14 research outputs found

    적측 λ‚˜λ…Έμ‹œνŠΈ ꡬ쑰의 음의 μ •μ „μš©λŸ‰ 전계 효과 νŠΈλžœμ§€μŠ€ν„°

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2022. 8. 졜우영.The development of integrated circuit (IC) technology has continued to improve speed and capacity through miniaturization of devices. However, power density is increasing rapidly due to the increasing leakage current as miniaturization advances. Although the remarkable advancement of process technology has allowed complementary-metal-oxide-semiconductor (CMOS) technology to consistently overcome its constraints, the physical limitations of the metal-oxide-semiconductor field-effect transistor (MOSFET) are unmanageable. Accordingly, research on logic device is being divided into a CMOS-extension and a beyond-CMOS. CMOS-extension focuses on the gate-all-around field-effect transistors (GAAFETs) which is a promising architecture for future CMOS thanks to the excellent electrostatic gate controllability. Particularly, nanosheet (NS) architecture with high current drivability required in ICs, is the most promising. However, NS GAAFET has a trade-off relation between the controllability and the drivability, which requires the necessity of a higher-level effective oxide thickness (EOT) scaling for further scaling of NS GAAFET. On the other hand, beyond-CMOS mainly focuses on developing devices with novel mechanisms to overcome the MOSFETs' physical limits. Among several candidates, negative capacitance field-effect transistors (NCFETs) with exceptional CMOS compatibility and current drivability are highlighted as future logic devices for low-power, high-performance operation. Although the NCFET utilizing the negative capacitance (NC) effect of a ferroelectric has been demonstrated theoretically by the Landau model, it is challenging to be implemented due to the fact that stabilized NC and sub-thermionic subthreshold swing (SS) are incompatible. In this dissertation, a GAA NCFET that maintains a stable capacitance boosting by NC effect and exhibits high performance is demonstrated. A ferroelectric-antiferroelectric mixed-phase hafnium-zirconium-oxide (HZO) thin film was introduced, whose effect was confirmed by capacitors and FET experiments. Furthermore, the mixed-phase HZO was demonstrated on a stacked nanosheet gate-all-around (stacked NS GAA) structure, the advanced CMOS technology, which exhibits a superior gate controllability as well as a satisfactory drivability for ICs. The hysteresis-free stable NC operation with the superior performance was confirmed in NS GAA NCFET. The improved SS and on-current (Ion) compared to MOSFETs fabricated in the same manner were validated, and its feasibility as a low-power, high-performance logic device was proven based on a variety of figure of merits.μ§‘μ νšŒλ‘œ 기술의 λ°œμ „μ€ μ†Œμžμ˜ μ†Œν˜•ν™”λ₯Ό ν†΅ν•œ 속도 및 μš©λŸ‰μ˜ ν–₯상을 μœ„ν•΄ λ°œμ „μ„ κ±°λ“­ν•΄μ™”λ‹€. κ·ΈλŸ¬λ‚˜ μ†Œν˜•ν™”λ₯Ό κ±°λ“­ν• μˆ˜λ‘ μ¦κ°€ν•˜λŠ” λˆ„μ„€μ „λ₯˜μ˜ 문제둜 μ „λ ₯ 밀도가 κΈ‰κ²©ν•˜κ²Œ μ¦κ°€ν•˜κ³  μžˆλ‹€. μƒλ³΄ν˜• κΈˆμ†-산화막-λ°˜λ„μ²΄(CMOS) κΈ°μˆ μ€ λˆˆλΆ€μ‹  κ³΅μ •κΈ°μˆ μ˜ μ„±μž₯에 νž˜μž…μ–΄ ν•œκ³„λ₯Ό λŠμž„μ—†μ΄ κ·Ήλ³΅ν•΄μ™”μœΌλ‚˜, 기쑴의 κΈˆμ†-산화막-λ°˜λ„μ²΄ 전계-효과-νŠΈλžœμ§€μŠ€ν„°(MOSFET)의 물리적 ν•œκ³„λŠ” 극볡할 수 μ—†λŠ” λ¬Έμ œμ΄λ‹€. 이에 따라 논리 λ°˜λ„μ²΄μ— κ΄€ν•œ μ—°κ΅¬λŠ” CMOSλ₯Ό μ—°μž₯ν•˜λŠ” λ°©ν–₯κ³Ό CMOSλ₯Ό λ›°μ–΄λ„˜λŠ” λ°©ν–₯으둜 λ‚˜λ‰˜μ–΄ μ§„ν–‰λ˜κ³  μžˆλ‹€. CMOSλ₯Ό μ—°μž₯ν•˜λŠ” λ°©ν–₯은 λ›°μ–΄λ‚œ 정전기적 게이트 μž₯μ•…λ ₯을 κ°–λŠ” μ°¨μ„ΈλŒ€ CMOS ꡬ쑰둜 μœ λ§ν•œ 게이트-올-μ–΄λΌμš΄λ“œ 전계-효과-νŠΈλžœμ§€μŠ€ν„°(GAAFET)에 κ΄€ν•œ 연ꡬ가 μ£Όλ₯Ό 이룬닀. 특히 높은 μ „λ₯˜ ꡬ동λ ₯을 κ°€μ§ˆ 수 μžˆλŠ” λ‚˜λ…Έμ‹œνŠΈ(NS) ꡬ쑰가 κ°€μž₯ μœ λ§ν•œλ°, 게이트 μž₯μ•…λ ₯이 μ „λ₯˜ ꡬ동λ ₯κ³Ό μƒμΆ©λœλ‹€λŠ” 단점이 μžˆλ‹€. 이에 따라 NS GAAFET κΈ°μˆ μ„ μœ„ν•΄μ„œλŠ” 더 높은 μˆ˜μ€€μ˜ μœ νš¨μ‚°ν™”λ§‰λ‘κ»˜ (EOT) μŠ€μΌ€μΌλ§μ΄ ν•„μˆ˜μ μ΄λ‹€. ν•œνŽΈ, CMOSλ₯Ό λ›°μ–΄λ„˜λŠ” λ°©ν–₯의 μ—°κ΅¬λŠ” MOSFET의 물리적 ν•œκ³„λ₯Ό κ·Ήλ³΅ν•˜κΈ° μœ„ν•΄ μƒˆλ‘œμš΄ λ©”μ»€λ‹ˆμ¦˜μ„ κ°–λŠ” μ†Œμžλ₯Ό κ°œλ°œν•˜λŠ” λ°©ν–₯으둜 이루어진닀. λ‹€μ–‘ν•œ 후보ꡰ 쀑 CMOS ν˜Έν™˜μ„±κ³Ό μ „λ₯˜ ꡬ동λŠ₯λ ₯이 λ›°μ–΄λ‚œ 음의 μ •μ „μš©λŸ‰ 전계-효과-νŠΈλžœμ§€μŠ€ν„°(NCFET)이 μ €μ „λ ₯, κ³ μ„±λŠ₯ λ™μž‘μ„ μœ„ν•œ 미래 CMOS μ†Œμžλ‘œ 각광받고 μžˆλ‹€. κ°•μœ μ „μ²΄μ˜ 음의 μ •μ „μš©λŸ‰ (NC) 효과λ₯Ό μ΄μš©ν•œ NCFET은 Landau λͺ¨λΈμ— μ˜ν•΄ 이둠적으둜 증λͺ…λ˜μ—ˆμœΌλ‚˜, μ—΄μ—­ν•™μ μœΌλ‘œ μ•ˆμ •ν•œ μƒνƒœμ™€ 60 mV/dec μ΄ν•˜μ˜ λ¬Έν„±μ „μ••-μ΄ν•˜-기울기(SS)λ₯Ό λ™μ‹œμ— κ΅¬ν˜„ν•˜κΈ° λΆˆκ°€λŠ₯ν•˜λ‹€λŠ” λ¬Έμ œκ°€ μžˆλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μ•ˆμ •ν•œ μ •μ „μš©λŸ‰ ν–₯상 νŠΉμ„±μ„ 가지며 높은 μ„±λŠ₯을 κ°–λŠ” NS GAA NCFET을 κ΅¬ν˜„ν•˜μ˜€λ‹€. κ°•μœ μ „μ²΄(ferroelectric)-λ°˜κ°•μœ μ „μ²΄(antiferroelectric) ν˜Όν•©μƒ(mixed-phase) ν•˜ν”„λŠ„-지λ₯΄μ½”λŠ„-μ˜₯μ‚¬μ΄λ“œ(HZO) λ°•λ§‰μ˜ μ •μ „μš©λŸ‰ ν–₯상 효과λ₯Ό μ»€νŒ¨μ‹œν„° 및 FET μ œμž‘μ„ 톡해 효과λ₯Ό κ²€μ¦ν•˜μ˜€λ‹€. λ˜ν•œ 높은 게이트 μž₯μ•…λ ₯을 가지며 μ§‘μ νšŒλ‘œμ—μ„œ μš”κ΅¬ν•˜λŠ” μ „λ₯˜ ꡬ동λ ₯을 λ§Œμ‘±μ‹œν‚¬ 수 μžˆλŠ” μ μΈ΅ν˜• λ‚˜λ…Έμ‹œνŠΈ 게이트-올-μ–΄λΌμš΄λ“œ(stacked NS GAA) ꡬ쑰에 ν˜Όν•©μƒ NC 박막을 μ μš©ν•œ FET을 μ‹œμ—°ν•˜κ³  μ„±λŠ₯의 μš°μˆ˜μ„±μ„ ν™•μΈν•˜μ˜€λ‹€. λ™μΌν•˜κ²Œ μ œμž‘λœ MOSFET λŒ€λΉ„ ν–₯μƒλœ SS와 ꡬ동 μ „λ₯˜(Ion)λ₯Ό ν™•μΈν•˜μ˜€κ³ , λ‹€μ–‘ν•œ μ„±λŠ₯ μ§€μˆ˜λ₯Ό ν† λŒ€λ‘œ μ €μ „λ ₯, κ³ μ„±λŠ₯ 둜직 μ†Œμžλ‘œμ„œμ˜ 타당성을 κ²€μ¦ν•˜μ˜€λ‹€.Abstract i Contents iv List of Table vii List of Figures viii Chapter 1 Introduction 1 1.1 Power and Area Scaling Challenges 1 1.2 Nanosheet Gate-All-Around FETs 5 1.2.1 Gate-All-Around FETs 5 1.2.2 Nanosheet GAAFETs 6 1.3 Negative Capacitance FETs 11 1.3.1 Negative Capacitance in Ferroelectric Materials 11 1.3.2 Negative Capacitance for Steep Switching Devices 14 1.3.3 Stable NC vs. Sub-thermionic SS 17 1.4 Scope and Organization of Dissertation 21 Chapter 2 Stacked NS GAA NCFET with Ferroelectric-Antiferroelectric-Mixed-Phase HZO 22 2.1 Mixed-Phase HZO for Capacitance Boosting 22 2.2 NS GAA NCFET using Mixed-Phase HZO 25 Chapter 3 HZO ALD Stack Optimization 28 3.1 Metal-Ferroelectric-Interlayer-Silicon (MFIS) / MFM Capacitors 29 3.1.1 Fabrication of MFIS Capacitors 29 3.1.2 Electrical Characteristics of MFIS / MFM Capacitors 33 3.2 SOI Planar NCFETs 38 3.2.1 DC Measurements 38 3.2.2 Direct Capacitance Measurements 47 3.2.3 Speed Measurements 49 Chapter 4 Device Fabrication of Stacked NS GAA NCFET 51 4.1 Initial Process Flow of NS GAA NCFET 52 4.2 Process Issues and Solution 56 4.2.1 External Resistance 56 4.2.2 TiN Gate Sidewall Spacer 60 4.2.3 Unintentionally Etched Sacrificial Layer 65 4.2.4 Discussions 68 4.3 Channel Release Process 69 4.3.1 Consideration in Channel Release Process 69 4.3.2 Methods for SiGe Selective Etching 72 4.3.3 SiGe Selective Etching using Carboxylic Acid Solution 75 4.4 Revised Process of NS GAA NCFET 78 Chapter 5 Electrical Characteristics of Fabricated NS GAA NCFET 84 5.1 DC Characteristics 85 5.1.1 NS GAA NCFET vs. Planar SOI NCFET 85 5.1.2 Performance Enhancement of NS GAA NCFET 88 5.1.3 Performance Evaluation 96 5.2 Operating Temperature Properties 99 Chapter 6 Conclusion 102 Bibliography 105 초 둝 115λ°•

    μ„ νƒμ‹€ν—˜λ²•μ„ μ΄μš©ν•œ κ΄‘μ£Όμ²œ 볡원 속성별 후생변화 μΆ”μ •

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ ν™˜κ²½λŒ€ν•™μ› : ν™˜κ²½κ³„νšν•™κ³Ό(ν™˜κ²½κ΄€λ¦¬μ „κ³΅), 2016. 8. ν™μ’…ν˜Έ.κ³Όκ±° μ‹¬κ°ν•œ μˆ˜μ§ˆμ˜€μ—Ό λ¬Έμ œκ°€ μžˆμ—ˆλ˜ κ΄‘μ£Όμ²œμ€ 20μ—¬ λ…„ κ°„ κΎΈμ€€ν•œ 볡원사업이 μ§„ν–‰λ˜μ–΄ μ‹œλ―Όλ“€μ΄ 체감할 만큼의 κ°œμ„ μ΄ μ΄λ£¨μ–΄μ‘Œλ‹€. ν˜„μž¬μ—λ„ λ¬Όμˆœν™˜μˆ˜λ³€λ„μ‹œμ‘°μ„±μ‚¬μ—…κ³Ό 색채경관쑰성사업과 같은 사업이 μ§„ν–‰λ˜λŠ” λ“± κ΄‘μ£Όμ²œ 사업은 κ³„μ†λ˜κ³  μžˆλ‹€. κ·ΈλŸ¬λ‚˜ μ΄μ œκΉŒμ§€ κ΄‘μ£Όμ²œ 사업에 μžˆμ–΄μ„œ ν•œλ²ˆλ„ ν›„μƒκ²½μ œν•™μ  평가가 이루어진 적이 μ—†κ³ , κ΄‘μ£Όμ‹œλ―Όλ“€μ˜ κ΄‘μ£Όμ²œ 볡원 사업에 λŒ€ν•œ ν”Όλ“œλ°±μ„ ν¬ν•¨ν•œ 평가가 λΆ€μ‘±ν•œ 상황이닀. λ”°λΌμ„œ λ³Έ μ—°κ΅¬μ—μ„œλŠ” κ΄‘μ£Όμ²œμ„ λŒ€μƒμœΌλ‘œ μ‹œλ―Όλ“€μ˜ μ„ ν˜Έμ™€ 후생변화λ₯Ό νŒŒμ•…ν•˜κΈ° μœ„ν•΄ μ„ νƒμ‹€ν—˜λ²•μ„ μ΄μš©ν•˜μ—¬ 속성별 후생 λ³€ν™”λ₯Ό μΆ”μ •ν•˜μ˜€λ‹€. 속성을 수질, 식생, μ‹œμ„€λ‘œ λ‚˜λˆ„κ³  각각을 3μˆ˜μ€€μœΌλ‘œ κ΅¬λΆ„ν•˜μ˜€μœΌλ©°, κ°œμ„ λΆ€λ‹΄κΈˆ μˆ˜μ€€μ€ 4μˆ˜μ€€μœΌλ‘œ λ‚˜λˆ„μ–΄ 8개의 λ¬Έν•­μœΌλ‘œ μ„ νƒμ‹€ν—˜μ„ μ‹€μ‹œν•˜μ˜€λ‹€. 275λͺ…μ˜ 유효 응닡을 μ‘°κ±΄λΆ€λ‘œμ§“ λͺ¨ν˜•μ„ 톡해 λΆ„μ„ν•œ κ²°κ³Ό, λͺ¨λ“  속성에 λŒ€ν•΄ μœ μ˜ν•˜κ²Œ μ‚¬λžŒλ“€μ΄ λ°˜μ‘ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬μœΌλ©°, 이λ₯Ό ν† λŒ€λ‘œ 5λ…„ κ°„ 편읡이 λ°œμƒν•œλ‹€κ³  κ°€μ •ν•˜μ—¬ 총 λ°œμƒ νŽΈμ΅μ„ μΆ”μ •ν•˜μ˜€λ‹€. κ΄‘μ£Όμ²œμ˜ 평균적인 수질이 μ•½ 5λ…„ 전인 λ‚˜μ¨ μˆ˜μ€€μ—μ„œ 보톡 μˆ˜μ€€μœΌλ‘œ ν˜„μž¬ μ•ˆμ •ν™”λ˜μ—ˆλ‹€κ³  λ³Ό 수 μžˆλŠ” 경우, 1,709μ–΅ μ›μ˜ 편읡이 λ°œμƒν•˜μ˜€λ‹€. 또, 수질의 경우 μˆ˜μ€€μ΄ λ†’μ•„μ§ˆμˆ˜λ‘ ν•œκ³„μ§€λΆˆμ˜μ‚¬μ•‘μ΄ λ†’μ•„μ‘ŒμœΌλ‚˜, μ‹œμ„€μ€ μ§€λ‚˜μΉ˜κ²Œ μ‘°μ„±ν•  경우 였히렀 ν•œκ³„μ§€λΆˆμ˜μ‚¬μ•‘μ΄ λ–¨μ–΄μ§€λŠ” ν˜„μƒμ„ λ³΄μ˜€λ‹€. 뿐만 μ•„λ‹ˆλΌ μ‹μƒμ˜ 경우 μ„ νƒλŒ€μ•ˆμ˜ 쑰합을 λ‹€λ₯΄κ²Œ ν•œ μ„€λ¬Έμ§€λ³„λ‘œ μ§€λΆˆμ˜μ‚¬μ•‘μ— 차이가 λ‚˜νƒ€λ‚˜ 쑰경화와 λ‚˜λ¬΄μ— λŒ€ν•œ μ„ ν˜Έκ°€ μ‘λ‹΅μžλ“€λ§ˆλ‹€ λ‹€λ₯΄κ±°λ‚˜, μ§€λ‚˜μΉ˜κ²Œ 많이 μ‘°μ„±λ˜λŠ” μ‹μƒμ˜ 경우 거뢀감을 λŠλΌλŠ” κ²½μš°λ„ μžˆλ‹€κ³  해석할 수 μžˆλ‹€. μ‘λ‹΅μž 기초 톡계와 μ—°κ²°ν•˜μ—¬ 생각해 보면 κ΄‘μ£Όμ‹œλ―Όλ“€μ€ κ΄‘μ£Όμ²œμ„ μ‹€μ œ μ΄μš©ν•˜μ§€ μ•Šλ”λΌλ„ κ°œμ„ μ— λŒ€ν•΄ μ§€λΆˆμ˜μ‚¬κ°€ μžˆμ—ˆμœΌλ©°, μžμ—°μ˜ λͺ¨μŠ΅μ„ κ°„μ§ν•œ κ΄‘μ£Όμ²œμ„ μ„ ν˜Έν•˜λŠ” κ²ƒμœΌλ‘œ 보여진닀. 이에 κ΄‘μ£Όμ²œ μ‚¬μ—…μ˜ λ°©ν–₯을 μ‹œλ―Όλ“€μ˜ μš”κ΅¬μ— 맞게 μž¬κ³ λ €ν•΄ λ³Ό ν•„μš”κ°€ μžˆλŠ” κ²ƒμœΌλ‘œ 보인닀.β… . μ„œλ‘  1 1. μ—°κ΅¬μ˜ λ°°κ²½ 및 λͺ©μ  1 2. μ—°κ΅¬μ˜ λ²”μœ„ 3 3. μ—°κ΅¬μ˜ 방법 및 흐름도 4 β…‘. 이둠적 λ°°κ²½κ³Ό μ„ ν–‰ μ—°κ΅¬μ˜ κ³ μ°° 5 1. 이둠적 λ°°κ²½ 5 1) ν™˜κ²½μž¬μ˜ κ°€μΉ˜μΈ‘μ • 방법둠 5 2) μ„ νƒμ‹€ν—˜λ²• 8 2. μ„ ν–‰ μ—°κ΅¬μ˜ κ³ μ°° 13 β…’. μ‹€ν—˜ 섀계 17 1. 연ꡬ 속성 μ„ μ • 17 1) κ΄‘μ£Όμ²œ 사업 ν˜„ν™© 17 2) 연ꡬ 속성 μ„ μ • 23 2. 속성 μˆ˜μ€€μ˜ μ„€μ • 25 1) 수질 26 2) 식생경관 28 3) μ£Όλ―Όμ‹œμ„€ 30 4) μ§€λΆˆμ˜μ‚¬μ•‘ 31 3. μ„€λ¬Έ ꡬ성 33 1) μ„ νƒμ§‘ν•©μ˜ ꡬ성 33 2) 선택 λ¬Έν•­κ³Ό μ„€λ¬Έμ§€μ˜ ꡬ성 34 β…£. μ˜ˆλΉ„μ„€λ¬Έ 및 섀문쑰사 35 1. λͺ¨μ§‘단 및 ν‘œλ³Έ μ„ μ • 35 2. μ˜ˆλΉ„ μ„€λ¬Έ 및 μˆ˜μ • 35 1) 속성 μˆ˜μ€€κ³Ό λ¬Έν•­ μˆ˜μ • 35 2) μ„€λ¬Έ 버전별 λ°˜μ‘ 확인 36 3. 섀문쑰사 37 1) 섀문쑰사 방식 37 2) μœ νš¨μ‘λ‹΅ νšλ“ 37 β…€. μ„€λ¬Έ κ²°κ³Ό 뢄석 38 1. μ‘λ‹΅μž κΈ°μ΄ˆν†΅κ³„ 38 2. λͺ¨λΈ μ’…ν•© 뢄석 38 3. μ„€λ¬Έ 버전별 κ²°κ³Ό 뢄석 42 4. 영ν–₯ μš”μΈ 뢄석 45 5. κ°œμ„ λΉ„μš©μ„ λ‚Ό 의ν–₯이 μžˆλŠ” 이유 45 β…₯. κ²°λ‘  51 1. μ—°κ΅¬μ˜ μš”μ•½ 및 정책적 ν•¨μ˜ 51 2. μ—°κ΅¬μ˜ ν•œκ³„ 및 ν–₯ν›„κ³Όμ œ 52 μ°Έκ³  λ¬Έν—Œ 54 뢀둝 58 섀문지 61 Abstract 74Maste

    κ³ μΆ” μ €μ˜¨ νŠΈλžœμŠ€ν¬λ¦½ν†°κ³Ό μ „μ‚¬μ‘°μ ˆμž CBF의 뢄석

    No full text
    Thesis (doctoral)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :생λͺ…κ³Όν•™λΆ€,2003.Docto

    κ³ μΆ” (Capsicum annuum L.) μ—΄λ§€μ—μ„œ λ°œν˜„λ˜λŠ” wound-induced proteinase inhibitor II cDNA 클둠의 뢄리 및 νŠΉμ„±λΆ„μ„

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :생물학과,1998.Maste

    앉은 μžμ„Έμ—μ„œ κ³ κ΄€μ ˆ ꡴곑 μ‹œ κ³ κ΄€μ ˆ ꡴곑 μ œν•œμ΄ μžˆλŠ” μš”μΆ” ꡴곑 증후ꡰ λŒ€μƒμžμ˜ μš”κ³¨λ°˜λΆ€ λ™μž‘

    No full text
    Dept. of Rehabilitation Therapy/석사The purpose of this study was to investigate lumbopelvic motion during seated hip flexion in subjects with lumbar flexion syndrome (LFS) accompanying limited hip flexion. Fifteen subjects with LFS accompanying limited hip flexion and sixteen subjects without this condition were recruited for this study. To classify the subjects into two groups, the physical examinations were performed by an examiner. The physical examinations included (1) a pain scale for the low back (visual analog scale) (2) a disability index for the low back (modified Oswestry Disability Index) (3) assessment of active and passive hip flexion range (4) a classification system for determining LFS. The subjects performed seated hip flexion with the dominant leg three times. A three-dimensional motion-analysis system was used to measure lumbopelvic motion during seated hip flexion, and an independent t-test was used to compare the lumbopelvic motion between the two groups. The angle of hip flexion was significantly lower in subjects with LFS accompanying limited hip flexion (p=0.014). The angle of the lumbar flexion and posterior pelvic tilting, however, were significantly greater in subjects with this condition (p=0.006; p=0.019, respectively). The results of this study suggest that limited hip flexion can contribute to excessive lumbar flexion and posterior pelvic tilting during hip flexion in the sitting position. Further studies are required to confirm whether improving the hip flexion range of motion can reduce excessive lumbar flexion in patients with LFS accompanying limited hip flexion.restrictio

    ν—ˆλ¦¬ 폄 돌림 νŒ¨ν„΄μ„ 가진 λŒ€μƒμžμ—κ²Œ νŠΉμ • μ›€μ§μž„ 쑰절 μš΄λ™μ΄ κ±·κΈ° μ‹œ ν—ˆλ¦¬κ³¨λ°˜ μš΄λ™κ³Ό λͺΈν†΅ 근윑의 κ·Όν™œμ„±λ„μ— λ―ΈμΉ˜λŠ” 영ν–₯

    No full text
    Dept. of Physical Therapy/박사Walking is one of the most repetitive movements in daily activities and changes in lumbopelvic motion and trunk muscle activities during walking are critical indicators of spinal dysfunction. The purpose of Study 1 was to demonstrate the differences in- viii - lumbopelvic motion and trunk muscle activities during walking between subjects with and without a lumbar extension rotation (ExtRot) pattern. In total, 26 subjects with a lumbar ExtRot pattern and 18 subjects without lumbar ExtRot were recruited. Twenty reflective markers were placed on the lower extremity and lumbar spine and a 3–D motion analysis system was used to measure lumbopelvic kinematics. A surface electromyography (EMG) system was used to measure the trunk muscle activities and surface electrodes were attached on both rectus abdominis (RA), abdominal external oblique (EO), abdominal internal oblique (IO), and erector spinae (ES) muscles. All subjects walked 12 times at a self–selected (comfortable) walking speed on the walkway. Kinematic data, at initial heel strike (HS), left toe–off (TO), left HS, and right TO, and EMG data at first double support, left swing, second double support, and right swing phase were used for the statistical analyses. To compare kinematic and EMG data between subjects with and without the lumbar ExtRot pattern, independent t–tests for parametric variables and Mann–Whitney U–tests for non– parametric variables were used. Subjects with a lumbar ExtRot pattern showed significantly increased pelvic and lumbar angles in the sagittal plane (p < 0.05); however, there was no significant difference in the pelvic or lumbar angle in the transverse plane between subjects with and without a lumbar ExtRot pattern (p > 0.05). In EMG activity, significantly increased activities in both ES muscles at all events and decreased right IO muscle activity at the second double support phase were seen in subjects with a lumbar ExtRot pattern versus subjects without (p < 0.05). Both RA, EO, and IO muscle activities, except the right IO muscle activity at the - ix - second double support phase, were not significantly different between subjects with and without the lumbar ExtRot pattern (p > 0.05). The purpose of Study 2 was to demonstrate the effects of a 6–week specific movement control exercise on pain behavior, lumbopelvic motion, and trunk muscle activities during walking in subjects with a lumbar ExtRot pattern. In total, 39 subjects with lumbar a ExtRot pattern (experimental = 19; control = 20) participated in this study. Subjects in the experimental group performed 6 weeks of movement control exercises and the exercise level of difficulty was adjusted progressively. Clinical outcome measures included pain intensity (visual analog scale), level of disability (Oswestry disability index and Roland Morris disability questionnaire), and fear and avoidance level (Fear–avoidance beliefs questionnaire) caused by low back pain (LBP). To measure lumbopelvic kinematics and EMG activities in the trunk muscles (RA, EO, IO, and ES) during walking, all subjects walked on an 8–m–long straight walkway. Kinematic data at initial right HS, left TO, left HS, and right TO and the EMG data at first double support, left swing, second double support and right swing phase were used for the statistical analysis. The Wilcoxon signed–rank test for non–parametric variables and the paired t–test for parametric variables were used to compare baseline and follow–up treatment within a group. After the 6–week intervention, pain intensity, level of disability, and fear and avoidance level caused by LBP were decreased significantly in the experimental group. Additionally, there were significantly decreased angles in the lumbar spine and pelvic region in the sagittal plane at all events in the experimental group. However, there was no significant difference in the pelvic or lumbar angle in the transverse plane in either group. In the EMG data, right ES muscle activity was decreased significantly during the first and second double support phase and left ES muscle activity was also decreased significantly during the second double support phase in the experimental group. However, in the control group, there was no significant difference in lumbopelvic motion or ES muscle activity. After the 6–week intervention, there was no significant difference in abdominal muscle activity in either group. Based on these two studies, it was demonstrated that subjects with a lumbar ExtRot pattern had greater angle in the lumbar spine and pelvic region in the sagittal plane, increased ES muscle activities at all events, and decreased right IO at the second double support phase during walking, compared with subjects without a lumbar ExtRot pattern. These changed patterns of lumbopelvic motion in the sagittal plane and ES muscle activity and pain behavior in subjects with a lumbar ExtRot pattern can be improved by specific movement control exercises over a 6–week course. Thus, specific movement control exercises can be an effective treatment for subjects with a lumbar ExtRot pattern to modify their excessive lumbopelvic motion in the sagittal plane and excessive muscle activity of the ES in walking.ope

    Li-Zhi`s writing in `Fenshu`

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :쀑어쀑문학과, 2009.2.Maste

    Fixed - point Optimization Utility for Digital Signal Processing Programs

    No full text
    C λ˜λŠ” C++ μ–Έμ–΄λ‘œ 기술된 디지털 μ‹ ν˜Έμ²˜λ¦¬ μ•Œκ³ λ¦¬λ“¬μ˜ λΉ λ₯Έ κ³ μ • μ†Œμˆ˜μ  μ„±λŠ₯ 평가와 μ΅œμ ν™”λ₯Ό μœ„ν•œ μ†Œν”„νŠΈμ›¨μ–΄κ°€ κ°œλ°œλ˜μ—ˆλ‹€. 이 μœ ν‹Έλ¦¬ν‹°λŠ” λ²”μœ„ 좔정기와 κ³ μ •μ†Œμˆ˜μ  λͺ¨μ˜ μ‹€ν—˜κΈ°λ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€. μ „μžλŠ” 뢀동 μ†Œμˆ˜μ  λ³€μˆ˜μ˜ λ²”μœ„(range)λ₯Ό μΆ”μ •ν•˜κ³ , 이에 μ˜ν•˜μ—¬ μŠ€μΌ€μΌλ§ 정보λ₯Ό μ•Œλ €μ€€λ‹€. ν›„μžλŠ” 뢀동 μ†Œμˆ˜μ  ν”„λ‘œκ·Έλž¨μœΌλ‘œλΆ€ν„° κ³ μ • μ†Œμˆ˜μ  ν”„λ‘œκ·Έλž¨μ„ μƒμ„±ν•˜μ—¬, μœ ν•œ 단어 길이 효과λ₯Ό λͺ¨μ˜ μ‹€ν—˜μœΌλ‘œ μΈ‘μ •ν•  수 있게 ν•΄ μ€€λ‹€. C++ μ–Έμ–΄μ˜ μ—°μ‚°μž μ˜€λ²„λ‘œλ”©(opertaor overloading) νŠΉμ„±μ„ μ΄μš©ν•˜κΈ° λ•Œλ¬Έμ— λ²”μœ„ μΆ”μ •κ³Ό κ³ μ • μ†Œμˆ˜μ  λͺ¨μ˜ μ‹€ν—˜μ΄ 단지 μ›λž˜ ν”„λ‘œκ·Έλž¨μ˜ μ„ μ–Έ(delaration) λΆ€λΆ„λ§Œ λ°”κΎΈμ–΄ 쀌으둜써 κ°€λŠ₯ν•˜λ‹€. 이 μœ ν‹Έλ¦¬ν‹°λŠ” λͺ¨μ˜ μ‹€ν—˜μ— μ˜ν•΄ λ²”μœ„ μΆ”μ •κ³Ό κ³ μ •μ†Œμˆ˜μ  μ„±λŠ₯을 μΈ‘μ •ν•˜λ―€λ‘œ λΉ„μ„ ν˜•μ΄λ‚˜ μ‹œλ³€(time-varying), λ˜λŠ” λ‹€μ€‘μœ¨(multi-rate)κ³Ό 닀차원 μ‹ ν˜Έμ²˜λ¦¬μ™€ 같은 거의 λͺ¨λ“  디지털 μ‹ ν˜Έ 처리 μ•Œκ³ λ¦¬λ“¬μ— μ μš©ν•  수 μžˆλ‹€. λ˜ν•œ, 이 μœ ν‹Έλ¦¬ν‹°λŠ” μ„œλ‘œ λ‹€λ₯Έ κ΅¬ν˜„ ꡬ쑰에 λ”°λ₯Έ κ³ μ •μ†Œμˆ˜μ  νŠΉμ„±μ„ 비ꡐ할 λͺ©μ μœΌλ‘œλ„ μ‚¬μš©λ  수 μžˆλ‹€. ; Fixed-pint optimization utility software that can aid scaling and wordlength determination of digital signal processing algorithms written in C or C++ language is developed. This utility consists of two programs: the range estimator and the fixed-point simulator. The former estimates the ranges of floating-point variables for automatic scaling purpose, and the latter translates floating-point programs into fixed-point equivalents for evaluating the fixed-point performance by simulation. By exploiting the operator overloading characteristics of C++ language, the range estimation and the fixed-point simulation can be conducted just by modifying the variable declaration of the original program. This utility is easily applicable to nearly all types of' digital signal processing programs including non-linear, time-varying, multi-rate, and multi-dimensional signal processing algorithms. In addition, this software can be used for comparing the fixed-point characteristics of different implementation architectures

    Effect of post-pancreatectomy symptoms on postoperative length of stay analysis of electronic nursing records

    No full text
    κ°„ν˜Έν•™κ³Όλ³Έ μ—°κ΅¬λŠ” 췌μž₯μ•” ν™˜μžκ°€ 췌μž₯절제술 ν›„ κ²½ν—˜ν•˜λŠ” 증상과 μž¬μ›μΌμˆ˜μ™€μ˜ 상관관계λ₯Ό νŒŒμ•…ν•˜κΈ° μœ„ν•΄ μ‹œλ„λœ 연ꡬ이닀. 자료 μˆ˜μ§‘μ€ 2016λ…„ 1μ›” 1일뢀터 2016λ…„ 12μ›” 31μΌκΉŒμ§€ μ„œμšΈ μ†Œμž¬μ˜ 일 μƒκΈ‰μ’…ν•©λ³‘μ›μ—μ„œ 췌μž₯μ ˆμ œμˆ μ„ μ‹œν–‰ν•œ 333λͺ…을 λŒ€μƒμœΌλ‘œ ν•˜μ˜€μœΌλ©°, μ „μžμ˜λ¬΄κΈ°λ‘ 쀑 κ°„ν˜ΈκΈ°λ‘μ—μ„œ λ‚˜νƒ€λ‚˜λŠ” 증상을 μΆ”μΆœν•˜μ—¬ SPSS/WIN 24.0을 μ΄μš©ν•˜μ—¬ λΆ„μ„ν•˜μ˜€κ³ , ꡬ체적인 μ—°κ΅¬κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™λ‹€. 1. μ—°κ΅¬λŒ€μƒμ˜ νŠΉμ„±μ„ 보면 연령은 59.46Β±11.68세이고, 성별은 여성이 169λͺ…(50.8%)으둜 λ§Žμ•˜μœΌλ©°, λŒ€λΆ€λΆ„μ΄ 기혼으둜 314λͺ…(94.3%), 직업이 μ—†λŠ” λŒ€μƒμžκ°€ 174λͺ…(52.3%)μ΄μ—ˆλ‹€. 췌μž₯μ•”μ˜ μ’…λ₯˜λ‘œλŠ” μ•…μ„± 쒅양이 237λͺ…(71.2%), κ°œλ³΅μˆ˜μˆ μ„ μ‹œν–‰ν•œ λŒ€μƒμžκ°€ 165λͺ…(49.5%), PPPDλ₯Ό μ‹œν–‰ν•œ λŒ€μƒμžκ°€ 161λͺ…(48.3), 흑연과 음주λ ₯이 μ—†λŠ” λŒ€μƒμžκ°€ 각각 206λͺ…(61.9%), 188λͺ…(56.5%)으둜 λ‹€μˆ˜λ₯Ό μ°¨μ§€ν•˜μ˜€κ³ , 수술 μ „ serum albumin level은 194λͺ…(58.3%)이 3.5g/dLμ΄μƒμœΌλ‘œ μ •μƒλ²”μœ„μ— μžˆμ—ˆλ‹€. 수술 ν›„ 합병증이 λ°œμƒν•˜μ§€ μ•Šμ€ λŒ€μƒμžλŠ” 266λͺ…(79.9%)μ΄μ—ˆλ‹€. 수술 ν›„ μž¬μ›μΌμˆ˜λŠ” 5μΌμ—μ„œ 60μΌκΉŒμ§€ λΆ„ν¬ν•˜μ˜€μœΌλ©°, 수술 ν›„ 평균 μž¬μ›μΌμˆ˜λŠ” 10.80Β±5.10μΌμ΄μ—ˆλ‹€. 2. 일반적 νŠΉμ„± 및 μ§ˆλ³‘κ΄€λ ¨ νŠΉμ„± 쀑 성별, μ•”μ˜ μ•…μ„± 유무, μˆ˜μˆ λ°©λ²•, 수술λͺ…, μž…μ› μ‹œ μ£Ό 증상 유무, 수술 μ „ serum albumin level, 합병증 λ°œμƒμœ λ¬΄κ°€ μž¬μ›μΌμˆ˜μ— μœ μ˜ν•œ 차이가 μžˆμ—ˆλ‹€. 남성이 여성보닀 μž¬μ›μΌμˆ˜κ°€ κΈΈμ—ˆκ³ (t=2.858, p=.005), 양성쒅양보닀 악성쒅양이(t=-2.778, p=.006), 볡강경, λ‘œλ΄‡μˆ˜μˆ λ³΄λ‹€ 개볡수술이(F=29.410, p<.001) μž¬μ›μΌμˆ˜κ°€ κΈΈμ—ˆμœΌλ©°, 수술λͺ…μ—μ„œλŠ” DPκ°€ PD, PPPD, TP보닀 μž¬μ›μΌμˆ˜κ°€ μœ μ˜ν•˜κ²Œ μ§§μ•˜λ‹€(F=24.826, p<.001). μž…μ› μ‹œ 주증상이 μžˆλŠ” λŒ€μƒμžκ°€ μ—†λŠ” λŒ€μƒμžλ³΄λ‹€(t=-2.112, p=.035), 수술 μ „ serum albumin level이 3.5g/dL미만인 λŒ€μƒμžκ°€ 3.5g/dL이상인 λŒ€μƒμžλ³΄λ‹€(t=4.405, p<.001), 수술 ν›„ 합병증이 λ°œμƒν•œ λŒ€μƒμžμ˜ μž¬μ›μΌμˆ˜κ°€ κΈΈμ—ˆλ‹€(t=-5.798, p<.001). 3. 췌μž₯ 절제술 ν›„ λŒ€μƒμžκ°€ ν˜Έμ†Œν•˜λŠ” 증상은 톡증, μ˜€μ‹¬, 갈증, 볡뢀 뢈편감, ꡬ토, 열감, 배뇨μž₯μ• , μ–΄μ§€λŸ¬μ›€, μ˜€ν•œ, κ°€μŠ΄ 닡닡함, 속쓰림, 볡뢀 팽만감, 수면μž₯μ• , 섀사, ν˜Έν‘κ³€λž€μ΄μ—ˆλ‹€. λŒ€μƒμžκ°€ κ²½ν—˜ν•˜λŠ” 증상 쀑 μž¬μ›μΌμˆ˜μ— μœ μ˜ν•œ 차이λ₯Ό λ³΄μ΄λŠ” 증상은 갈증, ꡬ토, μ˜€ν•œμ΄μ—ˆμœΌλ©°, 갈증(t=-2.120, p=.036), ꡬ토(t=-2.755, p=.008), μ˜€ν•œ(t=-3.301, p=.001)이 λ°œμƒν•œ λŒ€μƒμžμ˜ μž¬μ›μΌμˆ˜κ°€ μœ μ˜ν•˜κ²Œ κΈΈμ—ˆλ‹€. 4. λŒ€μƒμžμ˜ 일반적 νŠΉμ„± 및 μ§ˆλ³‘κ΄€λ ¨ νŠΉμ„±μ— λ”°λ₯Έ μ¦μƒλ°œμƒμ˜ 차이λ₯Ό ν™•μΈν•œ κ²°κ³Ό 성별에 따라 μ˜€μ‹¬ (Ο‡2=31.876, p<.001), κ°€μŠ΄λ‹΅λ‹΅ν•¨(Ο‡2=4.828, p=.028), 섀사(Ο‡2=4.798, p=.034) λ°œμƒμ˜ 차이가 μžˆμ—ˆλ‹€. μ˜€μ‹¬μ€ 여성이 남성보닀 더 많이 ν˜Έμ†Œν•˜μ˜€μœΌλ©°, κ°€μŠ΄λ‹΅λ‹΅ν•¨κ³Ό μ„€μ‚¬λŠ” 남성이 더 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. 연령에 λ”°λ₯Έ μ–΄μ§€λŸ¬μ›€ λ°œμƒμ˜ 차이가 μžˆμ—ˆλŠ”λ°(Ο‡2=7.579, p=.006) 65μ„Έ μ΄μƒμ˜ λŒ€μƒμžκ°€ 65μ„Έ 미만의 λŒ€μƒμžλ³΄λ‹€ μ–΄μ§€λŸ¬μ›€μ„ 더 많이 ν˜Έμ†Œν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 수술 방법에 따라 μ§„ν†΅μ œ νˆ¬μ•½ 횟수의 차이가 μžˆμ—ˆκ³ (Ο‡2=11.075, p=.004), κ°œλ³΅μˆ˜μˆ μ„ μ‹œν–‰ν•œ ν™˜μžκ°€ 볡강경 및 λ‘œλ΄‡μˆ˜μˆ κ³Ό λΉ„κ΅ν•˜μ—¬ μ§„ν†΅μ œ νˆ¬μ•½νšŸμˆ˜κ°€ λ§Žμ•˜λ‹€. μ˜€μ‹¬ λ°œμƒμ˜ μ°¨μ΄λŠ” μ•”μ˜ μ’…λ₯˜(Ο‡2=4.895, p=.027), 수술 방법(Ο‡2==7.214, p=.027), 흑연(Ο‡2=30.087, p<.001) 및 음주 μœ λ¬΄μ— 따라(Ο‡2=20.101, p<.001)차이가 μžˆμ—ˆλŠ”λ°, 악성인 λŒ€μƒμž, 개볡 및 볡강경 μˆ˜μˆ μ„ μ‹œν–‰ν•œ λŒ€μƒμžκ°€ λ‘œλ΄‡ μˆ˜μˆ λ³΄λ‹€ μ˜€μ‹¬μ„ 더 많이 ν˜Έμ†Œν•˜μ˜€κ³ , 흑연과 음주λ ₯이 μ—†λŠ” λŒ€μƒμžμ—κ²Œμ„œ μ˜€μ‹¬μ΄ 더 많이 λ°œμƒν•˜μ˜€λ‹€. κ°ˆμ¦μ€ μ•”μ˜ μ’…λ₯˜μ— λ”°λ₯Έ 차이가 μžˆμ—ˆκ³ (Ο‡2=4.727, p=.030), 악성인 λŒ€μƒμžκ°€ 더 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. 볡뢀 λΆˆνŽΈκ°μ€ 수술 μ’…λ₯˜μ— 따라 차이가 μžˆμ—ˆκ³ (Ο‡2=6.823, p=.033), 볡강경 수술과 κ°œλ³΅μˆ˜μˆ μ„ μ‹œν–‰ν•œ λŒ€μƒμžκ°€ λ‘œλ΄‡μˆ˜μˆ λ³΄λ‹€ 볡뢀 λΆˆνŽΈκ°μ„ 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. ꡬ토와 μ˜€ν•œμ€ 합병증 λ°œμƒ 유무(Ο‡2=5.206, p=.023, Ο‡2=4.701, p=.041)에 λ”°λ₯Έ 차이λ₯Ό λ³΄μ˜€λŠ”λ°, 합병증이 μ—†λŠ” λŒ€μƒμžκ°€ 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. 배뇨μž₯μ• λŠ” 수술 방법에 따라 차이가 μžˆμ—ˆκ³ (Ο‡2=6.533, p=.038), κ°œλ³΅μˆ˜μˆ μ„ μ‹œν–‰ν•œ λŒ€μƒμžκ°€ 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. κ°€μŠ΄λ‹΅λ‹΅ν•¨μ€ ν‘μ—°μœ λ¬΄μ— λ”°λ₯Έ 차이가 μžˆμ—ˆλŠ”λ°(Ο‡2=5.769, p=0.24) 흑연λ ₯이 μžˆλŠ” λŒ€μƒμžκ°€ 더 많이 ν˜Έμ†Œν•˜μ˜€λ‹€. 5. μ„ ν˜•νšŒκ·€ 뢄석 κ²°κ³Ό 수술 ν›„ μž¬μ›μΌμˆ˜λŠ” 성별(Ξ²=-.100, p=.027), 수술λͺ…(Ξ²=-.222, p<.001), serum albumin level(Ξ²=-.122, p=.011), 합병증 유무(Ξ²=.331, p<.001), 갈증유무(Ξ²=.118, p=.007), κ΅¬ν† μœ λ¬΄(Ξ²=.190, p<.001), μ˜€ν•œμœ λ¬΄(Ξ²=.104, p=.018)의 7가지 μš”μΈμ— μ˜ν•˜μ—¬ ν†΅κ³„μ μœΌλ‘œ μœ μ˜ν•˜κ²Œ μ„€λͺ…λ˜μ—ˆλ‹€(Adjusted R2=.397, p<.001). μ—¬μ„±, PPPD보닀 DP, 3.5g/dL μ΄μƒμ˜ serum albumin level이 수술 ν›„ μž¬μ›μΌμˆ˜λ₯Ό κ°μ†Œμ‹œν‚€λŠ” 영ν–₯μš”μΈμ΄μ—ˆκ³ , 수술 ν›„ 합병증 λ°œμƒ, 갈증, ꡬ토, μ˜€ν•œμ΄ μž¬μ›μΌμˆ˜λ₯Ό μ¦κ°€μ‹œν‚€λŠ” 영ν–₯μš”μΈμ΄μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ˜ κ²°κ³ΌλŠ” 췌μž₯μ ˆμ œμˆ μ„ μ‹œν–‰ν•œ 췌μž₯μ•” ν™˜μžμ˜ κ°„ν˜Έμ—μ„œ 수술 ν›„ λŒ€μƒμžκ°€ κ²½ν—˜ν•˜λŠ” 증상에 λ”°λ₯Έ 효과적인 μ€‘μž¬ μ „λž΅μ΄ κ°œλ°œλ˜μ–΄μ•Ό ν•  ν•„μš”μ„±μ„ μ‹œμ‚¬ν•˜λ©°, μ „μžκ°„ν˜ΈκΈ°λ‘μ„ μ΄μš©ν•œ μ¦μƒμ—°κ΅¬μ˜ κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€.open석
    corecore