4 research outputs found

    ์ „์ด ์—”ํŠธ๋กœํ”ผ์™€ ๊ธฐ๊ณ„ํ•™์Šต์— ๊ธฐ๋ฐ˜ํ•œ ๊ธˆ์œตํˆฌ์ž ์‹ค์ฆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ์žฅ์šฐ์ง„.Stock markets have been studied extensively as one of the crucial fields of economy. In particular, research has been actively conducted to analyze and predict the stock market based on relationships among the dynamics of stock prices and returns. In this context, transfer entropy is a non-parametric indicator in analyzing relationships between components of a system, and has a more flexible analytical ability than correlation or Granger-causality. The study of stock price prediction is also being studied from traditional linear models to the latest machine learning models, and research on the optimal asset allocation strategy based on these studies are conducted. The purpose of this dissertation is to derive ETE based network indicator with a market explanatory power for the US stock market by using effective transfer entropy, which is mainly used in econophysics and information theory. The improvement of the performance of the stock price direction prediction through various machine learning algorithms by ETE based network indicator is also analyzed. Furthermore, we apply the prediction result of the stock price through the machine learning algorithm with ETE based network indicator to optimal portfolio strategy through the Black-Litterman model to study the practical use of the investment strategy. At first, we explore that the ETE based on 3 and 6 months moving windows can be regarded as the market explanatory variable by analyzing the association between the financial crises and statistical explanatory power among the stocks. We found that 3 and 6 months moving windows ETEs increase in major financial crises, and that the sectors related to the financial crises have a statistical explanatory power to other sectors through the time-varying analysis of the ETE network indicators. Then, we discover that the prediction performance on the stock price direction can be improved when the ETE driven variable is integrated as a new feature in the logistic regression, multilayer perceptron, random forest, XGBoost, and long short-term memory network. Meanwhile, we suggest utilizing the adjusted accuracy derived from the risk-adjusted return in finance as a prediction performance measure. Notably, we confirm that the multilayer perceptron and long short-term memory network are more suitable for stock price prediction. Lastly, we examined the possibility for investors to develop an investment strategy that maximizes profits through the Black-Litterman model using ETE and machine learning. The characteristics of the inflow and outflow ETE network indicators with market explanatory power and the stock price direction prediction results using machine learning algorithms are applied to the investor's view of the Black-Literman model. The Black-Litterman portfolio, which applies the results of the stock price direction prediction using machine learning algorithms to the investor's view, provides a better return on risk than the market portfolio and market index, and the Black-Litterman portfolio with the ETE network indicator has the highest yield. The use of ETE and stock price prediction leads to improved return on investment, and improving predictive performance increases the return on investment. This dissertation is the first study on the optimal portfolio establishment strategy through the Black-Litterman model and stock price direction prediction using machine learning algorithm to apply ETE of information theory to the financial investment field.์ฃผ์‹ ์‹œ์žฅ์€ ๊ฒฝ์ œ ๋ถ„์•ผ์˜ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์œผ๋กœ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฃผ์‹ ์‹œ์žฅ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋“ค์ธ ์ฃผ์‹ ๊ฐ€๊ฒฉ๊ณผ ๊ทธ ์ˆ˜์ต๋ฅ ์˜ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ํˆฌ์ž์ž๋“ค์ด ์ตœ์  ํˆฌ์ž ์ „๋žต์„ ์„ธ์šฐ๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ๊ณผ์—… ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋งฅ๋ฝ์—์„œ, ์–ด๋– ํ•œ ์‹œ์Šคํ…œ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋“ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐ ์žˆ์–ด ์ „์ด ์—”ํŠธ๋กœํ”ผ(Transfer entropy)๋Š” ๋น„๋ชจ์ˆ˜ ์ง€ํ‘œ๋กœ์จ ์ƒ๊ด€ ๊ด€๊ณ„๋‚˜ ๊ทธ๋ ˆ์ธ์ €-์ธ๊ณผ๊ด€๊ณ„์— ๋น„ํ•ด ์š”์†Œ ๊ฐ„ ํ†ต๊ณ„์  ์„ค๋ช…๋ ฅ์„ ํ™•์ธํ•˜๊ธฐ์— ์šฉ์ดํ•˜๋‹ค. ์ฃผ์‹ ๊ฐ€๊ฒฉ์˜ ์˜ˆ์ธก๊ณผ ์ด๋ฅผ ํ†ตํ•œ ์ตœ์  ์ž์‚ฐ ๋ฐฐ๋ถ„ ์ „๋žต์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ „ํ†ต์ ์ธ ์„ ํ˜• ๋ชจ๋ธ๋ถ€ํ„ฐ ์ตœ์‹ ์˜ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ ์šฉ๊นŒ์ง€ ๋‹ค์–‘ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ๊ฒฝ์ œ๋ฌผ๋ฆฌํ•™๊ณผ ์ •๋ณด์ด๋ก  ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํšจ์œจ์  ์ „์ด ์—”ํŠธ๋กœํ”ผ(Effective transfer entropy, ETE)๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ฏธ๊ตญ ์ฃผ์‹ ์‹œ์žฅ์—์„œ ์‹œ์žฅ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„ ๋ฐœ์ƒํ•˜๋Š” ์ •๋ณด ํ๋ฆ„์˜ ํŠน์ง•์„ ํŒŒ์•…ํ•˜์—ฌ ์‹œ์žฅ์˜ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š” ์‹œ์žฅ ์„ค๋ช…๋ ฅ ์žˆ๋Š” ETE ๊ธฐ๋ฐ˜์˜ ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ๋ฅผ ๋„์ถœํ•˜๊ณ , ์ด ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ์˜ ์‚ฌ์šฉ์ด ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ๋‹ค ์ฃผ๋Š” ์ง€์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์‹œ์žฅ ์„ค๋ช…๋ ฅ ์žˆ๋Š” ETE ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ์˜ ๊ตฌ์กฐ์  ํŠน์ง•๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ํˆฌ์ž์ž ๊ด€์ ์„ ๊ณ ๋ คํ•œ ์ตœ์  ํฌํŠธํด๋ฆฌ์˜ค ๊ตฌ์„ฑ ์ „๋žต์ธ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•(Black-Litterman model)์— ์ ์šฉํ•˜์—ฌ ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •๋ณด ์ด๋ก ๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์‹ค์ œ ํˆฌ์ž ์ „๋žต ํ™œ์šฉ์„ฑ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ๋‹ค. ๋จผ์ €, ๋ฏธ๊ตญ ์ฃผ์‹ ์‹œ์žฅ์˜ ์ฃผ์š” ๊ธˆ์œต ์œ„๊ธฐ๋“ค๊ณผ ์ฃผ์‹๋“ค ๊ฐ„์˜ ํ†ต๊ณ„์  ์„ค๋ช…๋ ฅ์„ ETE๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•จ์œผ๋กœ์จ 3๊ฐœ์›”๊ณผ 6๊ฐœ์›” ์ด๋™์ฐฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ETE๊ฐ€ ๋ฏธ๊ตญ ์ฃผ์‹ ์‹œ์žฅ์— ๋Œ€ํ•ด ์„ค๋ช…๋ ฅ ์žˆ๋Š” ์ง€ํ‘œ์ž„์„ ํ™•์ธํ–ˆ๋‹ค. ํ•ด๋‹น ์ง€ํ‘œ๊ฐ€ ์ฃผ์š” ๊ธˆ์œต ์œ„๊ธฐ์—์„œ ๊ทธ ๊ฐ’์ด ์ปค์ง€๊ณ , ETE ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ์˜ ์‹œ๊ณ„์—ด ๋ถ„์„์„ ํ†ตํ•ด ๊ฐ ๊ธˆ์œต์œ„๊ธฐ์—์„œ ํ•ด๋‹น ๊ธˆ์œต ์œ„๊ธฐ์™€ ๊ด€๋ จ๋œ ์„นํ„ฐ๋“ค์ด ๋‹ค๋ฅธ ์„นํ„ฐ๋“ค์— ํ†ต๊ณ„์  ์„ค๋ช…๋ ฅ์ด ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(Logistic regression, LR), ๋‹ค์ธต ํผ์…‰ํŠธ๋ก (Multilayer perceptron, MLP), ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(Random forest, RF), XGBoost(XGB) ๋ฐ Long short-term memory network(LSTM)์˜ 5๊ฐœ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ETE ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ๊ฐ€ ์ƒˆ๋กœ์šด ๋ณ€์ˆ˜๋กœ ์ถ”๊ฐ€๋˜์—ˆ์„ ๋•Œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก์— ๋Œ€ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค. ํ•œํŽธ, ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์„ฑ๋Šฅ ํ‰๊ฐ€์— ๋Œ€ํ•œ ์ง€ํ‘œ๋กœ ๊ธˆ์œต ๋ถ„์•ผ์—์„œ ์“ฐ์ด๋Š” ์œ„ํ—˜ ์กฐ์ • ์ˆ˜์ต๋ฅ ๋กœ๋ถ€ํ„ฐ ๋„์ถœํ•œ ์ˆ˜์ • ์ •ํ™•๋„ ํ™œ์šฉ์„ ์ œ์•ˆํ–ˆ๊ณ , ์ด ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์ด์šฉํ•œ ๋ถ„์„์„ ํ†ตํ•ด ํ•ด๋‹น 5๊ฐœ ๋ชจ๋ธ ์ค‘ MLP์™€ LSTM์ด ๋ฏธ๊ตญ ์ฃผ์‹ ์‹œ์žฅ์— ๋Œ€ํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก์—์„œ ๋” ์ ํ•ฉํ•œ ๋ชจ๋ธ์ž„์„ ํ™•์ธํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์‹œ์žฅ ์„ค๋ช…๋ ฅ ์žˆ๋Š” ์œ ์ž… ๋ฐ ์œ ์ถœ ETE ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ์˜ ํŠน์ง•๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์˜ ํˆฌ์ž์ž ๊ด€์ ์— ์ ์šฉํ•˜์—ฌ, ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ํˆฌ์ž์ž ๊ด€์ ์— ์ ์šฉํ•œ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ํฌํŠธํด๋ฆฌ์˜ค๋Š” ์‹œ์žฅ ํฌํŠธํด๋ฆฌ์˜ค์™€ ์‹œ์žฅ ์ธ๋ฑ์Šค๋ณด๋‹ค ๋‚˜์€ ์œ„ํ—˜ ๋Œ€๋น„ ์ˆ˜์ต๋ฅ ์„ ๋ณด์ด๊ณ , ETE ๋„คํŠธ์›Œํฌ ์ง€ํ‘œ๋ฅผ ์ ์šฉํ•œ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ํฌํŠธํด๋ฆฌ์˜ค๋Š” ๊ฐ€์žฅ ๋†’์€ ์ˆ˜์ต๋ฅ ์„ ๋ณด์ž„์„ ํ™•์ธํ–ˆ๋‹ค. ETE์™€ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก์˜ ์‚ฌ์šฉ์ด ํˆฌ์ž ์ˆ˜์ต๋ฅ  ํ–ฅ์ƒ์œผ๋กœ ์ด์–ด์ง€๊ณ , ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋ฉด ํˆฌ์ž ์ˆ˜์ต๋ฅ ๋„ ํ•จ๊ป˜ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํˆฌ์ž์ž๋“ค์ด ETE์™€ ๋จธ์‹  ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•œ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์„ ํ†ตํ•ด ์ˆ˜์ต์„ ๊ทน๋Œ€ํ™” ํ•  ์ˆ˜ ์žˆ๋Š” ํˆฌ์ž ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ํ™•์ธํ–ˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ •๋ณด ์ด๋ก ์˜ ETE๋ฅผ ๊ธˆ์œต ํˆฌ์ž ๋ถ„์•ผ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก, ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ์ฃผ๊ฐ€ ๋ฐฉํ–ฅ ์˜ˆ์ธก๊ณผ ๋ธ”๋ž™-๋ฆฌํ„ฐ๋งŒ ๋ชจํ˜•์„ ํ†ตํ•œ ์ตœ์  ํฌํŠธํด๋ฆฌ์˜ค ๊ตฌ์„ฑ ์ „๋žต์— ๋Œ€ํ•œ ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์ด๋‹ค.Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Literature Review 9 2.1 Analysis of transfer entropy . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Stock price prediction based on machine learning . . . . . . . . . . . 12 2.3 The Black-Litterman model . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 3 Effective transfer entropy analysis for the US market 21 3.1 Effective transfer entropy . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Data and experiment set-ups . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Experiment set-ups . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Overall analysis of Effective transfer entropy . . . . . . . . . 31 3.3.2 Sector analysis of Effective transfer entropy . . . . . . . . . . 33 3.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4 Predicting the direction of US stock prices using ETE and machine learning techniques 45 4.1 Machine learning algorithms . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . 45 4.1.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.4 Extreme gradient boosting . . . . . . . . . . . . . . . . . . . 47 4.1.5 Long short-term memory network . . . . . . . . . . . . . . . 48 4.1.6 Adjusted accuracy . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Data and experiment set-ups . . . . . . . . . . . . . . . . . . . . . . 51 4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.2 Experiment set-ups . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Prediction performance in different models . . . . . . . . . . 57 4.3.2 Prediction performance in different sectors . . . . . . . . . . . 66 4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter 5 The Black-Litterman model for ETE and machine learning 81 5.1 The Black-Litterman model . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Data and experiment set-ups . . . . . . . . . . . . . . . . . . . . . . 84 5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.2 Experiment set-ups . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.1 Prediction performance in different models and sectors . . . . 91 5.3.2 Portfolio performances for cumulative return . . . . . . . . . 91 5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97 Chapter 6 Conclusion 103 6.1 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . 103 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Bibliography 107 ๊ตญ๋ฌธ์ดˆ๋ก 125Docto

    5G URLLC๋ฅผ ์œ„ํ•œ ์ €์ง€์—ฐ ํ†ต์‹  ํ”„๋กœํ† ์ฝœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ฌ๋ณ‘ํšจ.2020๋…„ IMT ๋น„์ „์— ๋”ฐ๋ฅด๋ฉด 5 ์„ธ๋Œ€ (5G) ์ด๋™ ํ†ต์‹  ์„œ๋น„์Šค๋Š” eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communication) ๋ฐ URLLC (Ultra Reliability and Low Latency Communication)์˜ ์„ธ ๊ฐ€์ง€ ์„œ๋น„์Šค๋กœ ๋ถ„๋ฅ˜๋œ๋‹ค. ๋‚ฎ์€ ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ๋†’์€ ์‹ ๋ขฐ๋„๋ฅผ ๋™์‹œ์— ๋ณด์žฅํ•˜๋Š” ๊ฒƒ์€ ์‹ค์‹œ๊ฐ„ ์„œ๋น„์Šค ๋ฐ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•˜์—ฌ ํ•„์š”ํ•œ ํ•ต์‹ฌ ๊ธฐ์ˆ ์ด๊ณ , 3 ๊ฐœ์˜ 5G ์„œ๋น„์Šค ์ค‘ URLLC๋Š” ๊ฐ€์žฅ ์–ด๋ ค์šด ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์—ฌ๊ฒจ์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” URLLC ์„œ๋น„์Šค๋ฅผ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ 3๊ฐ€์ง€ ์ €์ง€์—ฐ ํ†ต์‹  ํ”„๋กœํ† ์ฝœ์„ ์ œ์•ˆํ•œ๋‹ค: (i) 2-way ํ•ธ๋“œ์‰์ดํฌ ๊ธฐ๋ฐ˜ ๋žœ๋ค ์•ก์„ธ์Šค, (ii) Fast Grant Multiple Access ๋ฐ (iii) UE๊ฐ€ ์‹œ์ž‘ํ•˜๋Š” ํ•ธ๋“œ ์˜ค๋ฒ„ ๋ฐฉ์‹. ์ฒซ์งธ, 5G์—์„œ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์˜ ์ฆ๊ฐ€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง€์—ฐ ์‹œ๊ฐ„์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ๋„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ํ˜„์žฌ LTE-Advanced ์‹œ์Šคํ…œ์€ ๋žœ๋ค ์•ก์„ธ์Šค ๋ฐ ์ƒํ–ฅ ๋งํฌ ์ „์†ก ์ ˆ์ฐจ์—์„œ 4๊ฐœ์˜ ๋ฉ”์‹œ์ง€ ๊ตํ™˜์„ ํ•„์š”๋กœํ•˜๊ณ , ์ด๋Š” ๋†’์€ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์•ผ๊ธฐํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ง€์—ฐ ์‹œ๊ฐ„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ 2-way ๋žœ๋ค ์•ก์„ธ์Šค ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ 2-way ๋žœ๋ค ์•ก์„ธ์Šค ๊ธฐ์ˆ ์€ ํ”„๋ฆฌ์•ฐ๋ธ”์˜ ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ํ•ด๋‹น ์ ˆ์ฐจ๋ฅผ ์™„๋ฃŒํ•˜๋Š”๋ฐ ๋‹จ 2๊ฐœ์˜ ๋ฉ”์‹œ์ง€ ๋งŒ ํ•„์š”ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ํ”„๋ฆฌ์•ฐ๋ธ”์„ ์ƒ์„ฑํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ–ˆ๊ณ , ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ œ์•ˆํ•œ ๋žœ๋ค ์•ก์„ธ์Šค ๋ฐฉ์‹์ด ๊ธฐ์กด ๊ธฐ์ˆ ๊ณผ ๋น„๊ตํ•˜์—ฌ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ตœ๋Œ€ 43% ์ค„์ด๋Š” ๊ฒƒ ์„ ํ™•์ธํ–ˆ๋‹ค. ๋˜ํ•œ ์ œ์•ˆํ•œ ๋žœ๋ค ์•ก์„ธ์Šค๋Š” ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์•ฝ๊ฐ„ ์ฆ๊ฐ€ํ•˜์ง€๋งŒ, ๋„คํŠธ์›Œํฌ ๋กœ๋“œ๋Š” ๊ธฐ์กด ๊ธฐ์ˆ ์— ๋น„ํ•ด ์ ˆ๋ฐ˜ ์ด์ƒ ๊ฐ์†Œํ•œ๋‹ค. ๋‘˜์งธ,์›๊ฒฉ ๋™์ž‘,์ž์œจ ์ฃผํ–‰,๋ชฐ์ž…ํ˜• ๊ฐ€์ƒ ํ˜„์‹ค ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์ด ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ URLLC ํŠธ๋ž˜ํ”ฝ์€ ๋‹ค์–‘ํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ๋ฐ ์‹ ๋ขฐ๋„ ์ˆ˜์ค€์„ ์š”๊ตฌ ์‚ฌํ•ญ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ์ด์™€ ํ•จ๊ป˜ ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ํฌ๊ธฐ ๋ฐ ํŒจํ‚ท์˜ ๋ฐœ์ƒ์œจ ๋“ฑ์˜ ์ธก๋ฉด์—์„œ ๋‹ค์–‘ํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ฏธ์…˜ ํฌ๋ฆฌํ‹ฐ์ปฌ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋‹ค์–‘ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ์ƒํ–ฅ ๋งํฌ ์ „์†ก์— ์ค‘์ ์„ ๋‘” FGMA(Fast Grant Multiple Access)๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค. FGMA๋Š” ์Šน์ธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๋™์  ํ”„๋ฆฌ์•ฐ๋ธ” ๊ตฌ์กฐ, ์ƒํ–ฅ ๋งํฌ ์Šค์ผ€์ค„๋ง ๋ฐ ์ ์‘์  ๋Œ€์—ญํญ ์กฐ์ ˆ์˜ ๋„ค ๊ฐ€์ง€ ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. FGMA์—์„œ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™” ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ž์› ํ• ๋‹น์„ ํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜๋ฉด ์ ์‘์  ๋Œ€์—ญํญ ์กฐ์ ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ง€์—ฐ ์‹œ๊ฐ„ ์š”๊ตฌ ์‚ฌํ•ญ์ด ๋‹ค๋ฅธ ํŠธ๋ž˜ํ”ฝ์˜ ๋ถˆ๊ท ํ˜•์„ ์™„ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์Šน์ธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด FGMA ์‹œ์Šคํ…œ์— ์ด๋ฏธ ์Šน์ธ๋œ ๋ชจ๋“  UE๋“ค์— ๋Œ€ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ํ•ญ์ƒ ๋ณด์žฅํ•œ๋‹ค. FGMA๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ๋„ UE์˜ QoS ์š”๊ตฌ ์‚ฌํ•ญ์„ ํšจ์œจ์ ์œผ๋กœ ๋ณด์žฅํ•œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์†Œํ˜• ์…€์€ ์…€๋ฃฐ๋Ÿฌ ์„œ๋น„์Šค ๋ฒ”์œ„๋ฅผ ๊ฐœ์„ ํ•˜๊ณ  ์‹œ์Šคํ…œ ์šฉ๋Ÿ‰์„ ํ–ฅ์ƒ ์‹œ ํ‚ค๊ณ , ๋งŽ์€ ์ˆ˜์˜ ๋ฌด์„  ๋‹จ๋ง์„ ์ง€์›ํ•˜๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์…€์˜ ์„œ๋น„์Šค ๋ฒ”์œ„์˜ ๊ฐ์†Œ๋Š” ๋นˆ๋ฒˆํ•œ ํ•ธ๋“œ์˜ค๋ฒ„๋ฅผ ์œ ๋„ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํšจ๊ณผ์ ์ธ ํ•ธ๋“œ์˜ค๋ฒ„ ๋ฐฉ์‹์ดURLLC ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, URLLC์„œ๋น„์Šค๋ฅผ ์š”๊ตฌํ•˜๋Š” ์ด๋™์„ฑ์ด ์žˆ๋Š” UE๋ฅผ ์„œ๋น„์Šคํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘์  ํ•ธ๋“œ์˜ค๋ฒ„ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒ ๋ฐ ๋‹จ๋ง์˜ ๋™์ž‘์„ ๋ฏธ๋ฆฌ ์ค€๋น„ํ•ด ๋†“๋Š” ๋ฐฉ์‹์„ ์ ์šฉํ•œ ๋‹จ๋ง์ด ์‹œ์ž‘ํ•˜๋Š” ํ•ธ๋“œ์˜ค๋ฒ„ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ํ•ธ๋“œ์˜ค๋ฒ„๊ฐ€ ์ˆ˜์œจ์„ ํ–ฅ์ƒ์‹œํ‚ด๊ณผ ๋™์‹œ์— ์ €์ง€์—ฐ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ชฌ์„ ๊ฐ„๋žตํžˆ ์š”์•ฝํ•˜๋ฉด ์ง€์—ฐ ์‹œ๊ฐ„์˜ ์ข…๋ฅ˜๋ฅผ ๋žœ๋ค ์•ก์„ธ์Šค ์ง€์—ฐ ์‹œ๊ฐ„, ์ƒํ–ฅ ๋งํฌ ๋ฐ์ดํ„ฐ ์ „์†ก ์ง€์—ฐ ์‹œ๊ฐ„ ๋ฐ ํ•ธ๋“œ์˜ค๋ฒ„ ์ง€์—ฐ ์‹œ๊ฐ„๊ณผ ๊ฐ™์ด 3๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค. 3๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์ง€์—ฐ ์‹œ๊ฐ„์— ๋Œ€ํ•ด์„œ ๊ฐ๊ฐ ์ €์ง€์—ฐ์„ ๋‹ฌ์„ฑ ํ•  ์ˆ˜ ์žˆ๋Š” ํ”„๋กœํ† ์ฝœ๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค.According to IMT vision for 2020, the fifth generation (5G) wireless services are classified into three categories, namely, Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliable and Low Latency Communication (URLLC). Among three 5G service categories, URLLC is considered as the most challenging scenario. Thus, ensuring the latency and reliability is a key to the success of real-time services and applications. In this dissertation, we propose the following three latency reduction protocols to support the URLLC services: (i)2-way handshake-based random access, (ii) Fast grant multiple access, and (iii) UE-initiated handover scheme. First, the performance target includes not only increasing data rate, but also reducing latency in 5G cellular networks. The current LTE-Advanced systems require four message exchanges in the random access and uplink transmission procedure, thus inducing high latency. We propose a 2-way random access scheme which effectively reduces the latency. The proposed 2-way random access requires only two messages to complete the procedure at the cost of increased number of preambles. We study how to generate such preambles and how to utilize them. According to extensive simulation results, the proposed random access scheme significantly outperforms conventional schemes by reducing latency by up to 43%. We also demonstrate that computational complexity slightly increases in the proposed scheme, while network load is reduced more than a half compared to the conventional schemes. Second, various mission-critical applications are emerging such as teleoperation, autonomous driving, immersive virtual reality, and so on. A variety of URLLC traffic has various characteristics in terms of required data sizes and arrival rates with a variety of requirements of latency and reliability. To support the various requirements of the mission-critical applications, We propose a fast grant multiple access (FGMA) focusing on the uplink transmission. FGMA consists of four important parts, namely, admission control, dynamic preamble structure, the uplink scheduling, and bandwidth adaptation. The latency minimization scheduling policy is adopted in FGMA. Taking advantage of this method, the bandwidth adaptation algorithm makes even for the imbalanced arrival of the traffic requiring different latency requirements. With the proposed admission control, FGMA guarantee the requirements to all admitted UEs in the systems. We observe that the proposed FGMA efficiently guarantee the QoS requirements of the UEs even with the dynamic time-varying environment. Finally, small cells are considered a promising solution for improving cellular coverage, enhancing system capacity and supporting the massive number of things. Reduction of the cell coverage induced the frequent handover, so that the effective handover scheme is of importance in the presence of the URLLC applications. Thus, we propose a UE-initiated handover to deal with the mobile UEs requiring URLLC services taking into account the adaptive handover parameter selection and the logic of preparing in advance. The simulation results show that the proposed handover enhances the throughput performance as well as achieving low latency. In summary, we identify interesting problem in terms of latency. We classify three latency, random access latency, data transmission latency, and handover latency. With compelling protocols and algorithms, we resolve the above three problems.1 Introduction 1 1.1 Motivation 1 1.2 Main Contributions 2 1.2.1 Low Latency Random Access for Small Cell Toward Future Cellular Networks 2 1.2.2 Fast Grant Multiple Access in Large-Scale Antenna Systems for URLLC Services 3 1.2.3 UE-initiated Handover for Low Latency Communications 4 1.3 Organization of the Dissertation 4 2 Low Latency Random Access for Small Cell Toward Future Cellular Networks 6 2.1 Introduction 6 2.2 Related Work 9 2.3 Random Access and Uplink Transmission Procedure in LTE-A 11 2.3.1 Random Access in LTE-A 12 2.3.2 Uplink Transmission Procedure 14 2.3.3 Latency Issue in LTE-A 15 2.4 Proposed Random Access 16 2.4.1 Key Idea . 17 2.4.2 Proposed Preamble and Categorization 18 2.5 Preamble Sequence Analysis 23 2.5.1 Preamble Sequence Generation in LTE-A 23 2.5.2 Proposed Preamble Sequence Generation 25 2.5.3 Proposed Preamble Detection 26 2.6 Performance Evaluation 31 2.6.1 Network Latency 32 2.6.2 One-way Latency 33 2.6.3 Network Load 36 2.6.4 Computational Complexity 37 2.7 Conclusion 39 3 Fast Grant Multiple Access in Large-Scale Antenna Systems for URLLC Services 40 3.1 Introduction 40 3.2 Related Work 43 3.3 System Model 44 3.3.1 QoS Information and Service Category 45 3.3.2 Channel Structure 47 3.3.3 Frame Structure 48 3.4 Fast Grant Multiple Access 49 3.4.1 The Uplink Scheduling Policy 51 3.4.2 Dynamic Preamble Structure 53 3.4.3 Admission Control 54 3.4.4 Bandwidth Adaptation 55 3.5 Performance Evaluation 57 3.5.1 Impact of admission control 59 3.5.2 Impact of bandwidth adaptation 61 3.5.3 FGMA performance 62 3.6 Conclusion 64 4 UE-initiated Handover for Low Latency Communications 67 4.1 Introduction 67 4.2 Background and Motivation 69 4.2.1 Handover Decision Principle 69 4.2.2 Handover Procedure 70 4.2.3 Summary of the latency issues 72 4.3 UE-initiated Handover 73 4.3.1 The proposed handover design principles 73 4.3.2 The proposed handover procedure 75 4.4 Performance Evaluation 77 4.4.1 Low mobility environment 77 4.4.2 Low mobility environment 78 4.4.3 High mobility environment 80 4.5 Conclusion 82 5 ConcludingRemarks 84 5.1 Research Contributions 84 Abstract (InKorean) 92Docto

    Voiding dysfunction after stroke and traumatic brain injury

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ๋ฐฐ๋‡จ์žฅ์• ๋Š” ๋‡Œ์กธ์ค‘ ๋ฐ ์™ธ์ƒ์„ฑ ๋‡Œ์†์ƒ ํ›„ ๋ฐœ์ƒํ•˜๋Š” ํ”ํ•œ ํ•ฉ๋ณ‘์ฆ ์ค‘ ํ•˜๋‚˜๋กœ์„œ ์†์ƒ๋œ ๋‡Œ๋ณ‘๋ณ€์— ๋”ฐ๋ฅธ ์‹ ๊ฒฝ์ธ์„ฑ ๋ฐฉ๊ด‘ ๊ธฐ๋Šฅ ์žฅ์• ์™€ ์ธ์ง€ ํ˜น์€ ๊ฐ๊ฐ ๊ฒฐ์†์œผ๋กœ ์ธํ•˜์—ฌ ์ฃผ๋กœ ๋ฐœ์ƒํ•˜๋ฉฐ, ๊ธฐ๋Šฅ ์žฅ์• ์˜ ์ •๋„ ๋ฐ ์žฌ์› ๊ธฐ๊ฐ„์„ ๊ฒฐ์ •ํ•˜๋Š” ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‡Œ์กธ์ค‘ ๋ฐ ์™ธ์ƒ์„ฑ ๋‡Œ์†์ƒ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ, ๊ธ‰์„ฑ๊ธฐ, ์•„๊ธ‰์„ฑ๊ธฐ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋งŒ์„ฑ๊ธฐ ์งˆํ™˜์„ ๊ฐ€์ง„ ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ธ๊ตฌํ•™์  ํŠน์„ฑ๊ณผ ์งˆํ™˜์˜ ์‹œ๊ธฐ์™€ ์ข…๋ฅ˜, ๋ณ‘๋ณ€์˜ ์œ„์น˜์— ๋”ฐ๋ฅธ ๋ฐฐ๋‡จ์žฅ์• ์˜ ๋นˆ๋„๋ฅผ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‡Œ๋ณ‘๋ณ€ ํ›„ ๋ฐœ์ƒํ•œ ๋ฐฐ๋‡จ์žฅ์• ์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ๊ธฐ์กด์— ์ค‘์š”์‹œ ํ•˜๋˜ ์š”์‹ค๊ธˆ ์ฆ์ƒ ๋ฟ ์•„๋‹ˆ๋ผ ์•ผ๊ฐ„๋‡จ, ๋นˆ๋‡จ, ๊ธ‰๋ฐ•๋‡จ, ์„ธ๋‡จ, ํž˜์ฃผ๊ธฐ ๋ฐฐ๋‡จ ๋“ฑ ์ •์ƒ์ ์ธ ๋ฐฐ๋‡จ๋ฅผ ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๋ฐœ๋ณ‘ ํ›„ ๊ธฐ๊ฐ„์— ๋”ฐ๋ผ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋‡Œ์กธ์ค‘ ๋ฐ ๋‡Œ์†์ƒ ํ™˜์ž์—์„œ ์—ฐ๋ น์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ฐฐ๋‡จ์žฅ์• ์˜ ๋นˆ๋„๋Š” ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ๋งŒ์„ฑ๊ธฐ ํ™˜์ž ์ผ์ˆ˜๋ก ๋ฐฐ๋‡จ์žฅ์• ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋นˆ๋„๊ฐ€ ๋‚ฎ์•˜์œผ๋ฉฐ, ๋ฐฐ๋‡จ์žฅ์• ๊ฐ€ ์—†๋Š” ๊ตฐ์—์„œ ๋ฐฐ๋‡จ์žฅ์• ๊ฐ€ ์žˆ๋Š” ๊ตฐ๋ณด๋‹ค ์ธ์ง€๊ธฐ๋Šฅ์ด ๋†’์•˜๋‹ค. ๋˜ํ•œ ์ฒœ๋ง‰ํ•˜๋ถ€ ๋ณ‘๋ณ€, ํŠนํžˆ ๊ต๋‡Œ ๋ถ€์œ„ ์†์ƒ์ด ์žˆ์„ ๋•Œ ๋ฐฐ๋‡จ์žฅ์• ๊ฐ€ ์ฆ๊ฐ€ํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ํ–ฅํ›„ ๋‡Œ๋ณ‘๋ณ€ ํ›„ ์žฌํ™œ ์น˜๋ฃŒ ์‹œ ๋ฐฐ๋‡จ์žฅ์• ์˜ ๋ฐœ์ƒ์„ ์ ์ ˆํžˆ ์˜ˆ์ธกํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š”๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์‚ฌ๋ฃŒ๋œ๋‹ค.ope

    Option valuation using Heston model

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฐ์—…๊ณตํ•™๊ณผ, 2016. 2. ์žฅ์šฐ์ง„.Heston ๋ชจํ˜•์€ ๋ณ€๋™์„ฑ์ด ํ‰๊ท ํšŒ๊ท€ ํ™•๋ฅ ๊ณผ์ •์„ ๋”ฐ๋ฅด๋ฉด์„œ ๊ธฐ์ดˆ์ž์‚ฐ์˜ ๊ฐ€๊ฒฉ๋ณ€๋™๊ณผ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ํ™•๋ฅ ๋ณ€๋™์„ฑ ๋ชจํ˜•์œผ๋กœ ๊ธฐํ•˜ํ•™์  ๋ธŒ๋ผ์šด ์šด๋™ ๋ชจํ˜•๋ณด๋‹ค ์‹ค์ œ ์‹œ์žฅ ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌํ•จ์ˆ˜์˜ ๊ผฌ๋ฆฌ๋ถ€๋ถ„์ด ๋กœ๊ทธ์ •๊ทœ๋ถ„ํฌ๋ณด๋‹ค ๋” ์ฒœ์ฒœํžˆ ๊ฐ์†Œํ•˜๋Š” โ€˜๋‘๊บผ์šด ๊ผฌ๋ฆฌโ€™ ํšจ๊ณผ๋ฅผ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ, ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌ์™€ ์˜ต์…˜ ๊ฐ€๊ฒฉ๊ฒฐ์ •์˜ ๋‹ซํžŒ ํ•ด(closed form solution)๊ฐ€ ์กด์žฌํ•˜์—ฌ ์ฃผ์‹๊ฐ€๊ฒฉ ๋ชจ๋ธ๋ง์ด๋‚˜ ๊ธˆ์œตํŒŒ์ƒ์ƒํ’ˆ ๊ฐ€๊ฒฉ์ฑ…์ •์— ๋„๋ฆฌ ์ด์šฉ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Heston ๋ชจํ˜• ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌ์˜ ๋‹ซํžŒ ํ•ด๋ฅผ ์ด์šฉํ•˜์—ฌ Heston ๋ชจํ˜•์˜ ๋ชจ์ˆ˜๋ฅผ ์ถ”์ •, ๊ธฐํ•˜ํ•™์  ๋ธŒ๋ผ์šด ์šด๋™๊ณผ ๊ณผ๊ฑฐ ์‹ค์ œ ๋ฐ์ดํ„ฐ์˜ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„๋ณ„ ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌ์™€ ๋น„๊ตํ•ด๋ณด๊ณ  KOSPI200 ์ง€์ˆ˜ ์˜ต์…˜์˜ ๊ฐ€์น˜ ํ‰๊ฐ€์— ์ ์šฉํ•˜์˜€๋‹ค. ๋จผ์ €, KOSPI200 ์ง€์ˆ˜์˜ ๋กœ๊ทธ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ์‹œ๊ฐ„ ๊ตฌ๊ฐ„๋ณ„(1์ผ, 5์ผ, 20์ผ, 40์ผ)๋กœ ๊ตฌ๋ถ„ํ•˜๊ณ  ๋ชจ์ˆ˜ ์ถ”์ •์˜ ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ™•๋ฅ ๋ถ„ํฌ์— ๋น„๋ชจ์ˆ˜์  ํ•ต ๋ฐ€๋„(Kernel density)๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ๋ชจ์ˆ˜ ์ถ”์ • ๊ณผ์ •์—์„œ ์„ ํ–‰์—ฐ๊ตฌ์™€๋Š” ๋‹ค๋ฅธ ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ๋„์ž…ํ•˜๊ณ  ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜(Genetic algorithm)์„ ์ด์šฉํ•˜์—ฌ ๋ชจ์ˆ˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. Heston ๋ชจํ˜•, ๊ธฐํ•˜ํ•™์  ๋ธŒ๋ผ์šด ์šด๋™, ์‹ค์ œ ์‹œ์žฅ ์ˆ˜์ต๋ฅ  ํ™•๋ฅ ๋ถ„ํฌ์˜ Value at Risk(VaR)์™€ Expected Shortfall(ES)์„ ๋น„๊ตํ•ด๋ณด๊ณ , Heston ๋ชจํ˜•์—์„œ ๋‘๊บผ์šด ๊ผฌ๋ฆฌํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ๊ฐ ๋ชจํ˜•์˜ KOSPI200 ์ง€์ˆ˜ ์ฝœ์˜ต์…˜ ๊ฐ€๊ฒฉ์„ ์ฑ…์ •ํ•˜๊ณ  ์‹œ์žฅ ๊ฐ€๊ฒฉ๊ณผ์˜ ์˜ค์ฐจ๋ถ„์„์„ ์‹ค์‹œํ•˜์—ฌ ๊ฑฐ๋ž˜๋Ÿ‰์ด ์œ ์˜๋ฏธํ•œ ์ž”์กด๋งŒ๊ธฐ ์•ฝ 60๊ฑฐ๋ž˜์ผ ์ด๋‚ด ๊ทผ์›”๋ฌผ์—์„œ Heston ๋ชจํ˜•์˜ ์ฝœ์˜ต์…˜ ๊ฐ€๊ฒฉ์ด ๊ธฐํ•˜ํ•™์  ๋ธŒ๋ผ์šด ์šด๋™ ์ฝœ์˜ต์…˜ ๊ฐ€๊ฒฉ๋ณด๋‹ค ์‹ค์ œ ์‹œ์žฅ ๊ฐ€๊ฒฉ์— ๋” ๊ทผ์‚ฌํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 2 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก  4 ์ œ 1 ์ ˆ Heston ๋ชจํ˜•๊ณผ ๋‹ซํžŒ ํ˜•ํƒœ ํ™•๋ฅ ๋ถ„ํฌ 4 2.1.1. ๊ธฐํ•˜ํ•™์  ๋ธŒ๋ผ์šด ์šด๋™(GBM) 4 2.1.2. Heston ๋ชจํ˜• 5 2.1.3. Heston ๋ชจํ˜•์˜ ๋‹ซํžŒ ํ˜•ํƒœ ํ™•๋ฅ ๋ถ„ํฌ 6 2.1.4. Heston ๋ชจํ˜•์˜ ๋ชจ์ˆ˜ ์ถ”์ • 8 2.1.5. ๋ชจํ˜•๋ณ„ ํ™•๋ฅ ๋ถ„ํฌ ๋น„๊ต 16 ์ œ 2 ์ ˆ KOSPI200 ์ง€์ˆ˜ ์˜ต์…˜ ๊ฐ€๊ฒฉ ๋น„๊ต 17 2.2.1. KOSPI200 ์ง€์ˆ˜ ์˜ต์…˜ ๊ฐ€๊ฒฉ ์ฑ…์ • 17 2.2.2. ์˜ต์…˜ ๊ฐ€๊ฒฉ ์˜ค์ฐจ ๋ถ„์„ 20 ์ œ 3 ์žฅ ๋ฐ์ดํ„ฐ 22 ์ œ 1 ์ ˆ KOSPI200 ์ง€์ˆ˜ 22 ์ œ 2 ์ ˆ ํ•œ๊ตญ๊ฑฐ๋ž˜์†Œ ์ฝœ์˜ต์…˜ ๊ฐ€๊ฒฉ 23 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 24 ์ œ 1 ์ ˆ Heston ๋ชจํ˜• ๋ชจ์ˆ˜ ์ถ”์ • ๋ฐ ํ™•๋ฅ ๋ถ„ํฌ ๋น„๊ต 24 4.1.1. Heston ๋ชจํ˜•์˜ ๋ชจ์ˆ˜ ์ถ”์ • 24 4.1.2. ๋ชจํ˜•๋ณ„ ํ™•๋ฅ ๋ถ„ํฌ ๋น„๊ต 25 ์ œ 2 ์ ˆ KOSPI200 ์ง€์ˆ˜ ์˜ต์…˜ ๊ฐ€๊ฒฉ ์ฑ…์ • 29 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  36 ์ฐธ๊ณ ๋ฌธํ—Œ 39 Abstract 42Maste
    corecore