126 research outputs found

    Effects of Waterborne Copper on Toxicity and Oxidative Stress Responses in Red Seabream, Pagrus major

    Get PDF
    ์š” ์•ฝ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์–‘ํ•œ ๋†๋„์˜ ๊ตฌ๋ฆฌ์— ์ฐธ๋”, Pagrus major์„ ๋…ธ์ถœ์‹œํ‚จ ํ›„, ์ฐธ๋” ์ฒด๋‚ด์—์„œ ๋…์„ฑ ๋ฐ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ์œ ๋ฐœ์‹œํ‚ค๋Š” ๊ตฌ๋ฆฌ์˜ ๋†๋„ ๋ฒ”์œ„๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ตฌ๋ฆฌ ๋†๋„์— ๋”ฐ๋ฅธ ์ฐธ๋”์˜ ์ƒ๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ˜ˆ์ค‘ ํ˜ธ๋ฅด๋ชฌ์˜ ์–‘์  ๋ณ€๋™ ๋ฐ ํšจ์†Œ ํ™œ์„ฑ์„ ํฌํ•จํ•œ ๋ถ„์ž๋‚ด๋ถ„๋น„ํ•™์  ๋ถ„์„ ๋“ฑ์„ ํ†ตํ•˜์—ฌ ๋น„๊ตยท๋ถ„์„ํ•˜์˜€๋‹ค. 1. ์ฐธ๋”์˜ ๋…์„ฑ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ์— ๋ฏธ์น˜๋Š” ๊ตฌ๋ฆฌ์˜ ์˜ํ–ฅ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋…์„ฑ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ตฌ๋ฆฌ์˜ ๋†๋„๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์ฐธ๋”์„ ๋‹ค์–‘ํ•œ ๊ตฌ๋ฆฌ ๋†๋„(10, 20, 30 ๋ฐ 40 ฮผg/L) ์‹คํ—˜๊ตฌ๋ณ„๋กœ ๊ฐ๊ฐ 0, 6, 12, 24, 72 ๋ฐ 120 ์‹œ๊ฐ„ ๋™์•ˆ ๋…ธ์ถœ์‹œํ‚จ ํ›„, ์ƒ๋ฆฌํ•™์  ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘[corticotrophin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol ๋ฐ glucose] ๋ฐ ๋…์„ฑ ์ŠคํŠธ๋ ˆ์Šค ์ง€ํ‘œ[metallothionein (MT) ๋ฐ Na+/K+-ATPase (NKA)]์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์„ธํฌ์‚ฌ๋ฉธ ๋ฐ˜์‘์€ ํ˜ˆ์ค‘ hydrogen peroxide (H2O2) ๋ฐ caspase-3์˜ ํ™œ์„ฑ ๋ณ€ํ™” ๊ทธ๋ฆฌ๊ณ  terminal transferase dUTP nick end labeling (TUNEL) assay์„ ํ†ตํ•˜์—ฌ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, 30๊ณผ 40 ฮผg/L์˜ ๊ตฌ๋ฆฌ ๋†๋„ ์‹คํ—˜๊ตฌ์—์„œ๋Š” ๋…ธ์ถœ ์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ•จ์— ๋”ฐ๋ผ ํ˜ˆ์žฅ ๋‚ด CRH, ACTH, cortisol, glucose, MT, H2O2 ๋ฐ caspase-3 ๋†๋„๊ฐ€ ์œ ์˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜ˆ์žฅ ๋‚ด NKA ๋†๋„๋Š” ์˜คํžˆ๋ ค ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค(P < 0.05). ๋˜ํ•œ, TUNEL assay๋ฅผ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ, 30 ฮผg/L์˜ ๊ตฌ๋ฆฌ ๋†๋„ ์‹คํ—˜๊ตฌ์—์„œ ์„ธํฌ์‚ฌ๋ฉธ์ด ๊ฐ€์žฅ ๋งŽ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ฐธ๋”์˜ ๊ฒฝ์šฐ, 30 ฮผg/L ์ด์ƒ์˜ ๊ตฌ๋ฆฌ ๋†๋„๋Š” ๋…์„ฑ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ ์„ธํฌ์‚ฌ๋ฉธ์„ ์œ ๋ฐœํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค. 2. ์ฐธ๋”์˜ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค ๋ฐ ๋ฉด์—ญ ๋ฐ˜์‘์— ๋ฏธ์น˜๋Š” ๊ตฌ๋ฆฌ์˜ ์˜ํ–ฅ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตฌ๋ฆฌ๊ฐ€ ๋…์„ฑ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ์ฐธ๋”์˜ ์‚ฐํ™”์ŠคํŠธ๋ ˆ์Šค์™€ ๋ฉด์—ญ ๋ฐ˜์‘์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋†๋„๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ๊ตฌ๋ฆฌ ๋†๋„๋ณ„(10, 20, 30 ๋ฐ 40 ฮผg/L) ์‹คํ—˜๊ตฌ์— ์ฐธ๋”์„ ๊ฐ๊ฐ 0, 6, 12, 24, 72 ๋ฐ 120 ์‹œ๊ฐ„ ๋™์•ˆ ๋…ธ์ถœ์‹œํ‚จ ํ›„, ํ•ญ์‚ฐํ™” ํšจ์†Œ์ธ superoxide dismutase (SOD)์™€ catalase (CAT) mRNA์˜ ๋ฐœํ˜„๋Ÿ‰ ๋ฐ ํ˜ˆ์žฅ ๋‚ด ๋†๋„ ๋ณ€ํ™” ๊ทธ๋ฆฌ๊ณ  hydrogen peroxide (H2O2)์™€ lipid peroxidation (LPO)์˜ ๋†๋„ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์‹คํ—˜๊ตฌ๋ณ„ ๋ฉด์—ญ ๋ฐ˜์‘์˜ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ immunoglobulin M (IgM), lysozyme, ๋ฐ melatonin์˜ ๋†๋„ ๋ณ€ํ™” ๋ฐ ๋‹จ๋ฐฑ์งˆ ๋ฐœํ˜„ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ์„ธํฌ ๋‚ด ํ•ต DNA ์†์ƒ ์ •๋„๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Comet assay๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํ•ญ์‚ฐํ™” ํšจ์†Œ mRNA์˜ ๋ฐœํ˜„ ๋ฐ ํ™œ์„ฑ ๊ทธ๋ฆฌ๊ณ  H2O2๊ณผ LPO ๋†๋„๋Š” 30 ฮผg/L ์ด์ƒ์˜ ๊ตฌ๋ฆฌ ๋†๋„์—์„œ ๋…ธ์ถœ ์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ•จ์— ๋”ฐ๋ผ ์œ ์˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋ฉด์—ญ ๊ด€๋ จ ์ง€ํ‘œ๋กœ์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” IgM, lysozyme ๋ฐ melatonin์˜ ๋†๋„ ๋ณ€ํ™”์™€ ๋‹จ๋ฐฑ์งˆ ๋ฐœํ˜„ ๋ณ€ํ™”๋Š” 30๊ณผ 40 ฮผg/L ๊ตฌ๋ฆฌ ๋†๋„์—์„œ ๋…ธ์ถœ ์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ•จ์— ๋”ฐ๋ผ ์œ ์˜์ ์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋˜ํ•œ, Comet assay ๊ฒฐ๊ณผ์—์„œ๋„ 30 ฮผg/L์—์„œ 120 ์‹œ๊ฐ„ ๋™์•ˆ ๋…ธ์ถœํ•˜์˜€์„ ๊ฒฝ์šฐ, ํ•ต DNA์˜ ์†์ƒ ์ •๋„๊ฐ€ ๊ฐ€์žฅ ์‹ฌํ•œ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ฐธ๋”์˜ ๊ฒฝ์šฐ, 30 ฮผg/L ์ด์ƒ์˜ ๊ตฌ๋ฆฌ ๋†๋„๋Š” ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค๋กœ ์ž‘์šฉํ•˜์—ฌ ํ•ญ์‚ฐํ™” ์ž‘์šฉ๊ณผ ๊ด€๋ จ ํ˜ธ๋ฅด๋ชฌ์˜ ๋ถ„๋น„๋ฅผ ์œ ๋„ํ•˜๊ณ  ๋ฉด์—ญ ๊ด€๋ จ ๋ฌผ์งˆ์˜ ๋ฐœํ˜„์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋“ฑ ์ฐธ๋”์˜ ์ƒ๋ฆฌํ•™์  ๊ธฐ๋Šฅ์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค.|This study was carried out to identify copper (Cu) concentrations that inducting toxic and oxidative stress at red seabream body in a variety of Cu environments. In order to observe the physiological changes, they were compared and analyzed by molecular biological experiment method. 1. Effects of waterborne copper on toxicity stress and apoptosis responses in red seabream, Pagrus major The present study was conducted to investigate the effect of toxicity resulting from Cu exposure on physiological stress and cell death in the red seabream, and to determine the concentration range over which Cu is toxic. After exposure of red seabream to Cu at various concentrations (10, 20, 30, and 40 ฮผg/L) for 0, 6, 12, 24, 72, and 120 hour (h). To this end, I analysed changes in the physiological stress response [corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, and glucose)] and toxic stress indices [(metallothionein (MT) and Na+/K+-ATPase (NKA)] in red seabream exposed to various concentrations of Cu. Furthermore, I measured the activity of hydrogen peroxide (H2O2) and caspase-3 in plasma to confirm the apoptosis response, and performed a terminal transferase dUTP nick end labeling (TUNEL) assay. As a result, the concentration of CRH, ACTH, cortisol, MT, H2O2, and caspase-3 concentrations increased significantly following exposure times to Cu were observed in the experiment groups exposed to 30 and 40 ฮผg/L. However, NKA in plasma was decreased (P < 0.05). TUNEL assay showed that cell death was the most frequent at 30 ฮผg/L concentration. In conclusion, when exposed to Cu concentrations of 30 ฮผg/L or more, they acted toxic in the fish body, indicating stress and apoptosis. 2. Effects of waterborne copper on oxidative stress and immune responses in red seabream, Pagrus major This study was performed to determine the concentration range of Cu, which affects oxidative stress in the red seabream. I exposed red seabream to different concentrations of Cu (10, 20, 30, and 40 ฮผg/L), and then investigated the changes in mRNA expressions and activities of anti-oxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] and measured changes in the levels of plasma oxidative stress indicators hydrogen peroxide (H2O2) and lipid peroxidation (LPO). I also analyzed lysozyme, immunoglobulin M (IgM), and melatonin levels to confirm changes to immune function caused by Cu exposure. In addition, I conducted comet assay to analyze the nuclear DNA damage in the red seabream liver cells caused by reactive oxygen species (ROS) arising from Cu exposure. As a result, anti-oxidant enzyme mRNA expression and activity, H2O2 and LPO plasma levels were significantly increased following exposure time at Cu concentration above 30 ฮผg/L. Protein expressions and plasma levels of the lysozyme, IgM, and melatonin, which used as immune-related index, were significantly decreased following exposure time at 30 and 40 ฮผg/L. Also, the comet assay also showed that the highest level of nuclear DNA damage occurred experiment group, which exposed to 30 ฮผg/L for 120 h. In red sea bream, Cu concentration above 30 ฮผg/L was considered to have negative effect on the physiological function of red seabream such as induction of secretion of anti-oxidant activity hormone and decrease expression of substance related immune index.Contents i List of Figures iii List of Abbreviations iv Abstract (in Korean) v Abstract (in English) vii Chapter 1. Effects of waterborne copper on toxicity stress and apoptosis responses in red seabream, Pagurs major 1 1. Introduction 1 2. Materials and methods 4 2.1. Experimental fish 4 2.2. Cu treatment and sampling 4 2.3. Plasma parameter analysis 4 2.4. Tunel assay 5 2.5. Statistical analysis 5 3. Results 6 3.1. Change in plasma levels of CRH and ACTH 6 3.2. Change in plasma levels of cortisol and glucose 6 3.3. Change in plasma levels of MT 6 3.4. Change in plasma levels of NKA 10 3.5. Change in plasma levels of H2O2 and caspase-3 10 3.5. TUNEL assay 10 4. Discussion 14 Chapter 2. Effects of waterborne copper on oxidative stress and immune responses in red seabream, Pagrus major 18 1. Introduction 18 2. Materials and methods 21 2.1. Experimental fish and treatment 21 2.2. Sampling 21 2.3. Total RNA extraction, cDNA synthesis 22 2.4. Quantitative real-time PCR (qPCR) 22 2.5. Western blot analysis 22 2.6. SOD and CAT activities analysis 23 2.7. Plasma H2O2 and LPO levels 23 2.8. Plasma lysozyme, IgM, and melatonin levels 24 2.9. Comet assay 24 2.10. Statistical analysis 24 3. Results 25 3.1. The expressions and activities of antioxidant enzymes SOD and CAT in the liver and plasma 25 3.2. Plasma H2O2 and LPO levels 25 3.3. Plasma lysozyme and IgM levels 29 3.4. Plasma melatonin levels 29 3.5. Comet assay 32 4. Discussion 34 Acknowledgements 38 References 39Maste

    ๋‚จ๊ทน ๋ถ๋น…ํ† ๋ฆฌ์•„๋žœ๋“œ ๋žœํ„ฐ๋งŒ ์‚ฐ๋งฅ์˜ ๊ณ ์•• ์—ํด๋กœ์ž์ดํŠธ์™€ ์ฃผ๋ณ€ ๋ณ€์„ฑํ‡ด์ ์•”๋ฅ˜์˜ ๋ณ€์„ฑ์ง€๊ตฌ์กฐ์  ์ง„ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2019. 8. ์ •ํ•ด๋ช….The Lanterman Range eclogites and associated metasedimentary rocks in the Lanterman Range, northern Victoria Land, Antarctica, were investigated to unravel tectonometamorphic evolution of high-pressure (P) terrane in the Andean-type Ross orogeny. The pristine eclogites primarily consisting of garnet + omphacite + calcic/sodic-calcic amphibole + epidote + phengite + rutile + quartz, revealed three stages of prograde metamorphism defining two distinctive Pโ€“T trajectories, M1โ€“2 and M3. A combination of pseudosection modelling, mineral parageneses and thermobarometries suggests that the eclogites have initially evolved from ~15โ€“20 kbar and 520โ€“570 ยฐC (M1) through ~22โ€“25 kbar and 630โ€“650 ยฐC (M2), and finally to ~26 ยฑ 3 kbar and 720 ยฑ 80 ยฐC (M3). The SHRIMP U-Pb dating discriminated two distinct episodes of eclogitic zircon growth at 515 ยฑ 4 Ma (tฯƒ; M2) and 498 ยฑ 11 Ma (tฯƒ; M3) from zircon mantle and rim, respectively. Average burial rates are too low (<2 mm/year) for cold subduction regime (~5โ€“10 ยฐC/km), suggesting an intervening exhumation stage between two prograde Pโ€“T segments. Thus, two discrete events of burial-exhumation took place with an c. 15 Ma gap during the Ross orogeny. The inherited zircon core ages (590.8 ยฑ 8.3 Ma and 603.2 ยฑ 4.4 Ma, tฯƒ) and mildly alkalic, within-plate to continental basalt-like geochemistry of the eclogites were combined to suggest that their gabbroic protoliths should be a spatial-temporal equivalent to c. 600โ€“580 Ma rift to passive margin magmatic rocks in the Tasmanides of eastern Australia. This is the first discovery of Ediacaran rift-related magmatism in the Ross orogen, thereby fulfilling the Antarctic missing link for paleogeographic linkage between Australia and Antarctica during the Neoproterozoic. Furthermore, I suggest oceanward propagation of rifting along the Australian-Antarctic margins from Cryogenian (c. 670โ€“650 Ma) to Ediacaran (c. 600โ€“580 Ma), followed by two discrete tectonic inversion events at Ediacaran (c. 590โ€“570 Ma) and early Cambrian (c. 540โ€“530 Ma), respectively. These late Neoproterozoic rift-related events might be responsible for the Pacific-Gondwana zircon population (c. 700โ€“500 Ma) in the Paleozoic Gondwana mud-pile. Manganiferous quartzitic schist rarely occurs as thin layer in the Lanterman Range, intercalated within the quartzofeldspathic schists and gneisses enveloping the metamafic lenses. Strong positive anomaly of Ce of the manganiferous quartzite confirmed incorporation of ferromanganese deposits in the pelagic sedimentary protolith, most likely at continental slope to shelf of passive margin setting. Mineral assemblages represented by spessartine-rich garnet, piemontite-allanite-rich epidote, phengite, magnetite and quartz suggested greenschist to blueschist facies conditions with the relatively high oxygen fugacity. Passive margin sedimentary packages were metamorphosed at middle Cambrian time in the context the Ross orogeny. A compilation of Pโ€“T paths of high-P metamorphic rocks in the Lanterman Range testifies differing subduction-exhumation paths.์•ˆ๋ฐ์Šคํ˜• ๋กœ์Šค ์กฐ์‚ฐ์šด๋™์˜ ๋งฅ๋ฝ์—์„œ ๊ณ ์•• ํ„ฐ๋ ˆ์ธ์˜ ๋ณ€์„ฑ์ง€๊ตฌ์กฐ ์ง„ํ™”๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋žœํ„ฐ๋งŒ ์‚ฐ๋งฅ ์—ํด๋กœ์ž์ดํŠธ์™€ ์ฃผ๋ณ€ ๋ณ€์„ฑํ‡ด์ ์•”๋ฅ˜๋ฅผ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์‹ ์„ ํ•œ ์—ํด๋กœ์ž์ดํŠธ ์‹œ๋ฃŒ๋“ค์€ ์ฃผ๋กœ ์„๋ฅ˜์„+์˜ดํŒŒ์‚ฌ์ดํŠธ+์นผ์Š˜/์†Œ๋“-์นผ์Š˜ ๊ฐ์„ฌ์„+๋…น๋ ด์„+ํŽœ์ž์ดํŠธ+๊ธˆํ™์„ +์„์˜์œผ๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ์ด๋กœ๋ถ€ํ„ฐ ๋‘ ๊ฐœ์˜ ๊ตฌ๋ณ„๋˜๋Š” ์••๋ ฅ-์˜จ๋„ ๊ฒฝ๋กœ, M1โ€“2์™€ M3๋ฅผ ์ •์˜ํ•˜๋Š” ์„ธ ๋‹จ๊ณ„์˜ ์ „์ง„๋ณ€์„ฑ์ž‘์šฉ์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ์Šˆ๋„์„น์…˜ ๋ชจ๋ธ๋ง, ํฌํš๊ด‘๋ฌผ ๊ณต์ƒ๊ด€๊ณ„, ์ง€์˜จ์ง€์••๊ณ„ ๋“ฑ์œผ๋กœ๋ถ€ํ„ฐ ์—ํด๋กœ์ž์ดํŠธ๊ฐ€ ~15-20kbar์™€ 520โ€“570โ„ƒ(M1)์—์„œ ~22โ€“25kbar์™€ 630โ€“650โ„ƒ(M2), ~26ยฑ3kbar์™€ 720ยฑ80โ„ƒ(M3)๊นŒ์ง€ ์ง„ํ™”ํ–ˆ์Œ์„ ์•Œ์•„๋ƒˆ๋‹ค. ์ €์–ด์ฝ˜์˜ ์™ธ์—ฐ๋ถ€์™€ ์ตœ์™ธ๋ถ€ ๋ ์— ๋Œ€ํ•œ ์Šˆ๋ฆผํ”„ ์šฐ๋ผ๋Š„-๋‚ฉ ์—ฐ๋ น์ธก์ •์„ ํ†ตํ•ด ๊ฐ๊ฐ 515ยฑ4Ma(tฯƒ; M2)์™€ 498ยฑ11Ma(tฯƒ; M3), ๋‘ ์ฐจ๋ก€์— ๊ฑธ์นœ ๋‹จํŽธ์  ์—ํด๋กœ์ž์ดํŠธ ์ €์–ด์ฝ˜ ์„ฑ์žฅ์‚ฌ๋ฅผ ๊ตฌ๋ณ„ํ•ด๋ƒˆ๋‹ค. ์ด๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐํ•œ ํ‰๊ท ๋งค๋ชฐ์†๋„๋Š” ์ฐจ๊ฐ€์šด ์„ญ์ž…์„ ๊ณ ๋ คํ•˜๋ฉด ๋„ˆ๋ฌด ๋‚ฎ์•„(<2mm/year), ๋‘ ๋‹จ๊ณ„์˜ ์ „์ง„๋ณ€์„ฑ ์••๋ ฅ-์˜จ๋„ ๊ฒฝ๋กœ ์‚ฌ์ด์— ์œต๊ธฐ๋‹จ๊ณ„๊ฐ€ ์žˆ์—ˆ์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋กœ์Šค ์กฐ์‚ฐ์šด๋™ ๋™์•ˆ ๋‘ ์ฐจ๋ก€์˜ ๋ถˆ์—ฐ์†์ ์ธ ๋งค๋ชฐ-์œต๊ธฐ ์‚ฌ๊ฑด์ด ์•ฝ 15Ma๋ฅผ ๋‘๊ณ  ์ผ์–ด๋‚ฌ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ €์–ด์ฝ˜ ์ƒ์†ํ•ต ์—ฐ๋ น๋“ค(590.8ยฑ8.3Ma์™€ 603.2ยฑ4.4Ma, tฯƒ)๊ณผ ์•ฝ์•Œ์นผ๋ฆฌ, ํŒ๋‚ด๋ถ€ ๋‚ด์ง€ ๋Œ€๋ฅ™ํ˜„๋ฌด์•”์— ๊ฐ€๊นŒ์šด ์—ํด๋กœ์ž์ดํŠธ ์‹œ๋ฃŒ๋“ค์˜ ์ง€ํ™”ํ•™์กฐ์„ฑ์€ ๋ฐ˜๋ ค์•”์งˆ ๋ชจ์•”์ด ํ˜ธ์ฃผ ๋™๋ถ€ ํƒ€์Šค๋งˆ๋‚˜์ด๋“œ์˜ ์•ฝ 600-580Ma์˜ ์—ด๊ณก๋Œ€ ๋‚ด์ง€ ์ˆ˜๋™ํ˜• ๊ฒฝ๊ณ„๋ถ€ ํ™”์„ฑ์•”๋ฅ˜์™€ ์‹œ๊ณต๊ฐ„์  ๋Œ€๋น„๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ์ด๋Š” ๋กœ์Šค ์กฐ์‚ฐ๋Œ€ ๋‚ด ์—๋””์•„์นด๋ผ๊ธฐ ์—ด๊ณก๋Œ€ ๊ณ ์ฒ ์งˆ ํ™”์„ฑํ™œ๋™์˜ ์ฒซ ๋ฐœ๊ฒฌ์œผ๋กœ, ์‹ ์›์ƒ๋Œ€ ๋™์•ˆ ํ˜ธ์ฃผ์™€ ๋‚จ๊ทน์˜ ๊ณ ์ง€๋ฆฌ์  ๋Œ€๋น„์—์„œ ๊ฒฐ์—ฌ๋œ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ์ฑ„์šฐ๋Š” ๊ฒƒ์ด๋‹ค. ๋‚˜์•„๊ฐ€, ํ˜ธ์ฃผ-๋‚จ๊ทน์˜ ๋™์ชฝ ๊ฒฝ๊ณ„๋ถ€์—์„œ ํฌ๋ผ์ด์˜ค์ œ๋‹ˆ์•„๊ธฐ(์•ฝ 670โ€“650Ma) ์—์„œ ์—๋””์•„์นด๋ผ๊ธฐ(์•ฝ 600โ€“580Ma)๋กœ ์—ด๊ณกํ™œ๋™์ด ํ•ด์–‘์ชฝ์œผ๋กœ ์ด๋™ํ•œ ์‚ฌ์‹ค๊ณผ ํ•จ๊ป˜, ๊ฐ๊ฐ ์—๋””์•„์นด๋ผ๊ธฐ(์•ฝ 590โ€“570Ma)์™€ ์บ ๋ธŒ๋ฆฌ์•„๊ธฐ ์ดˆ๊ธฐ(์•ฝ 540โ€“530Ma) ๋•Œ ํ˜ธ ํ™˜๊ฒฝ์œผ๋กœ์˜ ์ง€๊ตฌ์กฐ์  ์ „์ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋“ค ํ›„๊ธฐ ์‹ ์›์ƒ๋Œ€ ์—ด๊ณกํ™œ๋™๋“ค์€ ์†Œ์œ„ ๊ณ ์ƒ๋Œ€ ๊ณค๋“œ์™€๋‚˜ ์ง„ํ™ ๋”๋ฏธ์—์„œ ์ธ์ง€๋˜๋Š” ํƒœํ‰์–‘-๊ณค๋“œ์™€๋‚˜ ์ €์–ด์ฝ˜ ์—ฐ๋ น๊ตฐ(์•ฝ 700-500Ma)์˜ ๊ธฐ์› ์ค‘ ํ•˜๋‚˜์ผ ์ˆ˜ ์žˆ๋‹ค. ํ•จ๋ง๊ฐ„๊ทœ์•” ํŽธ์•”์€ ๋žœํ„ฐ๋งŒ ์‚ฐ๋งฅ์—์„œ ์–‡์€ ๋ ˆ์ด์–ด ํ˜•ํƒœ๋กœ ๋“œ๋ฌผ๊ฒŒ ์‚ฐ์ถœํ•˜๋Š”๋ฐ, ๋ณ€์„ฑ๊ณ ์ฒ ์งˆ ๋ Œ์ฆˆ๋ฅผ ๋‘˜๋Ÿฌ์‹ธ๋Š” ์„์˜์žฅ์„์งˆ ํŽธ์•”๋ฅ˜์™€ ํŽธ๋งˆ์•”๋ฅ˜ ๋‚ด์— ๊ตํ˜ธํ•œ๋‹ค. ํ•จ๋ง๊ฐ„๊ทœ์•”์˜ ๊ฐ•ํ•œ Ce ์–‘์˜ ์ด์ƒ์€ ์ˆ˜๋™ํ˜• ๊ฒฝ๊ณ„๋ถ€์˜ ๋Œ€๋ฅ™์‚ฌ๋ฉด ๋‚ด์ง€ ๋Œ€๋ฅ™๋ถ• ํ™˜๊ฒฝ์—์„œ ํ˜•์„ฑ๋œ ์›์–‘์„ฑ ํ‡ด์ ๊ธฐ์› ๋ชจ์•” ๋‚ด์— ํ•จ์ฒ ๋ง๊ฐ„ ๋…ธ๋“ˆ์ด๋‚˜ ๊ฐ ๋“ฑ์ด ํฌํ•จ๋˜์—ˆ์Œ์„ ์ง€์ง€ํ•œ๋‹ค. ์ŠคํŽ˜์„œํ‹ด์ด ํ’๋ถ€ํ•œ ์„๋ฅ˜์„, ํ”ผ๋ชฌํƒ€์ดํŠธ-๊ฐˆ๋ ด์„์ด ํ’๋ถ€ํ•œ ๋…น๋ ด์„, ํŽœ์ž์ดํŠธ, ์ž์ฒ ์„, ์„์˜์˜ ๊ด‘๋ฌผ์กฐํ•ฉ์€ ์ƒ๋Œ€์ ์œผ๋กœ ์‚ฐ์†Œ๋ถ„์••์ด ๋†’์€ ํ™˜๊ฒฝ์—์„œ์˜ ๋…น์ƒ‰ํŽธ์•”์ƒ ๋‚ด์ง€ ์ฒญ์ƒ‰ํŽธ์•”์ƒ์˜ ์กฐ๊ฑด์„ ์ง€์‹œํ•œ๋‹ค. ์ˆ˜๋™ํ˜• ๊ฒฝ๊ณ„๋ถ€ ํ‡ด์ ์•”๋ฅ˜๋“ค์€ ๋กœ์Šค ์กฐ์‚ฐ์šด๋™์˜ ๋งฅ๋ฝ์—์„œ ์ค‘๊ธฐ ์บ ๋ธŒ๋ฆฌ์•„๊ธฐ ๋•Œ ๋ณ€์„ฑ์ž‘์šฉ์„ ๊ฒฝํ—˜ํ•˜์˜€๋‹ค. ๋žœํ„ฐ๋งŒ ์‚ฐ๋งฅ์˜ ๊ณ ์•• ๋ณ€์„ฑ์•”๋ฅ˜๋“ค์˜ ์••๋ ฅ-์˜จ๋„ ๊ฒฝ๋กœ๋ฅผ ์ทจํ•ฉํ•œ ๊ฒฐ๊ณผ๋Š” ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์„ญ์ž…-์œต๊ธฐ ๊ฒฝ๋กœ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•œ๋‹ค.ABSTRACT i TABLE OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES viii CHAPTER I: Introduction 1 THE TRANSANTARCTIC MOUNTAINS, NORTHERN VICTORIA LAND AND LANTERMAN RANGE 2 SCOPE OF THESIS AND MAIN ACHIEVEMENT 4 REFERENCES 5 CHAPTER II: Pโ€“T evolution and episodic zircon growth in barroisite eclogites of the Lanterman Range, northern Victoria Land, Antarctica 7 ABSTRACT 8 INTRODUCTION 10 GEOLOGICAL BACKGROUND 14 SAMPLE DESCRIPTION AND PETROGRAPHY 18 ANALYTICAL METHODS 25 MINERAL CHEMISTRY 26 METAMORPHIC EVOLUTION 46 PRESSURE AND TEMPERATURE ESTIMATIONS 49 ZIRCON GEOCHRONOLOGY 59 DISCUSSTION 69 CONCLUSIONS 76 REFERENCES 77 CHAPTER III: Mafic magmatism at c. 590 Ma in the Ross orogen, Antarctica: The Ediacaran missing link for continental rifting and detrital zircon source along the East Gondwana margin 96 ABSTRACT 97 INTRODUCTION 98 GEOLOGICAL BACKGROUND 102 GEOCHEMICAL AND GEOCHRONOLOGICAL RESUTLS 103 DISCUSSION 133 CONCLUSIONS 139 REFERENCES 140 CHAPTER IV: Petrogenesis of manganiferous quartzite in the Lanterman Range, northern Victoria Land, Antarctica 148 ABSTRACT 149 INTRODUCTION 150 GEOLOGICAL BACKGROUND 153 SAMPLE DESCRIPTION AND PETROGRAPHY 157 ANALYTICAL METHODS 163 MINERAL CHEMISTRY 164 METAMORPHIC EVOLUTION AND Pโ€“T ESTIMATION 176 WHOLE-ROCK GEOCHEMISTRY 178 ZIRCON GEOCHRONOLOGY 180 DISCUSSION 183 CONCLUSIONS 185 REFERENCES 186 CHAPTER V: Conclusions and future work 193 CONCLUSIONS 194 FUTURE WORK 195 ABSTRACT (in Korean) 198 ACKNOWLEDGEMENTS 200 ACKNOWLEDGEMENTS (in Korean) 201Docto

    ์ •์  ๋žจ ๋ฐ ํŒŒ์›Œ ๊ฒŒ์ดํŠธ ํšŒ๋กœ์— ๋Œ€ํ•œ ์ „์•• ๋ฐ ๋ณด์กด์šฉ ๊ณต๊ฐ„ ํ• ๋‹น ๋ฌธ์ œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๊น€ํƒœํ™˜.์นฉ์˜ ์ €์ „๋ ฅ ๋™์ž‘์€ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋ฉฐ, ๊ณต์ •์ด ๋ฐœ์ „ํ•˜๋ฉด์„œ ๊ทธ ์ค‘์š”์„ฑ์€ ์ ์  ์ปค์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์นฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ •์  ๋žจ(SRAM) ๋ฐ ๋กœ์ง(logic) ๊ฐ๊ฐ์— ๋Œ€ํ•ด์„œ ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๋…ผํ•œ๋‹ค. ์šฐ์„ , ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์นฉ์„ ๋ฌธํ„ฑ ์ „์•• ๊ทผ์ฒ˜์˜ ์ „์••(NTV)์—์„œ ๋™์ž‘์‹œํ‚ค๊ณ ์ž ํ•  ๋•Œ ๋ชจ๋‹ˆํ„ฐ๋ง ํšŒ๋กœ์˜ ์ธก์ •์„ ํ†ตํ•ด ์นฉ ๋‚ด์˜ ๋ชจ๋“  SRAM ๋ธ”๋ก์—์„œ ๋™์ž‘ ์‹คํŒจ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ์ตœ์†Œ ๋™์ž‘ ์ „์••์„ ์ถ”๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์นฉ์„ NTV ์˜์—ญ์—์„œ ๋™์ž‘์‹œํ‚ค๋Š” ๊ฒƒ์€ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด์ง€๋งŒ SRAM์˜ ๊ฒฝ์šฐ ๋™์ž‘ ์‹คํŒจ ๋•Œ๋ฌธ์— ๋™์ž‘ ์ „์••์„ ๋‚ฎ์ถ”๊ธฐ ์–ด๋ ต๋‹ค. ํ•˜์ง€๋งŒ ์นฉ๋งˆ๋‹ค ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ณต์ • ๋ณ€์ด๊ฐ€ ๋‹ค๋ฅด๋ฏ€๋กœ ์ตœ์†Œ ๋™์ž‘ ์ „์••์€ ์นฉ๋งˆ๋‹ค ๋‹ค๋ฅด๋ฉฐ, ๋ชจ๋‹ˆํ„ฐ๋ง์„ ํ†ตํ•ด ์ด๋ฅผ ์ถ”๋ก ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋ฉด ์นฉ๋ณ„๋กœ SRAM์— ์„œ๋กœ ๋‹ค๋ฅธ ์ „์••์„ ์ธ๊ฐ€ํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณผ์ •์„ ํ†ตํ•ด ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค: (1) ๋””์ž์ธ ์ธํ”„๋ผ ์„ค๊ณ„ ๋‹จ๊ณ„์—์„œ๋Š” SRAM์˜ ์ตœ์†Œ ๋™์ž‘ ์ „์••์„ ์ถ”๋ก ํ•˜๊ณ  ์นฉ ์ƒ์‚ฐ ๋‹จ๊ณ„์—์„œ๋Š” SRAM ๋ชจ๋‹ˆํ„ฐ์˜ ์ธก์ •์„ ํ†ตํ•ด ์ „์••์„ ์ธ๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค; (2) ์นฉ์˜ SRAM ๋น„ํŠธ์…€(bitcell)๊ณผ ์ฃผ๋ณ€ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•œ SRAM ๋ธ”๋ก๋“ค์˜ ๊ณต์ • ๋ณ€์ด๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ๋Š” SRAM ๋ชจ๋‹ˆํ„ฐ์™€ SRAM ๋ชจ๋‹ˆํ„ฐ์—์„œ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ๋Œ€์ƒ์„ ์ •์˜ํ•œ๋‹ค; (3) SRAM ๋ชจ๋‹ˆํ„ฐ์˜ ์ธก์ •๊ฐ’์„ ์ด์šฉํ•ด ๊ฐ™์€ ์นฉ์— ์กด์žฌํ•˜๋Š” ๋ชจ๋“  SRAM ๋ธ”๋ก์—์„œ ๋ชฉํ‘œ ์‹ ๋ขฐ์ˆ˜์ค€ ๋‚ด์—์„œ ์ฝ๊ธฐ, ์“ฐ๊ธฐ, ๋ฐ ์ ‘๊ทผ ๋™์ž‘ ์‹คํŒจ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ์ตœ์†Œ ๋™์ž‘ ์ „์••์„ ์ถ”๋ก ํ•œ๋‹ค. ๋ฒค์น˜๋งˆํฌ ํšŒ๋กœ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ๋”ฐ๋ผ ์นฉ๋ณ„๋กœ SRAM ๋ธ”๋ก๋“ค์˜ ์ตœ์†Œ ๋™์ž‘ ์ „์••์„ ๋‹ค๋ฅด๊ฒŒ ์ธ๊ฐ€ํ•  ๊ฒฝ์šฐ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋Œ€๋กœ ๋ชจ๋“  ์นฉ์— ๋™์ผํ•œ ์ „์••์„ ์ธ๊ฐ€ํ•˜๋Š” ๊ฒƒ ๋Œ€๋น„ ์ˆ˜์œจ์€ ๊ฐ™์€ ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•˜๋ฉด์„œ SRAM ๋น„ํŠธ์…€ ๋ฐฐ์—ด์˜ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํŒŒ์›Œ ๊ฒŒ์ดํŠธ ํšŒ๋กœ์—์„œ ๊ธฐ์กด์˜ ๋ณด์กด์šฉ ๊ณต๊ฐ„ ํ• ๋‹น ๋ฐฉ๋ฒ•๋“ค์ด ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๋ˆ„์„ค ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๋” ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋ณด์กด์šฉ ๊ณต๊ฐ„ ํ• ๋‹น ๋ฐฉ๋ฒ•์€ ๋ฉ€ํ‹ฐํ”Œ๋ ‰์„œ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๊ฐ€ ์žˆ๋Š” ๋ชจ๋“  ํ”Œ๋ฆฝํ”Œ๋กญ์—๋Š” ๋ฌด์กฐ๊ฑด ๋ณด์กด์šฉ ๊ณต๊ฐ„์„ ํ• ๋‹นํ•ด์•ผ ํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์ค‘ ๋น„ํŠธ ๋ณด์กด์šฉ ๊ณต๊ฐ„์˜ ์žฅ์ ์„ ์ถฉ๋ถ„ํžˆ ์‚ด๋ฆฌ์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ณด์กด์šฉ ๊ณต๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค: (1) ๋ณด์กด์šฉ ๊ณต๊ฐ„ ํ• ๋‹น ๊ณผ์ •์—์„œ ๋ฉ€ํ‹ฐํ”Œ๋ ‰์„œ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๋ฅผ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์„ ์ œ์‹œํ•˜๊ณ , (2) ํ•ด๋‹น ์กฐ๊ฑด์„ ์ด์šฉํ•ด ๋ฉ€ํ‹ฐํ”Œ๋ ‰์„œ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๊ฐ€ ์žˆ๋Š” ํ”Œ๋ฆฝํ”Œ๋กญ์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š” ํšŒ๋กœ์—์„œ ๋ณด์กด์šฉ ๊ณต๊ฐ„์„ ์ตœ์†Œํ™”ํ•œ๋‹ค; (3) ์ถ”๊ฐ€๋กœ, ํ”Œ๋ฆฝํ”Œ๋กญ์— ์ด๋ฏธ ํ• ๋‹น๋œ ๋ณด์กด์šฉ ๊ณต๊ฐ„ ์ค‘ ์ผ๋ถ€๋ฅผ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋Š” ์กฐ๊ฑด์„ ์ฐพ๊ณ , ์ด๋ฅผ ์ด์šฉํ•ด ๋ณด์กด์šฉ ๊ณต๊ฐ„์„ ๋” ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๋ฒค์น˜๋งˆํฌ ํšŒ๋กœ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ๊ธฐ์กด์˜ ๋ณด์กด์šฉ ๊ณต๊ฐ„ ํ• ๋‹น ๋ฐฉ๋ฒ•๋ก ๋ณด๋‹ค ๋” ์ ์€ ๋ณด์กด์šฉ ๊ณต๊ฐ„์„ ํ• ๋‹นํ•˜๋ฉฐ, ๋”ฐ๋ผ์„œ ์นฉ์˜ ๋ฉด์  ๋ฐ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค.Low power operation of a chip is an important issue, and its importance is increasing as the process technology advances. This dissertation addresses the methodology of operating at low power for each of the SRAM and logic constituting the chip. Firstly, we propose a methodology to infer the minimum operating voltage at which SRAM failure does not occur in all SRAM blocks in the chip operating on near threshold voltage (NTV) regime through the measurement of a monitoring circuit. Operating the chip on NTV regime is one of the most effective ways to increase energy efficiency, but in case of SRAM, it is difficult to lower the operating voltage because of SRAM failure. However, since the process variation on each chip is different, the minimum operating voltage is also different for each chip. If it is possible to infer the minimum operating voltage of SRAM blocks of each chip through monitoring, energy efficiency can be increased by applying different voltage. In this dissertation, we propose a new methodology of resolving this problem. Specifically, (1) we propose to infer minimum operation voltage of SRAM in design infra development phase, and assign the voltage using measurement of SRAM monitor in silicon production phase; (2) we define a SRAM monitor and features to be monitored that can monitor process variation on SRAM blocks including SRAM bitcell and peripheral circuits; (3) we propose a new methodology of inferring minimum operating voltage of SRAM blocks in a chip that does not cause read, write, and access failures under a target confidence level. Through experiments with benchmark circuits, it is confirmed that applying different voltage to SRAM blocks in each chip that inferred by our proposed methodology can save overall power consumption of SRAM bitcell array compared to applying same voltage to SRAM blocks in all chips, while meeting the same yield target. Secondly, we propose a methodology to resolve the problem of the conventional retention storage allocation methods and thereby further reduce leakage power consumption of power gated circuit. Conventional retention storage allocation methods have problem of not fully utilizing the advantage of multi-bit retention storage because of the unavoidable allocation of retention storage on flip-flops with mux-feedback loop. In this dissertation, we propose a new methodology of breaking the bottleneck of minimizing the state retention storage. Specifically, (1) we find a condition that mux-feedback loop can be disregarded during the retention storage allocation; (2) utilizing the condition, we minimize the retention storage of circuits that contain many flip-flops with mux-feedback loop; (3) we find a condition to remove some of the retention storage already allocated to each of flip-flops and propose to further reduce the retention storage. Through experiments with benchmark circuits, it is confirmed that our proposed methodology allocates less retention storage compared to the state-of-the-art methods, occupying less cell area and consuming less power.1 Introduction 1 1.1 Low Voltage SRAM Monitoring Methodology 1 1.2 Retention Storage Allocation on Power Gated Circuit 5 1.3 Contributions of this Dissertation 8 2 SRAM On-Chip Monitoring Methodology for High Yield and Energy Efficient Memory Operation at Near Threshold Voltage 13 2.1 SRAM Failures 13 2.1.1 Read Failure 13 2.1.2 Write Failure 15 2.1.3 Access Failure 16 2.1.4 Hold Failure 16 2.2 SRAM On-chip Monitoring Methodology: Bitcell Variation 18 2.2.1 Overall Flow 18 2.2.2 SRAM Monitor and Monitoring Target 18 2.2.3 Vfail to Vddmin Inference 22 2.3 SRAM On-chip Monitoring Methodology: Peripheral Circuit IR Drop and Variation 29 2.3.1 Consideration of IR Drop 29 2.3.2 Consideration of Peripheral Circuit Variation 30 2.3.3 Vddmin Prediction including Access Failure Prohibition 33 2.4 Experimental Results 41 2.4.1 Vddmin Considering Read and Write Failures 42 2.4.2 Vddmin Considering Read/Write and Access Failures 45 2.4.3 Observation for Practical Use 45 3 Allocation of Always-On State Retention Storage for Power Gated Circuits - Steady State Driven Approach 49 3.1 Motivations and Analysis 49 3.1.1 Impact of Self-loop on Power Gating 49 3.1.2 Circuit Behavior Before Sleeping 52 3.1.3 Wakeup Latency vs. Retention Storage 54 3.2 Steady State Driven Retention Storage Allocation 56 3.2.1 Extracting Steady State Self-loop FFs 57 3.2.2 Allocating State Retention Storage 59 3.2.3 Designing and Optimizing Steady State Monitoring Logic 59 3.2.4 Analysis of the Impact of Steady State Monitoring Time on the Standby Power 63 3.3 Retention Storage Refinement Utilizing Steadiness 65 3.3.1 Extracting Flip-flops for Retention Storage Refinement 66 3.3.2 Designing State Monitoring Logic and Control Signals 68 3.4 Experimental Results 73 3.4.1 Comparison of State Retention Storage 75 3.4.2 Comparison of Power Consumption 79 3.4.3 Impact on Circuit Performance 82 3.4.4 Support for Immediate Power Gating 83 4 Conclusions 89 4.1 Chapter 2 89 4.2 Chapter 3 90๋ฐ•

    ๋ฒผ OsNac17 ์ „์‚ฌ์ธ์ž์˜ ๊ฐ€๋ญ„์ €ํ•ญ์„ฑ ์ฆ์ง„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ๋Œ€ํ•™์› ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ํ•™๊ณผ, 2017. 8. ๊น€์ฃผ๊ณค.Drought stress reduces crop production yields. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. However, It is still remains how each NAC genes involve transcriptional regulation in response to drought stress in rice. Here, we show that the rice (Oryza stiva L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, contributes to the drought tolerance in transgenic rice plants. We generate transgenic plants overexpressing OsNAC17 using constitutive (PGD1) promoter. Ectopic overexpression of OsNAC17 improved drought resistance phenotype at the vegetative stage. Agronomic traits such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). Differentially expressed genes include UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. OsNAC17 acts as a transcriptional activator in transcriptional activation assay, which has an activation domain in C-terminal region. Furthermore, it was proved that OsNAC17 is localized in the nucleus. These result suggest that the overexpression of OsNAC17 improve drought tolerance by regulating ROS related enzymes and by reducing stomatal density.Introduction 1 Materials and Methods 4 1. Vector construction and rice transformation 4 2. RNA isolation and real-time RT-RCR 5 3. Abiotic stress treatment 5 4. Drought tolerance assay 6 5. Characterization of agronomic traits 6 6. Subcellular localization 7 7. Transcriptional activation assay 7 8. Visualization of stomatal density 8 9. RNA sequencing and transcriptome analysis 8 Results 9 1. Structure and phylogenetic analysis of OsNAC17 9 2. OsNAC17 is induced under abiotic stress 10 3. OsNAC17 is a transcription factor that localized in nucleus and acts as a transcriptional activator 10 4. Overexpression of OsNAC17 improves drought tolerance in vegetative stage 12 5. Constitutive overexpression of OsNAC17 increases rice grain yield under field drought conditions 13 6. Identification of DEG involved in the OsNAC17-mediated drought tolerance pathway 14 7. Production of OsNAC17 K/O lines using CRISPR/cas9 system 15 Discussion 43 References 47 Abstract in Korean 51Maste

    ์ง€์—ญ๋ฐœ์ „์„ ์œ„ํ•œ ์ง€๋ฐฉ๋ถ„๊ถŒ ์‹คํƒœ์™€ ์ง€์—ญํ™”๋ฐฉ์•ˆ ์—ฐ๊ตฌ(A study on the decentralization and regionalization of regional development policy)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    The effect of household debt on unmet medical need

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋ณด๊ฑด๋Œ€ํ•™์› ๋ณด๊ฑดํ•™๊ณผ, 2017. 8. ๊น€์ฐฝ์—ฝ.๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ๋ณต์ง€ํŒจ๋„์„ ์ด์šฉํ•˜์—ฌ ๊ฐ€๊ณ„๋ถ€์ฑ„๊ฐ€ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. 10์ฐจ ์กฐ์‚ฌ์— ํฌํ•จ๋œ ๊ฐ€๊ตฌ์ค‘ ๊ฒฐ์ธก์น˜๋ฅผ ์ œ์™ธํ•œ 6,820๊ฐ€๊ตฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ์ด ์ค‘ 1.47%๊ฐ€ ๊ฒฝ์ œ์  ์ด์œ ๋กœ ์ธํ•œ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ๋ฅผ ๊ฒฝํ—˜ํ•˜์˜€๊ณ , 42.1%๊ฐ€ ๋ถ€์ฑ„๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ์ด์งˆ์„ฑ์„ ๋ณด์œ ํ•œ ๊ฐ€๊ณ„๋ถ€์ฑ„์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ด์•ก์ง€ํ‘œ, ์‹ ์šฉ์œ„ํ—˜, ๋ถ€์ฑ„ํ˜•ํƒœ๋กœ ๊ตฌ๋ถ„ํ•œ ์ด 13๊ฐœ ์ง€ํ‘œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ๊ฐ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ฐ€๊ณ„๋ถ€์ฑ„์™€ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์˜ ๊ด€๊ณ„์— ์˜ํ–ฅ์— ๋ฏธ์น˜๋Š” ๋‹ค๋ฅธ ๊ฒฝ์ œ์  ๋ณ€์ˆ˜์˜ ์˜ํ–ฅ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์‹ค๋ฌผ์ž์‚ฐ, ๊ธˆ์œต์ž์‚ฐ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ž์‚ฐ๋ณ€์ˆ˜์™€ ์†Œ๋น„๋ณ€์ˆ˜๋ฅผ ์ฐจ๋ก€๋กœ ํˆฌ์ž…ํ•œ ์œ„๊ณ„์  ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, 13๊ฐ€์ง€ ์ง€ํ‘œ ์ค‘ 9๊ฐ€์ง€ ์ง€ํ‘œ๊ฐ€ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์— ์œ ์˜ํ•œ ์ˆ˜์ค€์˜์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๊ณ , 9๊ฐ€์ง€ ๋ชจ๋‘ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ ๊ฐ€๋Šฅ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ž‘์šฉํ•˜์˜€๋‹ค. ์„ธ ๊ฐ€์ง€ ์ด์•ก์ง€ํ‘œ์—์„œ๋Š” ๋ชจ๋‘ ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๊ณ , ์‹ ์šฉ์œ„ํ—˜์—์„œ๋Š” ๋ถ€์‹ค์œ„ํ—˜๊ฐ€๊ตฌ, ์‹ ์šฉ๋ถˆ๋Ÿ‰์ž๊ฒฝํ—˜, ์—ฐ์ฒด๊ฒฝํ—˜์ด ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์œ ์˜ํ•œ ์ˆ˜์ค€์—์„œ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ถ€์ฑ„ํ˜•ํƒœ๋ณ„๋กœ๋Š” ๊ธˆ์œต๊ธฐ๊ด€๋Œ€์ถœ, ์ผ๋ฐ˜์‚ฌ์ฑ„ ๊ธฐํƒ€๋Œ€์ถœ์ด ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์— ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์œ„๊ณ„์ ์œผ๋กœ ํˆฌ์ž…ํ•œ ์ž์‚ฐ ๋ณ€์ˆ˜๋Š” ๋ชจ๋“  ๊ฐ€๊ณ„๋ถ€์ฑ„์ง€ํ‘œ์—์„œ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ๋ฅผ ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ, ์†Œ๋น„ ๋ณ€์ˆ˜๋Š” ์ด๋ถ€์ฑ„์™€ DTI์—์„œ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด์— ์ž์‚ฐ๊ณผ ์†Œ๋น„๊ฐ€ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์— ๋ฏธ์น˜๋Š” ๋ถ€์ฑ„์˜ ์˜ํ–ฅ์„ ๋ถ€์˜ ๋ฐฉํ–ฅ์œผ๋กœ ์ƒ์‡„ํ•˜๊ณ  ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฑด๊ฐ•์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์‚ฌํšŒ๊ฒฝ์ œ์ ์ง€์œ„์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ํ™•์žฅ๋˜๊ณ , ๊ฐ€๊ณ„๋ถ€์ฑ„๊ฐ€ ๊ฐœ์ธ๊ณผ ๊ฐ€๊ณ„ ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ์— ๋ฏธ์น˜๋Š” ์œ„ํ—˜์„ฑ์˜ ์‹ค์ฒด๊ฐ€ ๋ฐํ˜€์ง€๋Š” ๊ณ„๊ธฐ๊ฐ€ ๋งˆ๋ จ๋˜๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.I. ์„œ๋ก  1 1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ๋ชฉ์  5 II. ์ด๋ก ์ ๋ฐฐ๊ฒฝ 6 1. ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ 6 2. ์‚ฌํšŒ๊ฒฝ์ œ์ ์ง€์œ„์™€ ๊ฑด๊ฐ• 11 3. ๋ถ€์ฑ„๊ฐ€ ๊ฑด๊ฐ•์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 15 III. ์—ฐ๊ตฌ์˜ ๊ฐœ๋…ํ‹€ 23 IV. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 25 1. ์—ฐ๊ตฌ์ž๋ฃŒ ๋ฐ ๋Œ€์ƒ 25 1) ์—ฐ๊ตฌ์ž๋ฃŒ 25 2) ์—ฐ๊ตฌ๋Œ€์ƒ 26 2. ๋ณ€์ˆ˜์˜ ์ •์˜ ๋ฐ ์ธก์ • 27 1) ์ข…์†๋ณ€์ˆ˜ 27 2) ๋…๋ฆฝ๋ณ€์ˆ˜ 27 3) ํ†ต์ œ๋ณ€์ˆ˜ 30 3. ๋ถ„์„๋ฐฉ๋ฒ• 34 V. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 36 1. ์—ฐ๊ตฌ๋Œ€์ƒ์ž์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 36 2. ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ ๋ฐœ์ƒ๋นˆ๋„, ๋ถ„ํฌ ๋ฐ ์—ฐ๊ด€์„ฑ 40 3. ๊ฐ€๊ณ„๋ถ€์ฑ„๊ฐ€ ๋ฏธ์ถฉ์กฑ์˜๋ฃŒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 45 VI. ๊ณ ์ฐฐ 59 1. ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๊ณ ์ฐฐ 59 2. ํ•จ์˜์™€ ํ•œ๊ณ„ 64 VII. ์ฐธ๊ณ ๋ฌธํ—Œ 68 Abstract 78Maste

    ๊ฑด๊ฐ•ํ–‰๋ณต์‹œ๋Œ€๋ฅผ ๋Œ€๋น„ํ•œ ๊ตญํ†  ๋ฐ ๋„์‹œ์ •์ฑ…์˜ ๊ณผ์ œ์™€ ๋ฐฉํ–ฅ

    Get PDF
    ๋ฐ”์•ผํ๋กœ ๊ฑด๊ฐ•๊ณผ ์›ฐ๋น™์˜ ์‹œ๋Œ€๋‹ค. ๊ฑด๊ฐ•ํ•˜๊ณ  ํ–‰๋ณตํ•œ ์‚ถ์„ ๋ˆ„๋ฆฌ๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ตญ๋ฏผ๋“ค์˜ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ๊ณ , ์ •๋ถ€์˜ ์ •์ฑ…๊ธฐ์กฐ๋„ ๊ตญ๋ฏผํ–‰๋ณต๊ณผ ๊ฑด๊ฐ•์„ ์ œ๊ณ ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ๋ชจ์•„์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ ์šฐ๋ฆฌ๊ตญ๋ฏผ์˜ ๊ฑด๊ฐ•์ˆ˜์ค€์€ ๋‚ ๋กœ ์•…ํ™”๋˜๊ณ  ์žˆ๋‹ค. 2012๋…„ ์ง€์—ญ์‚ฌํšŒ๊ฑด๊ฐ•์กฐ์‚ฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์ง€๋‚œ 5๋…„๊ฐ„(08~12) ์šฐ๋ฆฌ๋‚˜๋ผ ๊ตญ๋ฏผ์˜ ๊ฑท๊ธฐ ์‹ค์ฒœ์œจ์€ 50.6%์—์„œ 40.8%๋กœ ๊ฐ์†Œํ•˜์˜€๊ณ , ๋ฐ˜๋Œ€๋กœ ๋น„๋งŒ์œจ์€ 21.6%์—์„œ 24.1%๋กœ 2.5%p๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๊ฐ™์€๊ธฐ๊ฐ„ ๊ณ ํ˜ˆ์•• ๋ฐ ๋‹น๋‡จ๋ณ‘ ํ‰์ƒ์˜์‚ฌ์ง„๋‹จ ๊ฒฝํ—˜๋ฅ (30์„ธ ์ด์ƒ)์€ ๊ฐ๊ฐ 16.5%์—์„œ 18.6%๋กœ, 6.2%์—์„œ 7.2%๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค(์งˆ๋ณ‘๊ด€๋ฆฌ๋ณธ๋ถ€, 2013). ์ตœ๊ทผ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์—์„œ ๋„์‹œํ™˜๊ฒฝ์ด ์‹ฌ์žฅ์งˆํ™˜, ๊ณ ํ˜ˆ์••, ์ œ2ํ˜• ๋‹น๋‡จ, ํ˜ธํก๊ธฐ์งˆํ™˜, ๋น„๋งŒ, ์šฐ์šธ์ฆ ๋“ฑ ๊ฐ์ข… ๋งŒ์„ฑ์งˆํ™˜๊ณผ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค๊ณ  ๋…ผ์˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋„์‹œ๊ณ„ํš ๋ถ„์•ผ์—์„œ ์ง€์—ญ์ฃผ๋ฏผ์˜ ๊ฑด๊ฐ•์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ง‘์ค‘๋˜๊ณ  ์žˆ๋‹ค( Kelly-Schwartz et al., 2004; Frank et al, 2006; Rundle et al, 2007; Sallis et al., 2009; Calson et al., 2012). ๋„์‹œํ™˜๊ฒฝ๊ณผ ๊ฑด๊ฐ•๊ฐ„์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์—์„œ ๋ณด๋Š”๋ฐ”์™€ ๊ฐ™๋‹ค. ๋„์‹œํ™˜๊ฒฝ์€ ๊ฐœ์ธ์˜ ํ–‰ํƒœ(behavior)์— ์˜ํ–ฅ์„ ์ฃผ์–ด ์‹ ์ฒด์  ํ™œ๋™์„ ์ด‰์ง„์‹œํ‚ค๊ฑฐ๋‚˜ ์ œ์–ดํ•˜๋Š” ์—ญํ• ์„ ํ•˜๋ฉฐ, ์‹ ์ฒดํ™œ๋™์˜ ํŒจํ„ด์€ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์‹ ์ฒด์  ํ™œ๋™ ํŒจํ„ด๊ณผ ๊ฑด๊ฐ•๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋„์‹œํ™˜๊ฒฝ์˜ ํŠน์„ฑ์œผ๋กœ๋Š” ๋„์‹œ์˜ ์Šคํ”„๋กคํ™”, ์ž๋™์ฐจ ์œ„์ฃผ์˜ ํ†ต๊ทผํ†ตํ–‰ ํŒจํ„ด, ๋ณดํ–‰์ž๋„๋กœ์˜ ๊ฐ์†Œ, ๋…น์ง€ ๊ฐ์†Œ ๋“ฑ์ด ์ฃผ์š” ์š”์ธ์œผ๋กœ ์ง€์ ๋˜๊ณ  ์žˆ๋‹ค(Sesso et al., 1999; Steptoe and Feldman 2001)

    Transpedicular curettage and drainage of infective lumbar spondylodiscitis: technique and clinical results.

    Get PDF
    BACKGROUND: Infective spondylodiscitis usually occurs in patients of older age, immunocompromisation, co-morbidity, and individuals suffering from an overall poor general condition unable to undergo reconstructive anterior and posterior surgeries. Therefore, an alternative, less aggressive surgical method is needed for these select cases of infective spondylodiscitis. This retrospective clinical case series reports our novel surgical technique for the treatment of infective spondylodiscitis. METHODS: Between January 2005 and July 2011, among 48 patients who were diagnosed with pyogenic lumbar spondylodiscitis or tuberculosis lumbar spondylodiscitis, 10 patients (7 males and 3 females; 68 years and 48 to 78 years, respectively) underwent transpedicular curettage and drainage. The mean postoperative follow-up period was 29 months (range, 7 to 61 months). The pedicle screws were inserted to the adjacent healthy vertebrae in the usual manner. After insertion of pedicle screws, the drainage pedicle holes were made through pedicles of infected vertebra(e) in order to prevent possible seeding of infective emboli to the healthy vertebra, as the same instruments and utensils are used for both pedicle screws and the drainage holes. A minimum of 15,000 mL of sterilized normal saline was used for continuous irrigation through the pedicular pathways until the drained fluid looked clear. RESULTS: All patients' symptoms and inflammatory markers significantly improved clinically between postoperative 2 weeks and postoperative 3 months, and they were satisfied with their clinical results. Radiologically, all patients reached the spontaneous fusion between infected vertebrae and 3 patients had the screw pulled-out but they were clinically tolerable. CONCLUSIONS: We suggest that our method of transpedicular curettage and drainage is a useful technique in regards to the treatment of infectious spondylodiscitic patients, who could not tolerate conventional combined anterior and posterior surgery due to multiple co-morbidities, multiple level infectious lesions and poor general condition.ope

    Switching handedness of chiral solitons in Z4 topology

    No full text
    2
    • โ€ฆ
    corecore