Dual—Pixel Deblurring (RDPD) method wusing CNN-LSTM
architecture that improves the deblurring results.

Recently, Xin et al. [29] introduced a non-—blind defocus
deblurring based on an optimization framework to recover an all—in—
focus image using a pair of observed DP images and a carefully
captured ground—truth blur kernel. Their work has been shown to
restore high—frequency details better than the DPDNet in images
captured by smartphone cameras, without using any training datasets.
In contrast to these prior works, our method tackles defocus

deblurring without using real blur kernels and large training datasets.

2.2. Defocus Map

Estimating the defocus map is important for estimating the
defocus deblurring of an image. This is because the amount of
defocus blur is heavily dependent on the defocus map which encodes
the relative depth from the focal plane. Zhou et al. [35] proposed a

simple approach to estimate the amount of defocus blur at edges by
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re—blurring the defocused image using a Gaussian kernel and
measuring the ratio of gradients between defocused and re—blurred
images. Lee et al. [10] proposed the first end—to—end defocus map
estimation network using domain adaptation with the new large —scale
dataset for supervised learning. Punnappurath et al. [16] proposed to
recover a depth estimation by using a point spread function to model
the defocus disparity from the DP sensors, Using the symmetry
property of the model, they proposed unsupervised method that does

not require ground truth depth.
2.3. Multiplane Image Representation

Multiplane image (MPI) is a 3—dimensional layered representation
of the scene to produce a view that are spatially consistent [22]. MPI
is widely used in scene rendering [21, 24, 33] because its soft
blending supports differentiable optimization properties along with
the ability to represent occlusion. MPI can also be used for defocus
deblurring [29] since the size of the blur kernel is positively related
to the distance to the focal plane of the camera. Hence, each layer of
MPI can represent the size of the blur kernel which increases as it

reaches to the last layer.
2.4. DP Blur Kernel

Non—blind defocus deblurring used parametric blur models such
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as disk [6] or Gaussian kernel [8, 14]. As non—blind deblurring is
susceptible to errors in blur kernel, several works [12, 13] estimate
camera—dependent blur kernels from calibration patterns. For
modeling blur kernels in the DP sensor, Punnappurath et al. [16] used
Canon DSLR and a pre—defined calibration pattern to estimate the
ground truth point spread function (PSF) for left and right DP view.
Then, they introduced a translating disk—shaped blur kernel based
on the derived PSF which exhibits symmetric property between left
and right. To provide a more realistic blur kernel that exhibits a
donut—shaped depletion due to optical aberrations [23], Abuolaim et
al. [3] proposed a parametric model based on the 2D Butterworth
filter. To reflect the spatially—varying property, their work can
generate many representative PSF by varying the parameter of the
filter.

Recently, Ren et al. [17] proposed a joint optimization algorithm
to solve for both estimating uniform blur kernel and generating sharp
latent in blind motion deblurring task. Inspired by their work, we
introduce to learn non—uniform blur kernels jointly with a sharp
latent after some initialization step using the parametric DP blur

model [3].
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Chapter 3. Proposed Methods

This thesis proposes a scene—specific defocus deblurring method
using DP images. The optimization is based on a zero—shot learning
framework [20] that trains a scene—by—scene CNNs at test time
using only the input image (.e., blurred DP images). The proposed
method does not require the ground—truth sharp image or ground—
truth blur kernel. The unsupervised learning concept for defocus
deblurring was first proposed by Xin et al. [29], where they jointly
optimize for both latent image and the defocus map, given the
ground—truth blur kernels. While their method only focuses on the
front focus (i.e., objects behind the focal plane) defocus blur, we
propose a more general approach to deal with the front and back
focus using CNNs and without requiring the ground—truth blur kernel.

Instead of co—optimizing the latent image and defocus map, we
optimize each one sequentially to make our problem easy to solve.
First, we show that sharp image can be restored by only using a
symmetrically property of parametric modeled blur kernel and
describe on how to initialize the sharp latent map. Next, we introduce
a method for estimating the defocus map by maximizing a posteriori
probability of observed blurry image, given the initialized sharp latent
map and the parametric modeled blur kernel. Finally, we further
improve our model by learning scene—specific non—uniform blur

kernel.
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Lh = |lyt-(F* < D3

0
minimize (L* + L)

Symmetric Blur Kernel — SESESS 8 SR G- - -~~~ =~ === -= == ===~

®::

LR = |lyt=(F* = D)1}

Fig 3.1: A sharp image can be restored using only the input image
and a parameterized blur kernel of the correct size. A convolution
is applied to a random vector Z with a left—right symmetric blur
kernel to obtain a pair of blurry DP images. Then, the outputs of
convolutions are optimized to minimize loss with respect to the
input image. Because the parameterized left and right blur kernels
are symmetric, we can restore sharp image, despite not using a

ground—truth blur kernel.

3.1. Latent Map Initialization

The multiplane image (MPI) representation [22] consists of a
latent map X € RW+DXEXW and glpha map @& € RVTDXEXW - oqch with
N fronto—parallel planes where the pixels in each plane are fixed at
certain depth (i.e., or also in certain blur size). MPI can be used for
defocus deblurring [29] since the size of the blur kernel is positively

17 2 A2tk
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related to the distance to the focal plane of the camera. Hence, each
layer of MPI can represent the size of the blur kernel which increases
as it reaches the last layer.

Now, let X; € R"*W be the it" layer of a latent map and f €
REHDXRHD) gnd fR € R@HD*EHD pe the corresponding left—right
blur kernel. Following Eq. (2), we can derive the uniformly—blurred
DP images $F € RF*Y and $R € RPW for each layer by applying

convolution to X; with f* and £, respectively.

AL _ O L
Vi =X+ fi

It =X+ £, (3)

where the blur kernel for each layer can be obtained by linearly
downsizing from the maximum size kernel f € RGN*D*X@N+1) and
R € RGN+DX@N+1) - and zero—padding afterward. Now using the
downsized blur kernel for each layer, we can optimize for X; by
maximizing a posteriori probability given the observed blurry image.
By minimizing the loss between y; and the observed blurry image y,
we can restore a partially sharp image for each and every layer of
the latent map as shown in Fig. 3.1 (i.e., only the in—focus region for
each layer will be restored). Although a parameterized blur kernel
may not correctly represent the real blur kernel, its symmetric
properties help and successfully restores sharp images.

Based on the above properties, we initialize the partially sharp
latent map by optimizing every layer to maximize a posteriori of
observed blurry image. Formally, we minimize the L2 loss as below,

13 ;ﬁ'! X
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Latent Map X

Fig 3.2: Visualization of the initialized latent map X of MPI
representation. Each layer X; is blurred using a blur kernel of the
corresponding size and optimized to minimize the loss as shown
in Fig. 3.1. After the optimization, the in—focus regions of X; are
deblurred while other regions are not. The initialized latent map

X is then used for the defocus map estimation.

£= 3oy = 9412 + Iy® - 98 (12)- )

The result of the latent map initialization can be seen in Fig. 3.2.
Because the scene depth is not uniform, the amount of defocus blur
varies across the image. Therefore, applying a uniform blur kernel to
each layer results in successful deblurring in some in—focus regions
(i.e., the correct size of blur kernel applied), while other regions are
not. This means that in order to achieve image-—level defocus
deblurring, it is necessary to estimate the defocus map that encodes

blur amount information for each pixel.
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3.2. Defocus Map Estimation

In MPI representation, the latent image % € R¥*W can be derived
by soft—blending the latent map X with the alpha map @ using the

over operator as below,
20 = YV (Rin@ir 1V, (1 — &; 5
X = Li=oXik @ik [1i41( aj,k))r (5)

where k is the index for each pixel.

In soft—blending the latent map to the latent image, the alpha map
should put more weights on in—focus layer of an MPI for each pixel.
Therefore, estimating the index of an in—focus layer can be also seen
as finding the correct blur kernel size for each pixel in a non—uniform
defocus deblurring scenario. This aligns well with the defocus map
estimation used in the literature where the defocus map is used to
encode the amount of defocus blur per pixel in a defocus blurred
image. In this thesis, we refer the term defocus map as D€

RWNV+HDXHXW and define using the alpha map as below,

Dij = @y [T (1 — @), (6)

where D;j € R denotes the k** pixel value from i** layer of defocus
map. In addition, the index to the pixel position will be omitted from

hereafter. Then, Eq. (5) can be rephrased as,
2=3L.X OD, (7)
where © denotes the element—wise product, X; € RF*W | and D; €

RHXW  For estimating the defocus map D, we train a CNN that takes
§
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DP image pair as an input. To be specific, the CNN G, uses DP

images for utilizing the intrinsic focus cue and outputs an alpha map.

a= Gpyhy®. ®

The alpha map is then translated to a defocus map D using Eq.
(6). Then, we blur each layer of the initialized latent map X with
corresponding blur kernel fl-L and fl-R followed by the soft—blending
using D, from Eq. (7). Our final output is the non—uniform blurred

DP images $* and 9%,

9t =X, © Dy + XL (X + 1) O Dy,

Xo © Do + EiLy(Ki * f) O Dy, ©)

y\R

where D, and X, mean the layer without a defocus disparity for
defocus map and latent map, respectively. By maximizing a posteriori
probability given observed blurry images y! and yR, our framework
can estimate the defocus map without using any ground—truth labels.
For training the defocus map estimation network Gp, we minimize the

L2 loss as below,

L=ly" =313 + lly* — 97113 (10)

Generalization for front and back focus

The overall shape of the blur is flipped horizontally depending on
whether the scene point is in front or behind the focal plane of the

DP image [16]. Following the work [3], we define front focus when
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the blurry object is behind the focal plane and back focus when it is
in front of the focal plane. Note that Eq. (9) and the prior work [29]
1s based on front—focus scenario only.

However, most images contain both front and back focus areas.
Hence, we generalize Eq. (9) to adopt both the front and back focus
of the scene. We define the latent map as X € RGN+tDXHXW = qefocus
map D € RGNFDXHXW “hack focus blur kernel as by € RENFDXEN+L)
and the front focus blur kernel fy € RGN*DX@N+1)  Ag the actual blur
kernel for front and back focus differs [3, 29], two types of blur

kernel should be considered. Then, Eq. (9) extends to,

PL=Yt N &Ki*b)OD;+X, O Do+ XIL,(Xi * fH O D,

IR =Tion@i+b{) O D; +Xo © Do + il (Xi + fF) O Di. (11)

3.3. Learning Blur Kernels

Defocus blur is known to be non—uniform (i.e., spatially —varying),
where its shape and density vary across the image. Also, the aspect
of defocus blur can vary depending on the camera optic
characteristics. Hence, it is not appropriate to apply a uniform blur
kernel across images for defocus deblurring. After initializing the
latent map and estimating the defocus map with a uniform
parameterized blur kernel, we further improve our method by
learning scene—specific non—uniform blur kernels.

Ren et al. [17] proposed to use a fully —connected network (FCN)

to generate a uniform blur kernel using the DIP framework [25].
L,
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Although FCN is still a good option, the computation and memory
requirements increase linearly as we have to estimate multiple non—
uniform blur kernels. Furthermore, the defocus deblurring dataset is
comprised of high—resolution images. Therefore, we find CNN more
suitable as it requires fewer resources compared to FCN by taking
advantage of spatial locality.

For front focus—only scenes, we train two generative networks
Gk and GF to predict left and right blur kernels. In the initialization
phase, a symmetrically modeled blur kernel is used and only one
network is required to estimate it. However, for further improvement,
we found that it is better to use two separate networks for each blur
kernel to compensate for some asymmetric properties that occur in
the outer part of the image [29]. Each network takes a random tensor
Z € RPX(BN+HX(BN+4) 59 an input and outputs estimated blur kernel

_

FN € RPX(2N+1)><(2N+1) as belOW,

Fy = Gi(z"),

FR = GR(z®). (12)

Then, we apply the softmax layer to an output of the network to
guarantee non—negativity and satisfy equality constraints that blur
kernel should sum to 1. Note that the P is the number of non—
uniform blur kernels. Next, we divide the latent map into P patches
where each patch is blurred using corresponding blur kernels. The
non—uniformly blurred latent map is then blended to latent image
using the defocus map as in Eq. (9). Again, by minimizing the loss
from Eq. (10), we learn to generate the scene—specific non—uniform

9 3 ;ﬁ'! X
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Parametric Blur Kernel (Left)

F% for image #1 Fk for image #2 F for image #3
Fig 3.3: Visualization of non—uniform left blur kernels learned
using a generative network. The network is first initialized to
predict the parameterized blur kernel before the training. The
latent map is divided into 8 X 6 patches, where each patch is
blurred using a corresponding blur kernel to derive a blurred
latent map. Then, we learn scene—specific non—uniform blur

kernels by minimizing the loss from Eq. (10).

blur kernels as shown in Fig. 3.3. Note that the defocus map
estimation network Gp is fixed, while GEt and GF are jointly
optimized with the latent map X. To ease the optimization, we first
initialize the network to predict the parameterized blur kernel. We
also found that co—optimizing the input random tensor Z can make
the network smaller and shorten the training time. For scenes that
contain both front and back focus, we train four networks to predict

left and right kernels for front and back focus blur, respectively.
11 2 =T
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3.4. Implementation Details

Network Architecture

We train a convolutional neural network (CNN) G, for estimating
the defocus map D. G, uses concatenated DP image as an input to
utilize the intrinsic focus cue and outputs an alpha map @. The alpha
map is then translated to the defocus map by Eq. (6), followed by a
bilinear upsampling to match the spatial resolution of the original DP
image. Then, interpolated defocus map is used for estimating the
blurry DP image pairs $* and $%, given the initialized latent map and
the parameterized blur kernels as shown in Eq. (9). The detailed
architecture for Gj is presented in Fig. 3.4.

Also, we train CNNs for generating scene—specific non—uniform
blur kernels. For front focus—only scenes, we train two generative
networks Gk and GE to estimate blur kernels for left and right DP
images. Each network takes a randomly initialized trainable tensor
Z € RPXBN+49X(BN+4) ag an input and outputs estimated blur kernels
Fy € RPX@N+DXC@N+1) fo]llowed by the softmax layer. The blur kernel
from each layer (i.e. or channel) of Fy is then applied to P patches
of the latent map. The detailed architecture for Gp is also shown in

Fig. 3.4.
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DP Image (Concat) 7 € RPX(BN+4)x(8N+4)

# Conv(32)-Leaky RELU Conv(4P, Stride=2) ‘I
Conv(32)-Leaky RELU Conv(4P, Stride=1) I
Conv(32)-Leaky RELU Conv(16P, Stride=2) : Gr
Conv(64)-Leaky RELU Conv(16P, Stride=1)

MaxPool (2x2) Conv(P, Stride=1) [
Conv(64)-Leaky RELU Softmax ,'

Conv(64)-Leaky RELU
Conv(64)-Leaky RELU
Conv(128)-Leaky RELU
MaxPool(2x2)
Conv(128)-Leaky RELU
Conv(128)-Leaky RELU
Conv(128)-Leaky RELU
Conv(256)-Leaky RELU
MaxPool(2x2)
Conv(N)-Leaky RELU

Sigmoid /

Fy € RPX@N+DX@N+1)

o TE Em mm mm o e e e Em o Em Em Em Em Em Em Em e e e E—
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ac R(N+1)><H><W

Fig 3.4: A detailed architecture for Gp, (Left) and Gr (Right).
Left: Gp takes concatenated DP image as an input and outputs
estimated alpha map which is translated to a defocus map. Right:
Gr estimates the non—uniform blur kernels from randomly

initialized tensor 2, which is jointly optimized with the network.

Regularization Terms

We introduce two regularization terms that was effective in

improving the performance of the proposed method: Smoothness on
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Table 3.1: Ablation study on the regularization terms. £ refers to

the loss term from Eq. (10).

Google Pixel dataset
Method
PSNR 1 SSIM 1 MAE |
L+ Ligtent 32.549 0.866 0.0145
L+ Laesocus 32.637 0.867 0.0140
L+ Laerocus + Liatent 32.730 0.872 0.0139

defocus image and latent image. The defocus image d € RF*W can be

derived from the defocus map D € RW+DXHXW 74 helow,
dy = YN ,(2i + 1)Dy, (13)

where di € R and D, € R¥*! denotes the k" pixel value. Then, we

apply Total Variation (TV) regularization on d, as below,

1 A
Laefocus = Ty L TV (dio)- (14)

Also, to encourage smoothness on the latent sharp image X €
RI*W  we adopt an edge—aware smoothness regularization term

defined as below,

Ligtent = 7= Y Ve (&, E(®)). (15)

where E means an edge map and Vg refers to the edge—aware
smoothness term introduced in [29]. The ablation study of

regularization terms is presented in Table 3.1.

27 ] 2-1



Chapter 4. Experiments

We evaluate our method on the Canon DSLR dataset [2] and the
Google Pixel dataset from [29]. To check the generalization
performance, we first compare our method with recent state—of—
the—art defocus deblurring models [2, 3, 11, 29] on the Pixel dataset,
where supervised methods are all trained using the Canon dataset.
We then demonstrate the general in—distribution performance of our
method on the Canon dataset, which serves as a public benchmark

for DP defocus deblurring.

4.1. Dataset

Google Pixel Dataset

Smartphone cameras have a fixed narrow aperture and exhibit a
large depth of field (DOF) that differs from the variable aperture of
a DSLR camera. Smartphone cameras use a focus motor to adjust
focus by changing the distance between the lens and the image
sensor [32] when the DSLR camera adjusts the aperture size. Hence,
the aspect of defocus deblur is different between the two cameras
[16, 29]. Xin et al. [29] captured a uniformly sampled focus stack
with the nearest focal distance corresponding to 13.7cm and the
furthest to the infinity. Then, they generate ground—truth sharp
images and defocus maps using commercial software. The dataset

provides 17 front focus—only scenes, including indoor and outdoor,
§
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for evaluation. The image is in grayscale raw format and cropped to

1008 x 1344 resolution with vignetting correction.
Canon DSLR Dataset

DSLR cameras change aperture size to adjust the focus. A wide
aperture gets more light at the expense of a shallow DOF that causes
defocus blur in areas outside the DOF. On the other hand, a narrower
aperture results in a greater DOF, but at the expense of light.
Abuolaim et al. [2] captured a pair of DP images of the same static
scene at two aperture sizes: the widest and narrowest aperture size
possible in a lens configuration. The image captured at the narrowest
aperture is used as a ground-—truth sharp image and the image
captured at the widest aperture serves as a blurry image to construct
the dataset. The dataset includes both front—focused and back—
focused scenes, providing 500 pairs of indoor and outdoor scenes in

sRGB format at 1120 x 1680 resolution.
4.2. Quantitative Results

Google Pixel Dataset

For the Pixel dataset, we use an MPI with 18 layers with a
maximum blur kernel of size 35x35. Due to the sequential

optimization pipeline and the use of CNNs, the full optimization takes
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Table 4.1: Quantitative comparison with the recent defocus

deblurring methods [2, 3, 11, 29] on the Google Pixel dataset. The

supervised methods are trained using Canon dataset and tested

on the raw DP images captured from a smartphone camera. Our

method is better in every image quality metrics, despite being

unsupervised.
Method Google Pixel dataset Learning
PSNR 1 SSIM 1 MAE |
Xin et al. [29] | 30.150 0.826 0.0166 | Unsupervised
DPDNet [2] 31.559 0.849 0.0165 Supervised
RDPD [3] 32.246 0.861 0.0149 Supervised
IFAN [11] 31.985 0.862 0.0150 Supervised
Ours 32.730 0.872 0.0139 | Unsupervised

6 minutes on NVIDIA A100 GPU, which is 20 x faster than [29]. Our

method outperforms all the other supervised methods [2, 3, 11] in

quantitative metrics as shown in Table 4.1. Therefore, it can be said

that data—driven approaches using one type of camera do not

generalize well to other types of cameras.

Canon DSLR Dataset

As we ran our experiments, we found that the size of defocus blur

on a DSLR camera is about twice the size of defocus blur from a

smartphone camera. Hence, the maximum blur kernel size should

reach around 60 — 70 pixels to properly remove the defocus blur.
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Table 4.2: Quantitative comparison with recent supervised
defocus deblurring methods [2, 3, 11] on the Canon DSLR dataset.
Note that the performance is measured at 560 x 848 which is half
the resolution of the original image. Although our method is
unsupervised, the performance is competitive to other supervised

methods.

Canon DSLR Dataset )
Method Learning
PSNR 1 SSIM 1 MAE |

DPDNet [2] 25.47 0.805 0.040 Supervised

RDPD [3] 25.60 0.783 0.040 Supervised
IFAN [11] 26.54 0.828 0.036 Supervised

Ours 25.52 0.800 0.041 Unsupervised

Furthermore, we should consider the front—back focus scene for the
Canon dataset, doubling the number of layers used in MPI. This made
it difficult to apply our method and had to halve the image resolution
in each dimension. By reducing the resolution, we were able to use
an MPI with 35 layers with a maximum blur kernel of size 35 X 35.

Although our method is unsupervised, the quantitative performance

in for in—distribution data is competitive to other supervised methods.

4.3. Qualitative Results

We provide visualizations of defocus deblurred images and
qualitative comparison with other supervised methods in this section.,

The proposed method is capable of restoring defocus deblurred
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images without using any ground—truth labels, as shown in Fig. 4.1.

Input Ours Ground-truth




Fig 4.1: Visualization of the proposed defocus deblurring method.

The first column is the blurry image, second is the restored image,

and the last column is the ground—truth image.

Also, our method is better than recent supervised methods in
qualitative point of view as shown in Fig. 4.2. For out—of—distribution
scenarios, trained on DSLR image and tested on smartphone images,
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supervised methods fail to restore some areas and introduce aliasing.
Therefore, it shows that data—driven approaches using one type of

camera do not generalize well to other types of cameras.

Input

DPDNet [2]

RDPD [3]

IFAN [11]

Y R



Ours

Ground-truth

Fig 4.2: We compare with supervised methods [2, 3, 11] on the
Google Pixel dataset. The first row is the blurry image and the
last row is the ground—truth image. Our method shows less failure

in defocus deblurring compared to other supervised methods.

Despite being unsupervised, the proposed methods also shows
competitive image quality compared to supervised methods for in—
distribution scenario. When trained and tested on the Canon DSLR
dataset, our method is robust and fails less than the other supervised

methods, as shown in Fig. 4.3.
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Input

DPDNet [2]

Ours

Ground-truth

Fig 4.3: Qualitative comparisons with supervised methods [2, 3]

on the Canon DSLR dataset. The first row is the blurry image and

the last row is the ground—truth image. Our method shows

competitive performance to supervised methods, despite being
unsupervised.
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Chapter 5. Conclusions

5.1. Summary

This thesis proposed a zero—shot defocus deblurring method
using DP images. Proposed method does not require training data and
can be used in defocus deblurring smartphone DP images, where it is
difficult to collect large datasets. It shows competitive performance
to other supervised methods, despite being unsupervised. We utilize
the parametric blur kernel and its symmetric property in defocus
deblurring. Although real DP blur kernels may be symmetric only to
some extent [3, 29], we showed that symmetric modeling can still
help to restore sharp image. By initializing a latent map first and then
using a CNN for estimating the defocus map, we were able to speed
up the optimization time by 20x compared with [29]. Then, we fix
the defocus map and learn for scene—specific left and right non—
uniform blur kernels using CNNs while jointly optimizing for the sharp

latent image.
5.2. Discussion

In this thesis, we demonstrated that current state—of—the—art
supervised defocus deblurring models [2, 3, 11] do not generalize

well on defocus blurred images captured from the different cameras
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it was trained on. Because our method does not require a ground—
truth blur kernel, it can be easily used in the absence of training data
for smartphone cameras. Even in the presence of training data, it is
difficult to handle various smartphone cameras because of different
optical designs due to various pixel structures (i.e. Non—bayer CFAs)
and smaller pixel size. Hence, collecting device—dependent training
data will become very expensive and labor—intensive task. Therefore,
we think that future research for the supervised defocus deblurring
should also consider camera—agnostic methods. We believe that the

proposed method can play an important role in such direction.
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