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Abstract

Empirical Research on Financial Investment
based on Transfer Entropy and Machine Learning

Sondo Kim

Department of Industrial Engineering

The Graduate School

Seoul National University

Stock markets have been studied extensively as one of the crucial fields of econ-

omy. In particular, research has been actively conducted to analyze and predict the

stock market based on relationships among the dynamics of stock prices and re-

turns. In this context, transfer entropy is a non-parametric indicator in analyzing

relationships between components of a system, and has a more flexible analytical

ability than correlation or Granger-causality. The study of stock price prediction

is also being studied from traditional linear models to the latest machine learning

models, and research on the optimal asset allocation strategy based on these studies

are conducted.

The purpose of this dissertation is to derive ETE based network indicator with

a market explanatory power for the US stock market by using effective transfer

entropy, which is mainly used in econophysics and information theory. The improve-

ment of the performance of the stock price direction prediction through various
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machine learning algorithms by ETE based network indicator is also analyzed. Fur-

thermore, we apply the prediction result of the stock price through the machine

learning algorithm with ETE based network indicator to optimal portfolio strategy

through the Black-Litterman model to study the practical use of the investment

strategy.

At first, we explore that the ETE based on 3 and 6 months moving windows can

be regarded as the market explanatory variable by analyzing the association between

the financial crises and statistical explanatory power among the stocks. We found

that 3 and 6 months moving windows ETEs increase in major financial crises, and

that the sectors related to the financial crises have a statistical explanatory power

to other sectors through the time-varying analysis of the ETE network indicators.

Then, we discover that the prediction performance on the stock price direction

can be improved when the ETE driven variable is integrated as a new feature in

the logistic regression, multilayer perceptron, random forest, XGBoost, and long

short-term memory network. Meanwhile, we suggest utilizing the adjusted accuracy

derived from the risk-adjusted return in finance as a prediction performance measure.

Notably, we confirm that the multilayer perceptron and long short-term memory

network are more suitable for stock price prediction.

Lastly, we examined the possibility for investors to develop an investment strat-

egy that maximizes profits through the Black-Litterman model using ETE and ma-

chine learning. The characteristics of the inflow and outflow ETE network indicators

with market explanatory power and the stock price direction prediction results using

machine learning algorithms are applied to the investor’s view of the Black-Literman

model. The Black-Litterman portfolio, which applies the results of the stock price

ii



direction prediction using machine learning algorithms to the investor’s view, pro-

vides a better return on risk than the market portfolio and market index, and the

Black-Litterman portfolio with the ETE network indicator has the highest yield.

The use of ETE and stock price prediction leads to improved return on investment,

and improving predictive performance increases the return on investment.

This dissertation is the first study on the optimal portfolio establishment strat-

egy through the Black-Litterman model and stock price direction prediction using

machine learning algorithm to apply ETE of information theory to the financial in-

vestment field.

Keywords: Information theory, Econophysics, Transfer entropy, Machine learning,

Feature engineering, Prediction algorithms, Stock markets, Time series analysis,

Black-Litterman model, Optimal asset allocation, Portfolio management

Student Number: 2016-30252
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Chapter 1

Introduction

1.1 Background and Motivation

Stock markets have been studied extensively as one of the crucial fields of econ-

omy(Ghysels and Osborn, 2001). In particular, research has been actively conducted

to analyze and predict the stock market based on relationships among the dynam-

ics of stock prices and returns. Since the stocks exhibit diverse interactions, many

theoretical or empirical studies of such relationships have provided meaningful impli-

cations to investors and policy-makers developing appropriate actions regarding the

market condition. Specifically, the prediction on stock price and the overall market

and constructing a an appropriate portfolio is one of the essential tasks for investors

to establish an optimal investment strategy.

Many previous studies have utilized concepts in statistical physics such as com-

plex systems and information theory to quantify the correlations among the entities

in an economic or financial system(Mantegna and Stanley, 1999; Noh, 2000; Bo-

nanno et al., 2003; Zunino et al., 2008; Chi et al., 2010). Notably, the correlation

analysis is a simple and good indicator for measuring the degree of similarity be-

tween two variables. Many studies of correlation-based time series analysis have

revealed the characteristics of the system using random matrix theory and network
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analysis(Plerou et al., 2002; Kim et al., 2011; Kumar and Deo, 2012). Since then,

the studies have discovered that a linear model such as the Pearson correlation is

not sufficient enough to quantify the relationships among the stocks. More impor-

tantly, the causal relationship is not directly linked to the presence of correlation.

In this context, the Granger-causality(Granger, 1969) has been introduced to define

the causal relationship between time series. However, its function is limited to ex-

press the existence of information flow based on a linear relationship rather than

measuring the amount of information flow.

To overcome such limitations of a simple linear model of a Granger-causal re-

lationship, the concept of transfer entropy (TE), proposed by Schreiber(Schreiber,

2000), has been suggested instead to measure the amount of information flow. TE is

a non-parametric measure of the amount of information transfer from a variable to a

variable based on the Shannon entropy(Shannon, 1948). TE has been widely used in

researches such as social networks, neuroscience, and financial market analysis due

to its ability to capture the asymmetrical interactions within the system and to dis-

tinguish the driving and responding elements efficiently(Kim et al., 2016; Faes et al.,

2013; Vicente et al., 2011). Despite its advantages, TE could involve a noise due to

its requirement on a large amount of data. Thereupon, the effective transfer entropy

(ETE)(Marschinski and Kantz, 2002) has been proposed to obtain a more robust

quantification of information flow. Since then, many studies have utilized TE and

ETE to identify information flows in different financial markets(Sensoy et al., 2014;

Kwon and Yang, 2008b,a; Kwon and Oh, 2012; Dimpfl and Peter, 2013; Sandoval,

2014; Chunxia et al., 2016; Lim et al., 2017; Yue et al., 2020).

Based on findings in Granger-causal relationships within the financial system,

2



the prediction on the price or volatility of the stock market has been widely stud-

ied(Clements et al., 2004). Especially, the prediction on stock price is a critical issue

since an improved prediction performance can guarantee a higher expected return

to investors. In this regard, many previous studies have attempted the prediction

based on various models(Ola et al., 2014; Moradi et al., 2019) including traditional

linear models to machine learning models such as an artificial neural network(Tsaih

et al., 1998; Guresen et al., 2011; Rather et al., 2015; Zahedi and Rounaghi, 2015),

random forest(Patel et al., 2015; Ballings et al., 2015), support vector machine(Kim,

2003; Kara et al., 2011), XGBoost(Nobre and Neves, 2019; Jiang et al., 2020), and

long short-term memory(Chen et al., 2015; Nelson et al., 2017). Commonly, two dif-

ferent approaches are considered in machine learning-based stock price prediction.

The first is to improve the existing machine learning models theoretically(Guo et al.,

2015; Qiu and Song, 2016), and the second is to integrate created variables such as

network indicators, Google trends, and public announcements in addition to a sim-

ple set of stock price and return series(Lee et al., 2019; Hu et al., 2018; Feuerriegel

and Gordon, 2018; Hagenau et al., 2013; Geva and Zahavi, 2014; Chan and Franklin,

2011; Shynkevich et al., 2016; Ntakaris et al., 2019).

In addition to research on prediction of the stock price and the stock price

direction, exploring asset allocation methods that minimize risk and maximize profits

is also an important task for investors to develop optimal investment strategies.

Markowitz (1952) proposed a mathematical model of efficient asset allocation which

is also called mean-variance model and completely transformed the field of portfolio

optimization, and its derived contents are still used to construct almost any portfolio.

Markowitz introduced the concept of an efficient frontier and suggested a way to
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construct an optimal asset ratio that maximizes returns under a given risk. Although

this methodology is innovative, Markowitz’s work presents some major drawbacks in

practical applications. The resulting portfolio may not be intuitive, and the available

stocks are biased and not sufficiently dispersed. The optimal portfolio is also very

sensitive to small changes in input data. One of the well-known modern approaches

to asset allocation based on Markowitz’s portfolio selection model to improve this

problem is the Black-Litterman model(Black and Litterman, 1990, 1992). This model

produces a more stable and diverse portfolio than the mean-variance model. The

main contribution of this model is to provide the flexibility to combine the capital

asset pricing model (CAPM) market equilibrium with the investor’s view of asset

returns, which results in an intuitive and decentralized portfolio. There are two

different approaches are considered in the application of the Black-Litterman model.

The first is to improve the models itself such as distributions(Xiao and Valdez,

2015; Fang et al., 2018; Fernandes et al., 2018; Palczewski and Palczewski, 2019),

and the second is to apply the investor’s view using various prediction models or

variables(Beach and Orlov, 2007; Palomba et al., 2008; Creamer, 2015; Silva et al.,

2017; Pyo and Lee, 2018; Kara et al., 2019).

Although many studies have devoted to integrating the network-driven indica-

tors, an attempt to utilize the concept of entropy in stock price prediction has not

been widely studied. Instead, the previous studies on TE have focused on revealing

the statistical explanatory power between various financial variables. Furthermore,

the previous studies related to TE and ETE analysis have focused on the inter-

market and static-interval analysis, which occurs a limited finding in intra-sector

and dynamic-interval. In addition, few studies have dealt with the problem of asset
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allocation based on interdisciplinary studies of econophysics and machine learning.

In this dissertation, we focus on three main topics: (1) obtaining entropy-driven

indicators with market explanatory power in the US market, (2) integration of

entropy-driven indicators in machine learning algorithms to improve the perfor-

mance of prediction in the direction of a stock price, (3) and the practical use of

previous studies through the Black-Litterman model.

1.2 Research Objectives

Research focuses on the US financial market, the largest single market in the global

financial system, and study 55 companies from 11 different industry sectors based on

moving window methods. Indeed, the moving window method allows dynamic and

time-varying observations for different crisis and non-crisis periods based on interval

analysis. Once we explore that the evolution of ETE can express the dynamics of

stock prices, we utilize it as an extra variable for various machine learning algorithms

to predict its direction. By comparing the performances of sets with and without

the ETE variable, we confirm the usability of ETE in stock price prediction.

In summary, the random forest (RF) of Breiman (2001) has been recognized

as a decent classifier that has been heavily used in stock price prediction. Also,

the XGBoost (XGB) of Chen and Guestrin (2016) is also a popular boosting-type

ensemble classifier used for classification problems. The long short-term memory

(LSTM) network of Hochreiter and Schmidhuber (1997), a model that improves

the exploding and vanishing gradient problem in the recurrent neural network, has

shown decent performances in sequence learning and time series prediction, which
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eventually leads to studied in financial time series prediction. Thus, in this study, we

focus on discovering a useful input variable in predicting the stock price direction

by utilizing the ETE-driven network indicator based on five representative machine

learning algorithms: logistic regression (LR) of Cox (1958) as a traditional predictive

model, multilayer perceptron (MLP) of Rosenblatt (1961) as a back-propagated

neural network, RF as a bagging-type ensemble method, XGB as a boosting-type

ensemble method, and LSTM as a single classifier model.

Note that we utilize the results of the characteristics of the ETE network indi-

cator that describes the market and those of the prediction of stock price direction

through machine learning algorithms using ETE network indicator to the investor’s

view of the Black-Litterman model. The proposed Black-Litterman model compares

the market capitalization portfolio and the market index with performance to verify

whether it is practically effective in establishing an optimal asset allocation strategy.
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1.3 Organization of the Thesis

The rest of this dissertation is organized as follows. Chapter 2 reviews related previ-

ous studies of Granger-causal relationship using TE and ETE in financial markets,

studies of stock price prediction using machine learning algorithms, and the studies

on the application of the Black-Litterman model to optimal asset allocation prob-

lems. Chapter 3 describes the concept of ETE and focuses on the time-varying and

cross-section analysis through ETE in the US market. Chapter 4 demonstrates ma-

chine learning algorithms for stock price direction prediction and the analysis frame-

work, including different set-ups for prediction. In addition, stock price direction pre-

diction using ETE network indicator is conducted and analyzed in terms of models

and sectors, and analysis is performed using defined performance metrics. In Chapter

5, the step-by-step procedures of the Black-Litterman model including reflecting the

investor’s view is described and a comparative analysis of Black-Litterman portfo-

lio, market capitalization portfolio, and the market index is conducted based on the

results of Chapter 3, 4. Finally, the contributions and limitations of this dissertation

are provided in Chapter 6 with future work for improvement.
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Chapter 2

Literature Review

This chapter introduces previous studies on financial market analysis through TE

and ETE, as well as previous studies on predicting the stock price and the stock

price direction using machine learning algorithms. It also covers previous studies of

optimal asset allocation using the Black-Litterman model.

2.1 Analysis of transfer entropy

Since the concept of Granger-causality(Granger, 1969) was discovered, many studies

have utilized it to detect the Granger-causal relationship in various financial time-

series. For instance, Mok (1993) analyzed the relationship among the daily stock

prices, exchange rates, and interest rates of Hong Kong using the autoregressive

integrated moving average and Granger-causality test, and confirmed the sporadic

unidirectional Granger-causality from stock price to interest rate as well as a weak

bidirectional Granger-causality between stock price and exchange rate. Swanson

et al. (1999) conducted a multivariate time series analysis on the data revision pro-

cess for industrial production (IP) and the composite leading indicator (CLI) in the

United States. They confirmed a kind of causal feedback of revision processes for IP

and CLI by showing that previously available IP revisions are useful for describing
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CLI revisions and that IP revisions are predictable from past CLI revisions. Soytas

and Sari (2003) conducted a Granger-causality test between energy consumption and

GDP in nine emerging market groups and seven advanced countries. However, the

Granger-causality is a model-specific approach that assumes a specific underlying

dynamics such as the Vector Autoregressive (VAR) and the Vector Error Correction

Model (VECM), which focuses on the existence of a Granger-causal relationship

rather than the degree of a Granger-causal relationship.

In contrast, the TE(Schreiber, 2000) is a model-free measure coping with the

limitation of Granger-causality in quantifying the degree of information transfer

without any constraints such as linear dynamics. The previous studies on Granger-

causality detection through information flow analysis using TE and ETE in financial

markets are as follows. Marschinski and Kantz (2002) analyzed the relationship

between the Dow Jones Industrial Average (DJIA) and the German DAX Xetra

Stock Index (DAX) using ETE, and discovered asymmetry information flow where

more information is transferred from the DJIA to the DAX than the vice versa.

Kwon and Yang (2008b) performed a TE analysis using daily data of 25 global

financial market indices and discovered that the US stock market has the most

significant impact on the global stock market as well as confirmed that the Asia and

Pacific market received information the most. Sensoy et al. (2014) considered the

direction and intensity of information flow for the exchange rate and stock price of

nine emerging countries through ETE. Specifically, a low level of interaction before

the 2008 financial crisis was revealed with the dominance of exchange rate over the

stock prices in the crisis, whereas a robust bidirectional interaction in and after the

crisis with a dominance of stock prices over the exchange rate. However, the studies

10



of Kwon and Yang (2008b) and Sensoy et al. (2014) are limited in showing an overall

level of relationships without considering the relationships at industry or individual

stock level.

In this context, Kwon and Yang (2008a) conducted a TE analysis of the Dow

Jones index, S&P 500 index, and 125 stocks in the US market, and confirmed that

individual stock prices are affected by the market index considering the direction

of information transfer. Also, Kwon and Oh (2012) performed TE analysis between

the market index and stock price for nine emerging or mature stock markets, and

confirmed the market index as the primary driving force for determining individual

stock prices and higher asymmetric information flow of developed countries than

that of emerging countries. Dimpfl and Peter (2013) analyzed the information flow

between the credit default swap market and the corporate bond market using the

TE of 27 iTraxx companies before and after the financial crisis, and discovered the

dominance of CDS market over the corporate bond market, increment of information

transmission between markets over time, and the highest importance of the CDS

market in the crisis period. Sandoval (2014) applied ETE analysis to 197 global

financial companies selected based on the amount of market capitalization. Through

assessing influence among companies as well as their network structure, he revealed

the most significant impact and importance of banks and insurance companies of

European and the US to the global financial markets. Chunxia et al. (2016) analyzed

the correlation between the information flow and trading volume through TE among

ten sectors of the US market. As the effect of the financial crisis intensified, the

information flow between sectors increased, and the financial sector always showed

a massive outflow of the TE at all intervals. In particular, it is confirmed that the

11



main information flow from the financial sector changed before and after the financial

crisis. Lim et al. (2017) analyzed the information flow of the CDS and stock market

in US through the TE into the inter and intra structure aspects, and confirmed a

substantial change in the information transfer during the financial crisis as well as

the precedence of the sudden change of transfer entropy in the CDS market than that

of stock market. Yue et al. (2020) analyzed the information flows among the sectors

in the Chinese stock market using the transfer entropy. They used the maximum

spanning arborescence to extract information flow and the hierarchical structure of

the networks. They identified the information source and sink sectors and observed

that the root node sector acts as an information sink of the incoming information

flow networks.

Table 2.1 summarizes the methodology of previous studies. In general, the pre-

vious studies tend to compress information by choosing three to five bins in the

binning process to discretize the stock returns. Furthermore, the static analysis of

certain time intervals has studied in the financial network analysis to identify non-

linear Granger-causal relationships. Then, the studies have devoted to demonstrating

the empirical findings rather than its practical application. Therefore, in this study,

we set 22 bins(Sandoval, 2014) to reflect as much information in stock returns as

possible. Then, we utilize the moving window method to analyze the time-varying

dynamics of ETE and apply its values in predicting the direction of stock prices.

2.2 Stock price prediction based on machine learning

In recent years, as the use of machine learning algorithms has attracted attention

in academia, many studies have attempted and discovered the utilization of various

12
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machine learning algorithms and their adequacies in price prediction in financial

markets. Note that the problem of predicting the direction of cumulative returns of

stock in the future can be considered as a classification problem.

For instance, Ballings et al. (2015) compared the predictive performance of Eu-

ropean stock prices by AUC among the RF, AdaBoost, and Kernel Factory, Neural

Networks, Logistic Regression, Support Vector Machines, and K-Nearest Neighbor

where the RF showed the highest performance. Patel et al. (2015) predicted the stock

price direction of the Indian stock market using the neural network, support vector

machine, RF, and naive-Bayes classifier. At first, 10 technical parameters from the

stock transaction data is applied as input parameters. Then, these parameters are

converted into trend deterministic data. As a result, the RF showed the best predic-

tion performance. Fischer and Krauss (2018) applied the LSTM networks to predict

the direction of the stock price for the constituent stocks of the S&P 500 from 1992

until 2015, where the LSTM networks outperformed the memory-free classification

methods such as an RF, deep neural net, and logistic regression classifier. Bao et al.

(2017) proposed an ensemble approach consisting of the wavelet transforms, stacked

autoencoders (SAEs), and LSTM to predict six stock price indices, namely CSI

300, Nifty 50, Hang Seng index, Nikkei 225, S&P 500, and DJIA. Specifically, the

wavelet transforms is utilized to decompose the time series of stock prices to remove

the noise; SAEs are used to generate deep high-level features for forecasting; LSTM

is applied to predict the next day’s stock price based on generated features. Briefly,

the primary purposes of previous researches on stock price prediction using machine

learning algorithms are twofold: advance in the algorithm and utilization of various

variables to improve the prediction performance.
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In the perspective of advancing the machine learning algorithms in price predic-

tion, Guo et al. (2015) proposed the advanced neural network model by incorporat-

ing the principal component analysis and radial basis function. In contrast, Qiu and

Song (2016) proposed a genetic algorithm-based neural network in price prediction.

Tsaih et al. (1998) proposed a rule-based system trading strategies to predict the

direction of the S&P 500 stock index futures using the reasoning neural network.

The results confirmed that the proposed model outperformed the backpropagation

network and perceptron neural network. Tsai and Hsiao (2010) proposed a multiple

feature selection model combining principal component analysis, genetic algorithm,

and decision trees. Then, a back-propagation neural network is applied as a predic-

tion model, which yields the best performance in predicting the price direction of the

electronic corporations in Taiwan stock exchange. Kao et al. (2013) proposed a stock

price prediction model by incorporating the wavelet transform, multivariate adaptive

regression splines, and support vector regression for various emerging and mature

markets. The model solved the wavelet sub-series selection problem and confirmed

that the prediction accuracy outperforms the other five competing approaches. In

addition, a sub-series selected by the model can identify which points in the past

stock price data have had a significant impact on the predictive model configuration.

Shin et al. (2013) has applied the semi-supervised learning, the model has been used

for non-time-series type data, to the time series to predict the direction of crude

oil prices. In order to apply the existing model to time series prediction, the semi-

supervised learning is modified by considering the similarity between different sets

of time series data, labels in the stock direction, technical indicator transformation,

and feature selection. Ola et al. (2014) confirmed that daily returns of Tehran Stock
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Exchange stocks are a chaotic process and that prediction can be improved by ap-

plying time-series tests of the local polynomial approximation model. Zahedi and

Rounaghi (2015) applied artificial neural network (ANN) and principal component

analysis (PCA) to the 20 accounting variables of stocks listed on the Tehran Stock

Exchange to confirm the superiority of stock price forecasting through ANN and

the effective factor through the PCA method. Moradi et al. (2019) analyzed and

predicted stock returns by applying the lags coevolving with radial basis function

networks (L-Co-R) algorithm for the Tehran Stock Exchange and London Stock Ex-

change, and uses the Box-Jenkins methods to analyze the Fractal market hypothesis

(FMH) between the two exchanges. As a result, they discovered the fact that L-Co-R

algorithm is more applicable for long-term time series, that the Box-Jenkins method

performs better in short-term time series, and that the FMH is accepted in Tehran

Stock Exchange but rejected for London Stock Exchange.

In the perspective of utilizing new input variable, many variables have been

proposed including the price-driven measure(Pyo et al., 2017; Ntakaris et al., 2019),

volatility-driven measure(Lee et al., 2019; Ntakaris et al., 2019), and Google trends(Hu

et al., 2018), which extended to the text mining-based variables from the financial

news (Feuerriegel and Gordon, 2018; Hagenau et al., 2013; Geva and Zahavi, 2014;

Chan and Franklin, 2011; Shynkevich et al., 2016). Specifically, Khansa and Liginlal

(2011) analyzed the relationship between the stock returns of information security

firms and the intensity of malicious attacks using artificial neural networks and vec-

tor autoregression analysis. The results confirmed that the malicious intensity has

a one-month-lagged positive effect on the stock price return of information secu-

rity firms, and the time-delayed artificial neural network acts as a complementary
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approach to the existing VAR analysis. In this milieu, the time-delayed artificial

neural network showed 95% accuracy while the regression counterpart only showed

85%. Nam and Seong (2019) performed the prediction on stock price direction using

various machine learning algorithms by incorporating the Granger-causality of the

financial news data in the Korean market. Note that the TE is applied in Granger-

causality analysis and multiple kernel learning to combine features of target firms and

Granger-causal firms. The results confirmed that the proposed model outperformed

the benchmarks and verified that the direction of stock price could be predicted

based on the news of the Granger-causal firms even when the target firms had no

news.

2.3 The Black-Litterman model

Black and Litterman’s original paper(Black and Litterman, 1990, 1992) only de-

scribed the key aspects of the idea, and others described in detail how to apply this

model.(He and Litterman, 2002; Satchell and Scowcroft, 2000; Idzorek, 2007) Briefly,

two different approaches are considered in the applications of the Black-Litterman

model. One is to change the model such as the distribution of asset returns(Xiao

and Valdez, 2015), and the other is to apply a variety of methods to the investor’s

view from the traditional linear model(Beach and Orlov, 2007; Palomba et al., 2008)

to the machine learning model.

From the perspective of improving the models, Palczewski and Palczewski (2019)

extended the existing Black-Litterman model into general continuous distributions

and deviation measures of risk. They show that the Black-Litterman model can be
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extended to the distribution of the investor’s view and the arbitrary prior equilib-

rium distribution and that the choice of the prior distribution and the distribution

of investor’s view has a significant influence on the posterior distribution, optimal

portfolio weights, and their performance. Also, they confirmed that the prior mean

returns can be robustly calculated for a number of deviation risk measures and that

the importance sampling procedure of the proposed model significantly improves

computations of the estimation of the prior mean returns and portfolio CVaR. Fang

et al. (2018) described the investor’s views of Black-Litterman model as fuzzy sets

and proposed two Black-Litterman models using fuzzy views and fuzzy random

views respectively. In the CSI 300 market, compared to the mean-variance model,

the market capitalization portfolio, and the Black-Litterman model, the proposed

models outperformed the existing model in that it effectively covers the informa-

tion of the view and describes the uncertainty of the view. Fernandes et al. (2018)

proposed an investment strategy based on Black-Litterman model with conditional

information in Brazilian stock market. He proposed a method for determining 1-

step ahead returns using price-earnings ratio and the past returns in consideration

of investors’ risk profiles. As a result, it was confirmed that the proposed method

updates the conditional probability distribution of asset returns and alleviates the

asset allocation instability due to estimation error, and the Black-litterman portfolio

constructed by the proposed method outperforms the mean-variance portfolio.

From the perspective of applying investor’s view in various ways, Creamer

(2015) proposed a method based on either the news sentiment using high-frequency

data or on a combination of accounting variables to apply the investor’s view of

the BL model, and showed superiority compared to the market portfolio and mar-
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ket index. Silva et al. (2017) proposed a new way of creating an investor’s view

using Verbal Decision Analysis (VDA) in the Brazilian stock market. The proposed

method mitigates the impact of poor view estimation and allows investors to create

a personal risk-return balanced portfolio without the help of experts. Pyo and Lee

(2018) applied the low-risk anomaly characteristics to the Black-Litterman model

for KOSPI200 in the Korean stock market. Artificial neural network (ANN), sup-

port vector regression (SVR), gaussian process regression (GPR), and GARCH are

used to predict the market volatility of assets and ANN performed best. In these re-

sults, they identified high- and low-volatility stocks by volatility predicted from ANN

and applied a relative view that low volatility stocks would yield better than high

volatility stocks, confirming that the low-risk portfolio outperformed than high-risk

portfolio. Kara et al. (2019) applied GARCH and SVR to Black-Litterman model for

the Istanbul Stock Exchange and Dow Jones Index of the US stock market. GARCH

modeling is used to predict eight econometric indicators, and these prediction results

are again used to predict return through SVR and finally reflect this result to the

investor’s view in the Black-Litterman model. For both markets and different hold-

ing periods, the proposed model outperformed index returns and random generated

portfolios for returns and Sharpe ratio.
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Chapter 3

Effective transfer entropy analysis for the US
market

3.1 Effective transfer entropy

TE(Schreiber, 2000) is a non-parametric indicator to measure the statistical ex-

planatory power between two processes. Note that the TE can detect the non-linear

Granger-causal relationship. It is widely used in fields such as social networks, neuro-

science, and financial market analysis due to its efficient detection of the asymmetric

interaction in the system.

When two variables interact with each other, a time series of one variable Y can

affect the future time point of another time series of variable X. Let a time series X

is a Markov process of degrees k; then it refers that the state xn+1 of X is affected

by k previous states of the same variable, which can be expressed as,

p(xn+1|xn, xn−1, . . . , x0) (3.1)

= p(xn+1|xn, xn−1, . . . , xn−k+1), xi ∈ X

where p(A|B) represents a conditional probability of A given B, p(A|B) =

p(A,B)/p(B).
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Furthermore, let the state xn+1 of X is dependent on the l previous states of

Y , then the TE from a variable Y to a variable X can be defined as the average

information included in Y excluding the information reflected by the past state of

X for the next state information of X. Therefore, if X and Y denote the amount of

information measured by the Shannon entropy(= −
∑

i pi log2 pi), and the variable

xn+1 of X is affected by k previous states of X and l previous states of Y , the TE

from the variable Y to the variable X can be defined as follows.

TEY→X(k, l) =
∑

xn+1,x
(k)
n ,y(l)

p(xn+1, x
(k)
n , y(l)

n )log2p(xn+1|x(k)
n , y(l)

n ) (3.2)

−
∑

xn+1,x
(k)
n ,y(l)

p(xn+1, x
(k)
n , y(l)

n )log2p(xn+1|x(k)
n )

=
∑

xn+1,x
(k)
n ,y(l)

p(xn+1, x
(k)
n , y(l)

n )log2

p(xn+1|x(k)
n , y

(l)
n )

p(xn+1|x(k)
n )

where x
(k)
n = (xn, xn−1, . . . , xn−k+1), y

(l)
n = (yn, yn−1, . . . , yn−l+1), and p(A,B) is

the joint probability of A and B. The definition of TE assumes that events at some

point are affected by events of k and l previous states. Based on the previous re-

search(Sandoval Jr, 2014) showing the low memory in the log-returns of stock prices,

we computed the TE under the conditions k = l = 1, which expresses the weak form

of efficient market hypothesis stating that the current price reflects all past infor-
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mation. Hence, the (3.2) can be re-defined as follows.

TEY→X =
∑

xn+1,xn,yn

p(xn+1, xn, yn)log2

p(xn+1|xn, yn)

p(xn+1|xn)
(3.3)

=
∑

xn+1,xn,yn

p(xn+1, xn, yn)log2

p(xn+1, xn, yn)p(xn)

p(xn+1, xn)p(xn, yn)

In summary, TEY→X is the difference between the information regarding the

future value of Xi obtained from Xi and Yi and the information regarding the fu-

ture value of Xi obtained only from Xi. So, the positive TEY→X indicates that the

variable Y affects the future value of the variable X, which can be interpreted as

the degree of uncertainty that decreases when Y is considered. In the same context,

TEY→X means the degree to which the dynamics of Y affects the transition prob-

ability of X, which can be seen as the amount of information flow from Y to X.

Therefore, a large TE value refers to more significant information flow. Also, the TE

can measure the amount of in-flow information coming from Y to X through TEY→X

and the amount of out-flow information going from X to Y through TEX→Y , re-

spectively, based on its asymmetric property.

TE is a proper measure to estimate a statistical dependency regardless of the

data type. However, a relatively large amount of data is required to derive the

transfer entropy. Also, a critical disadvantage of TE is its inclusion of noise due to the

finite sample effects and non-stationarity of data. In this context, ETE(Marschinski

and Kantz, 2002) is proposed to solve the disadvantage of TE. At first, we randomly

shuffle the elements of each time series to break the statistical explanatory power

between variables, yet keeping the individual probability distributions of each time

series. Then, we obtain transfer entropy from this time series, called the randomized
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TE (RTE). Finally, we obtain ETE by subtracting the RTE from the original TE to

eliminate the noise.

ETEY→X = TEY→X −RTEY→X (3.4)

3.2 Data and experiment set-ups

3.2.1 Data

In this study, the classification of industry and its constituent stocks are based

on The MSCI(Morgan Stanley Capital International) USA IMI(Investable Market

Index) Sector Indexes as of December 31, 2018. This index covers approximately

99% of the 2,400 large-, mid-, and small-cap stocks in the US stock market and

divides stocks into 11 sectors based on the Global Industry Classification Standard

(GICS R©).

Based on the stocks in which the company continuously exists within the period

of the experiment, we utilize a total of 55 stocks, the top five stocks by market

capitalization in each sector. Note that all the stocks are listed on the NASDAQ

and NYSE. The data period is from January 3, 2000 to December 31, 2018, which

yield 4,779 daily adjusted stock prices of 55 stocks. The data is extracted from

Thomson Reuters Datastream. Table 3.1 shows the 11 sectors used in the study and

the corresponding stocks and the descriptive statistics of the log-returns of entire

data are summarized in Table 3.2.
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Table 3.2: Descriptive statistics for representative stocks in S&P 500

TICKER Mean Std Skew Kurt J-B ADF

VZ 0.0002 0.0156 0.16 9.88 9445*** -71.1***

DIS 0.0003 0.0189 -0.09 12.85 19330*** -71.5***

T 0.0001 0.0162 0.03 10.47 11101*** -69.4***

CMCSA 0.0002 0.0209 0.00 11.35 13883*** -74.5***

FOXA 0.0003 0.0214 0.25 11.79 15435*** -70***

AMZN 0.0006 0.0331 0.45 15.15 29545*** -68.9***

HD 0.0003 0.0196 -0.98 26.37 109504*** -68.6***

MCD 0.0004 0.0145 -0.14 9.71 8987*** -70.7***

NKE 0.0008 0.0190 -0.27 14.82 27867*** -70***

SBUX 0.0007 0.0213 0.15 10.36 10798*** -74.5***

XOM 0.0002 0.0152 0.02 13.50 21943*** -76.1***

CVX 0.0004 0.0160 0.05 13.66 22628*** -73.7***

COP 0.0005 0.0189 -0.31 8.48 6055*** -71.6***

EOG 0.0007 0.0239 -0.04 7.70 4390*** -70.6***

SLB 0.0001 0.0223 -0.34 8.93 7085*** -71.4***

JNJ 0.0003 0.0121 -0.62 19.15 52207*** -69.6***

PFE 0.0002 0.0157 -0.24 8.56 6201*** -70.7***

UNH 0.0008 0.0197 0.26 23.56 84202*** -70***

MRK 0.0002 0.0173 -1.43 32.35 173114*** -68.9***

ABT 0.0005 0.0149 -0.48 12.01 16361*** -68.8***

BA 0.0005 0.0189 -0.28 8.82 6803*** -69.4***

MMM 0.0004 0.0145 -0.02 8.44 5884*** -71.9***

UNP 0.0007 0.0178 -0.25 6.96 3164*** -71.2***

HON 0.0003 0.0196 -0.24 17.02 39193*** -69.1***

UTX 0.0004 0.0168 -1.23 29.76 143791*** -73.7***

DWDP 0.0002 0.0220 -0.21 9.83 9335*** -71.8***

ECL 0.0005 0.0147 -0.08 9.69 8911*** -75.4***

APD 0.0005 0.0173 -0.16 8.72 6543*** -70.3***

SHW 0.0007 0.0177 -0.53 17.93 44571*** -75***

NEM 0.0001 0.0255 0.19 7.69 4405*** -74.1***

JPM 0.0003 0.0246 0.26 17.05 39350*** -74.7***

BRK-B 0.0004 0.0140 0.74 15.44 31264*** -69***

BAC 0.0001 0.0292 -0.35 30.17 147036*** -69.6***

WFC 0.0003 0.0238 0.87 31.06 157326*** -76.1***

C -0.0004 0.0309 -0.54 45.06 352428*** -65.1***

PG 0.0002 0.0135 -4.10 113.51 2444856*** -71.9***

KO 0.0003 0.0130 0.03 12.06 16343*** -69.8***

PEP 0.0003 0.0123 0.03 14.64 26955*** -72.6***

WMT 0.0001 0.0150 0.10 10.07 9962*** -71.4***

MO 0.0007 0.0153 -0.04 16.26 35012*** -70.5***

AAPL 0.0009 0.0269 -4.36 121.20 2796451*** -71.1***

MSFT 0.0002 0.0193 -0.14 12.66 18580*** -72.4***

INTC 0.0001 0.0235 -0.47 12.08 16576*** -72.1***

CSCO 0.0000 0.0245 0.14 12.15 16669*** -73.3***

ORCL 0.0001 0.0248 -0.02 11.52 14453*** -74.6***

NEE 0.0006 0.0140 0.16 12.70 18740*** -71.9***

DUK 0.0003 0.0153 -0.24 14.98 28599*** -72.1***

D 0.0005 0.0133 -0.61 13.01 20251*** -70.2***

SO 0.0005 0.0119 0.23 9.55 8584*** -73.6***

EXC 0.0004 0.0161 -0.05 11.14 13203*** -72.6***

AMT 0.0004 0.0302 -0.51 27.77 122317*** -64.1***

SPG 0.0006 0.0212 0.24 22.49 75696*** -83***

CCI 0.0003 0.0299 -0.30 28.10 125513*** -65.1***

PLD 0.0004 0.0250 -1.00 35.39 209679*** -80.1***

PSA 0.0006 0.0187 0.12 19.07 51452*** -82.1***

*Note: Std, Skew, Kurt, J-B, ADF are the abbreviations of the standard deviation, skewness, kurtosis,
Jarque-Bera tests, augmented Dickey-Fuller tests, respectively. Also, the star superscripts *, **, *** refer
to 5%, 1%, and 0.1% statistical significances, respectively.
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3.2.2 Experiment set-ups

At first, we select the six major events to observe changes of ETE during the financial

crisis a follows.

1. Dot-com bubble (1999/01/02 - 2002/09/30) : The Dot-com bubble occurred

in the US market when the Internet began to spread as a new business model.

Therefore, the crisis period is set from the beginning of 1999, when large-cap

stocks including Qualcomm in the Nasdaq market rose sharply, to Sep 30,

2002, when most dot-com companies went bankrupt, and Nasdaq reached its

lowest point.

2. Subprime mortgage crisis (2007/04/01 - 2009/06/30) : The subprime mort-

gage crisis is set from Apr 1, 2007, when New Century, the US’s second-largest

subprime mortgage lender, requested filing for bankruptcy protection, to the

first half of 2009 (Jun 30, 2009), when US Congress announced the American

Recovery and Reinvestment Act of 2009.

3. European crisis (2010/04/23 - 2010/12/31) : The European crisis is set from

Apr 23, 2010, when the Greek government requested financial assistance to the

EU and the IMF, to the end of 2010 (Dec 31, 2010).

4. US debt-ceiling crisis (2011/04/18 - 2012/01/31) : The US debt-ceiling crisis

is set from Apr 18, 2011, when the S&P, a renowned credit rating company,

announced its first negative view in history on the US AAA sovereign-debt

rating to Jan 31, 2012, when the US set an extremely low-interest rate plan

to deal with the fall of its rating.
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5. Brexit (2015/05/07 - 2016/06/23) : The Brexit is set from May 7, 2015, the

day of the 2015 UK election, where the conservative party which insisted a

hold on the referendum on Brexit won the election, to Jun 23, 2016, the day

of the Brexit referendum.

6. US-China trade war (2018/01/02 - 2018/12/31) : the US-China trade war

is set from January 2018, when the US began to impose sanctions on Chinese

companies, to the end of the experimental period.

From the perspective of stocks and events, we check whether the 55 stocks

employed in this study could represent the US market. Then, we choose the S&P

500 as a representative indicator of the entire US market in order to examine the

actual relationship between the selected financial crisis and the US market. The

S&P 500 price, log-returns of S&P 500, and the average log-returns of 55 stocks are

shown in Figure 3.1.

The result shows that the average log-returns are similar to that of the S&P

500. Furthermore, we set the selected events as gray boxes. In the gray boxes, the

volatility of log-returns in the US market is relatively high, indicating that the

selected events represent the financial crises in the US market.

In this study, we choose to use an average of 25 RTE simulations. Also, we set 22

bins to construct the discrete probability distribution for the log-returns of the stock

prices. In order to reduce the influence of outliers of log-returns, we integrated the

log-returns less than −6% and greater than +6% into bin #1 and #22, respectively.

Then, the interval between −6% and +6% is divided by 0.6% (from bin #2 to #21).

The histogram of the bin for the dataset is shown in Figure 3.2.

28



(a) S&P 500 price

(b) Log-returns of S&P 500 index

(c) The average log-returns of 55 stocks

Figure 3.1: Price and log-returns of S&P 500, and the average log-returns of 55
stocks
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Figure 3.2: Histogram of the bins of all stocks

To analyze the time-varying property of ETE, we use the moving window

method and set four different sizes: 1 month (1M, 20 days), 3 months (3M, 60

days), 6 months (6M, 120 days), and 1 year (1Y, 240 days). In this regard, we can

obtain 55×55 ETE matrix for 55 stocks for each time point and derive a time series

of the total mean value of ETE at each time point. Then, we examine the evolutions

of ETE with the major US financial crises to explore appropriate sizes of moving

windows size.

For the selected appropriate moving window-based ETE, we derive the average

of inflow (ETEY→X) and outflow (ETEX→Y ) values at each time point and define

these two indicators as the ETE network indicator. Furthermore, we perform time

series analysis and interval analysis of information flow by sector through the time

series of ETE network indicators.
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3.3 Results

3.3.1 Overall analysis of Effective transfer entropy

Figure 3.3 shows the effective transfer entropy of 55 major stocks in the US market

for different sizes of moving windows. For each moving window, we plot the mean of

TE, RTE, and ETE matrix that consists of the entire 55 stocks. In all the moving

windows, we confirm that the ETE, a noise-reduced TE through RTE, tends to be

more stable than a simple TE. Specifically, the ETE of the 1M moving window

shows a noise-shaped oscillation, which fails to detect any particular changes in

financial time-series. In contrast, the ETE of the 1Y moving window is too smooth

to provide the information for the entire period, where roughly 50% is filled with

zero. Therefore, we focus on the analysis of ETEs of 3M and 6M moving windows.

Figure 3.4 shows the average ETEs of 3M and 6M moving windows by presenting

the six financial crisis as gray regions. The average ETE is relatively high in the gray

regions for both cases, which suggests the implication of financial crisis based on the

increased ETE. Note that the average ETE of 3M moving windows is usually smaller

than that of 6M moving window, whereas the average ETE of 3M shows more volatile

movement with more detailed information than that of 6M moving windows ETE.

Since the ETEs of 3M and 6M seem to possess meaningful information regarding

the financial markets, we further investigate the characteristics of ETE in terms of

the detection of its evolution pattern and cross-sectional analysis on the financial

crisis in the level of financial sectors.
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(a) 1M moving windows (b) 3M moving windows

(c) 6M moving windows (d) 1Y moving windows

Figure 3.3: Evolution of TE, RTE, and ETE for different moving windows
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Figure 3.4: Evolution of average ETE in 3M and 6M moving windows

3.3.2 Sector analysis of Effective transfer entropy

Furthermore, we plot the average ETE of a sector for each financial crisis period as

well as the total, crisis and non-crisis periods in Figure 3.5 to Figure 3.7 as a heatmap

to investigate the information flow between individual sectors. Note that the sector

ETE is defined as the average of ETEs of stocks associated in the sector. Comparing

the heatmaps of the total, crisis, and non-crisis periods in the top of Figure 3.5a and

Figure 3.5b, the information flow between sectors in the crisis period is significantly

higher than that of non-crisis period. Note that the brighter the color, the stronger

the information transfer.

In Figure 3.6 and Figure 3.7, from the perspective of the heatmap of each

crisis and non-crisis period, the average of ETEs in each crisis periods are higher

than that of each non-crisis periods, same as the characteristics from the previous

heatmap analysis for overall crisis and non-crisis periods. In addition, the sectors

that have a statistical explanatory power on other sectors are identified for each

period. In the case of heatmaps of 3M moving windows in Figure 3.6, CONS and
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(a) 3M moving windows ETE

(b) 6M moving windows ETE

Figure 3.5: Heatmaps of the average ETE in overall periods

*Note: Numbers from 1 to 11 sequentially represent the TELE, COND, ENRG, HLCA, INDS,
MTRS, FINC, CONS, INFT, UTIL, REES, respectively.

UTIL show a large information flow in Dot-com bubble, Subprime mortgage crisis

and US-China trade war. Also, FINC and REES in European crisis and US debt-

ceiling crisis and ENRG in Brexit show relatively large information flow than other

sectors. The information flow of non-crisis periods is small except for the non-crisis

period between the Subprime mortgage crisis and the European crisis, but still exist

the statistical explanatory power between sectors can be confirmed. The heatmaps

of 6M moving windows ETE in Figure 3.7 also shows the characteristics of the

heatmaps of 3M moving windows ETE, and the difference in statistical explanatory

power between sectors can be more clearly distinguished due to the large moving
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window.

In the Dot-com bubble and Subprime mortgage crisis, which had a huge mar-

ket impact, there is a lot of information exchange between all sectors. Like other

correlation measures, the ETE has a limitation that cannot fully distinguish the

correlation that increases due to the strong impact on the market as a whole, espe-

cially the market impact caused by exogenous variables. However, within this high

correlation, the ETE has a difference that can confirm the statistical explanatory

power of sectors by checking the direction of information flow between sectors.

Besides, we further investigate the evolutions of inflow and outflow ETE of

different sectors for 3M and 6M moving windows in Figure 3.8 and 3.9. Note that

Total indicates the average of all sectors, which equates the evolutions of inflow

and outflow. In both 3M and 6M moving windows ETE, the inflow and outflow

ETE of the financial crisis period were observed to be larger in all sectors than the

non-financial crisis period. Although ETEs of two moving windows generally show

the same trend, the difference between inflow and outflow ETE is prominent in 3M

moving windows. However, a more stable rise and fall of ETE is observed in 6M

than 3M moving windows.

Also, in order to check the strength of the information flow of each sector,

we plot the values of outflow minus inflow in Figure 3.10 and 3.11. Note that a

positive value indicates a more substantial outgoing information transfer from a

specific sector to other sectors that incoming information transfer and vice versa. At

first, the difference between inflow and outflow for total is zero as shown in Figure

3.8 and 3.9. In the case of 3M moving windows in Figure 3.10, TELE, COND, and

INFT show the most positive values in the dot-com bubble located in the first gray
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Figure 3.6: Heatmaps of the average ETE in different periods (3M)

*Note: Numbers from 1 to 11 sequentially represent the TELE, COND, ENRG, HLCA, INDS,
MTRS, FINC, CONS, INFT, UTIL, REES, respectively.
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Figure 3.7: Heatmaps of the average ETE in different periods (6M)

*Note: Numbers from 1 to 11 sequentially represent the TELE, COND, ENRG, HLCA, INDS,
MTRS, FINC, CONS, INFT, UTIL, REES, respectively.
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region from the left. In particular, INFT shows the most persistent and large positive

values. On the contrary, in the same dot-com bubble period, ENRG, HLCA, and

UTIL exhibit negative values most time.

Given that the period is a Dot-com bubble, the strong outgoing information

transfer from the INFT is because the period is closely related to the bubble econ-

omy of information technology companies. In the Subprime mortgage and European

crises, FINC and REES show the most positive values, whereas CONS, INFT, and

UTIL show the most negative values. Again, FINC and REES are directly related

to the subprime mortgage crisis, and the FINC is the sector most affected by the

European crisis.

Similar to 3M moving windows ETE, 6M moving windows ETE in Figure 3.11

shows different directions and intensity of information transfer for each sector. In

conclusion, it is confirmed that outflow and inflow ETEs show the characteristics of

each sector according to a different time, and such information could be useful in

predicting the direction of future stock prices.

3.4 Summary and Discussion

In this chapter, the US market is analyzed based on ETE. A total of 55 stocks

in the US market, the top five stocks by market capitalization in each sector are

utilized. We define six major events of the US market during the data period and

derive ETE using log-returns of stocks, and then conduct time-varying analysis and

cross-sectional analysis to verify the information flow between sectors.

At first, the appropriate moving windows ETE describing the US market is
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searched. For 1M, 3M, 6M, and 1Y moving windows ETE, 3M and 6M moving

windows ETE show a tendency to rise during the financial crisis event and confirm

that these ETEs have market explanatory power.

Secondly, cross-section analysis of ETE is conducted. For 3M and 6M moving

windows ETE, through the heatmap of the average ETE of a sector, the information

flow between sectors in the crisis period is significantly higher than that of non-

crisis period. The ETE has a limitation that cannot fully distinguish the increased

correlation due to strong influence on the market, but it is possible to distinguish

information flow between sectors even within such high correlation.

Lastly, a time-varying analysis of ETE is conducted. In both 3M and 6M moving

windows ETE, the inflow and outflow ETE of the crisis period are observed to be

larger in all sectors than the non-crisis period. In addition, the analysis of the value

of outflow minus inflow ETE analysis for verifying the strength of the information

flow of each sector is conducted and confirms that the sectors associated with the

crisis show the most positive values. It can be interpreted that the sectors related to

the crisis in the crisis period export information and have a statistical explanatory

power to other sectors.

In conclusion, it is confirmed that outflow and inflow ETEs show the charac-

teristics of each sector according to a different time, and such information could be

useful in predicting the direction of future stock prices. After all, the inflow and

outflow ETEs are defined as ETE network indicators, the application of the ETE

network indicators as variables to the stock price direction prediction using machine

learning algorithms will be discussed in Chapter 4.
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Chapter 4

Predicting the direction of US stock prices using
ETE and machine learning techniques

4.1 Machine learning algorithms

4.1.1 Logistic regression

LR(Cox, 1958) is a multivariate analysis model used to predict the likelihood of

an event using a linear combination of independent variables. In general, the LR is

useful when the dependent variable is a binary or a multinomial categorical variable

and is mainly used in the financial sector to predict the direction of stock prices or

analyze the classification among companies. In this study, the LR was applied as a

model representing a linear model, and the stock price direction of the cumulative

log-returns was classified based on a cut-off value of 0.5.

4.1.2 Multi-layer perceptron

MLP(Rosenblatt, 1961) is a kind of feed-forward artificial neural network and con-

sists of an input layer, a hidden layer, and an output layer. Each node, except the in-

put nodes, is a neuron that uses a nonlinear activation function and is the most com-

mon structure of a neural network learning through back-propagation. In this study,

we set the each hidden layers’ neurons as learning parameters of the MLP. Note
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that the number of hidden layers is composed of four. Then, the structures of MLP

were defined as follows. The number of neurons for each layer is {256, 128, 64, 32},

{128, 64, 32, 16}, {64, 32, 16, 8}, {32, 16, 8, 4}, {16, 8, 4, 2}, which yields five sets of

hidden layers. In summary, a total of five parameter sets (5 neurons) are used and

the ReLU was applied to the activation function.

Figure 4.1: Structure of multilayer perceptron (4-hidden layers for {16, 8, 4, 2})

4.1.3 Random forest

RF(Breiman, 2001), a kind of ensemble learning method used for classification and

regression analysis, is a method to obtain a classifier with high accuracy and stabil-

ity by generating a multitude of decision trees and combining each predictive value.
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Since the RF generates multiple decision trees through bagging and learns by se-

lecting variables randomly for each tree, it is robust against noise and outliers as

well as overcomes the disadvantage that the existing single decision tree tends to

incur over-fitting according to the training set. Although the training and test time

increases as the number of trees increases, a large forest exhibits a relatively con-

tinuous result and better generalization ability than a small forest, which increases

the stability of the model. In this study, we set the maximum depth of the trees as

learning parameter of the RF where the numbers of trees are 200, and the depth

is set to 12 to 24 by three intervals. In summary, a total of five parameter sets (5

depths) are used.

4.1.4 Extreme gradient boosting

XGBoost(XGB)(Chen and Guestrin, 2016) is a gradient boosting algorithm that

emphasizes parallel processing and optimization. The gradient boosting machine

(GBM) method can be defined as follows. After constructing weak learners, the

training set and consistency are evaluated to construct new weak learners using the

gradient descent method as the explanatory variable. By repeating such a process,

several predictive models are ensembled to construct a strong learner. The GBMs

have excellent prediction performance, but there might be an overfitting problem if

the proper number of splits is not obtained due to no fitting limit of the number

of splits in the decision tree. The XGB is an algorithm that modified the structure

of GBM to prevent the overfitting problem through regularization and enabling

of parallel computation. In this study, we set the maximum depth of the trees as

learning parameter of the XGB. The number of trees is set to 200 same as RF,
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whereas the depth is set to 3 to 15 by three intervals. Therefore, a total of five

parameter sets (5 depths) are utilized. The learning rate was set to 0.1.

4.1.5 Long short-term memory network

LSTM(Hochreiter and Schmidhuber, 1997), a kind of Recurrent Neural Network

(RNN)(Rumelhart et al., 1986), is a suitable method for classification or prediction

based on time series data with unknown gaps between essential events. A typical

LSTM unit consists of a cell, input gate, output gate, and forget gate. The cell

maintains dependencies between the elements of the input sequence and selectively

adjusts the information flow through the gates. The back-propagated error values at

the output layer of the unit remain in the LSTM unit’s cell, and the error values are

continuously supplied to the LSTM unit’s gate to learn the cut-off value. Through

this process, LSTM networks can deal with vanishing gradient problems that can

occur when learning through traditional RNNs. The LSTM network architecture

used in this dissertation is defined as follows. The input size is the numbers of features

of the input data. The output is binary (up/down) data based on the cumulative log-

return of stock during the prediction period. The layers consist of the LSTM layer

first, followed by a fully connected layer of size 4, and a sigmoid layer. Specifically,

we select the number of hidden units of LSTM layer as the learning parameter of

LSTM networks. The number of hidden units are set to 8, 16, 32, 64, and 128, which

yields a total of five parameter sets (5 hidden units).

The parameter pairs used in machine learnings are summarized in Table 4.1.
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Table 4.1: Parameter set-ups for machine learning algorithms

Model Parameters Levels

MLP Neuron of first layer 256, 128, 64, 32,16
RF Depth of trees 12, 15, 18, 21, 24
XGB Depth of trees 3, 6, 9, 12, 15
LSTM Hidden unit 8, 16, 32, 64, 128

4.1.6 Adjusted accuracy

In finance, the performance of a portfolio is evaluated based on the risk-adjusted

return, commonly known as the Sharpe ratio(Sharpe, 1994). Therefore, we also mea-

sure the prediction performance of each algorithm based on a concept similar to the

Sharpe ratio. The Sharpe ratio measures the excess return per unit of deviation,

usually referred to as risk, and is defined as,

Sa =
E[Ra −Rf ]

σa
=

E[Ra −Rf ]√
var[Ra −Rf ]

(4.1)

where Ra is the asset return, Rf is the risk-free return, and σa is the standard

deviation of the asset excess return.

In this study, we propose an adjusted accuracy as a prediction performance

measure on the direction of the stock price. Note that the previous studies mainly

compare the absolute value of accuracy in evaluating the results. In case of adjusted

accuracy, we define Ra, Rf and
√
var[Ra −Rf ] as the prediction accuracy of a single

stock, the benchmark accuracy 0.5 from the expectation of binary prediction, and

the standard deviation of Ra −Rf , respectively.

Through the adjusted accuracy of 55 stocks for each machine learning model and
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those of 5 stocks for each sector, the performance consistencies of model and sector

are confirmed by considering performance distortion caused by outlier performances

of specific stocks.
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4.2 Data and experiment set-ups

4.2.1 Data

The data used in this chapter are the same as in Chapter 3.

4.2.2 Experiment set-ups

We construct the training dataset based on a various mixture of input and target

variables. The input variable(x) at each time point for each stock consist of three

cases in two variables: ETE network indicators for inflow and outflow and lags for 3

months (3M, 60 days), 6 months (6M, 120 days), and 1 year (1Y, 240 days) of time

series of each stock’s past log-returns. Then, the target variable(y) is the cumulative

log-returns in different prediction periods for 1 week (1W, 5 days), 1 month (1M, 20

days), and 3 months (3M, 60 days).

Note that the categorized (positive & negative) cumulative log-returns are used

for algorithms. This process is then repeated for the different ETEs obtained from

different sizes of moving windows. Figure 4.2 summarizes the dataset structure used

in this study.

For each dataset, we compare the prediction performances of the mixture of log-

returns and ETE network indicator against that of plain log-returns. In this regard,

we aim to check the following statements in terms of prediction performance: (1)

the validity of ETE network indicators and (2) the most applicable machine learning

algorithm. Specifically, the learning is performed as follows. At first, the entire data

is divided into 50% of training and 50% of test sets. Then, we normalize the stock log-

returns and inflow and outflow ETEs based on their means and standard deviations

of each training set. The associated periods of training set for 3M and 6M moving
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windows are from 2000-01-03 to 2009-08-17 and from 2000-01-03 to 2009-09-29,

respectively. Note that we only train 70% randomly sampled set from the training

set that maintains a dataset consisting of the lags of time series of each stock’s past

log-returns and the ETE network indicators at that time to obtain the generalized

training results. In addition, the hyperparameter tuning of each model is performed

through the validation process for the remaining 30% of the training set. Lastly, we

compare the prediction performance of test set for 3M and 6M, whose periods from

2009-08-18 to 2018-12-31 and from 2009-09-30 to 2018-12-31, respectively. Figure 4.3

shows an example of the proposed machine learning framework.

We define a prediction accuracy to reflect a proportion of correctly classified

direction of the cumulative log-returns in the test set. Based on the prediction accu-

racy, we can define the prediction performance of each machine learning algorithm.

For LR, the performance of the algorithm is the same as the prediction accuracy

since the LR does not possess any model parameters. In contrast, for MLP, RF,

XGB, and LSTM, we set five parameter sets, which yield five different results of

prediction accuracy.

Based on the previous studies(Patel et al., 2015; Lee et al., 2019), the prediction

accuracy of LR for a single stock is the same as the accuracy of LR, whereas those

of other four models are defined as the averages of top three results in prediction

accuracy among the five parameter sets for measuring the average performance of

machine learning models. In contrast, a model-specific prediction accuracy for each

sector is defined as the average of the prediction accuracy of stocks associated in

each sector. The same approach is used to define the overall performance of five

models. We calculate the averages of the prediction accuracy of all stocks. In case
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of the improvement of prediction accuracy incurred by ETE network indicator, the

LR is defined as the simple difference of each stock, and the MLP, RF, XGB and

LSTM are defined as the average of the top three among the accuracy differences

between parameter sets. Furthermore, the same approach is applied to the adjusted

accuracy, which can be obtained by (4.1).

In this study, we evaluate the stock price direction prediction performance us-

ing adjusted accuracy. Note that the adjusted accuracy focuses on the consistency

of the accuracy of the overall stocks and sectors and the improvement focuses on

identifying the influence of the ETE network indicator between the same parameter

sets of each model. Then, the prediction process is repeated 10 times to check the

average and standard deviation of defined adjusted accuracy. Finally, the overall

framework can be summarized as a step-by-step procedure described in Figure 4.4.
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Figure 4.4: Procedure for the stock price prediction using the ETE
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4.3 Results

4.3.1 Prediction performance in different models

We intend to utilize the evolution of ETE, which has a market explanatory power, as

an input variable in predicting the direction of future stock price based on the LR,

MLP, RF, XGB and LSTM. Especially, the prediction performance of the model

using the inflow and outflow ETE values, which can be defined as ETE network

indicators, as input variables are compared with that of the model without the ETE

values. Table 4.2 summarizes the average prediction adjusted accuracy and their

standard deviation of all models for different moving windows, lags, and prediction

periods.

The results show that there is no significant difference in prediction adjusted

accuracy among different moving windows. Also, there is no significant difference

according to the lag, whereas the adjusted accuracy for the 6M lag is higher than

that of others and the adjusted accuracy tends to be higher in the shorter lags. More

importantly, the improvement of prediction performance by utilizing the ETE net-

work indicator is detected in all parameter sets. The improvement tends to decrease

as the prediction period increases and increase as the lag increases. Therefore, we

suggest that the ETE network indicators can be used to improve the performance

of the stock price forecast in the US market.

Table 4.3 to 4.7 for adjusted accuracy summarize prediction performances for

different machine learning algorithms, moving windows, lags, prediction periods, and

integration of ETE indicator.

From the perspective of tendency of adjusted accuracy, there is little difference
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in adjusted accuracy between the moving windows as in overall performance. Note

that the improvements by integrating ETE network indicators are detected in all

models, whereas in LR, RF and XGB, there are some conditions in which the de-

creases in adjusted accuracy in the 3M prediction period. The improvement of LR

and MLP tends to decrease as the prediction period increases, and LSTM shows

a certain improvement regardless of the prediction period. The RF shows a good

improvement in the 1W prediction period.

From the perspective of comparison between models, the adjusted accuracy of

MLP and LSTM show higher than others, it implies that the prediction performance

of MLP and LSTM is high and consistent. And the adjusted accuracy of LR shows

that the prediction performance of the LR is not stable as those of other models.

In addition to tendency analysis of adjusted accuracy, Table 4.8 summarizes

the result of a paired t-test to confirm that the adjusted accuracy improvement by

the ETE network indicator has been statistically increased for each model, moving

windows of ETE, lag and prediction period.

In MLP and LSTM, the null hypothesis of paired t-test is rejected under all

conditions, the adjusted accuracy is statistically improved due to ETE network in-

dicator. In RF and XGB, it can be seen that the adjusted accuracy is statistically

improved in the 1W prediction period. In LR, the adjusted accuracy is statistically

improved at a relatively low significance level compared to other models.

Overall, we discover that all five machine learning algorithms have improved

the adjusted accuracy through the ETE network indicator and suggest that the

MLP and LSTM are the most suitable models for predicting future stock price

direction predictions when considered the adjusted accuracy and the paired t-test
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simultaneously. Note that the MLP and LSTM have the characteristic of consistent

improvement in prediction performance.

4.3.2 Prediction performance in different sectors

Since the adequacy of models established, the detailed analysis of the prediction

performances in the different sectors is evaluated based on the adjusted accuracy

of the MLP, RF, XGB, and LSTM. Note that we exclude the LR due to its poor

performance in the adjusted accuracy. Table 4.9 to 4.12 and Table 4.13 to 4.16

summarize the adjusted accuracy and their improvement by ETE network indicator

of each sector, respectively, for different moving windows, lags, prediction periods.

Note that the adjusted accuracy indicates the performance when predicted by the

mixture of log-returns and the ETE network indicator.

Table 4.9 to 4.12 show that the adjusted accuracy of four algorithms tends to be

higher for short-term predictions than long-term. In Table 4.13 to 4.16, the improve-

ment of the adjusted accuracy is observed for all conditions of MLP and LSTM. For

the 1W prediction period of RF and XGB, the improvement of the adjusted accu-

racy is generally observed in all sectors regardless of lag and the decrease in adjusted

accuracy is observed in some sectors in 1M or 3M prediction periods where TELE

and INFT show the increase of adjusted accuracy in most conditions.

Furthermore, we summarize the adjusted accuracy with their improvement in

each sector for different moving windows based on the average of performance for

all lags and prediction periods in Table 4.17. Although the performance of machine

learning algorithms differs for each sector, we depict sectors with good performance

regardless of the algorithm.
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Table 4.17: Adjusted accuracy and their improvements in different sectors

MLP RF XGB LSTM

MW 3M 6M 3M 6M 3M 6M 3M 6M

TELE 1.40

(1.49)

1.29

(1.45)

0.67

(0.89)

0.81

(1.08)

0.82

(0.71)

1.15

(0.80)

1.32

(1.21)

1.19

(1.03)

COND 2.56

(1.19)

2.14

(1.13)

1.00

(0.12)

1.00

(0.62)

1.02

(0.08)

1.26

(0.34)

1.53

(0.68)

1.39

(0.69)

ENRG 1.43

(0.70)

1.44

(1.05)

1.05

(0.79)

1.00

(0.38)

1.24

(0.38)

1.28

(0.29)

1.32

(1.15)

1.35

(1.14)

HLCA 0.94

(1.19)

1.01

(1.20)

0.70

(0.19)

0.74

(0.68)

0.89

(0.00)

0.92

(0.49)

0.86

(1.10)

0.95

(0.98)

INDS 4.63

(1.18)

4.67

(1.12)

3.25

(0.66)

3.07

(0.28)

2.56

(0.50)

2.40

(0.35)

4.32

(1.20)

3.89

(1.01)

MTRS 1.62

(0.91)

1.73

(0.98)

1.28

(-0.10)

1.51

(0.43)

1.08

(-0.07)

1.31

(0.14)

1.77

(0.89)

1.79

(0.92)

FINC 1.74

(1.15)

1.61

(1.06)

1.40

(1.19)

1.40

(1.36)

1.57

(0.22)

1.84

(0.84)

1.71

(1.31)

1.66

(1.47)

CONS 1.94

(0.97)

2.02

(1.18)

1.39

(0.30)

1.68

(0.62)

1.73

(0.07)

2.35

(0.23)

1.43

(0.98)

1.40

(1.04)

INFT 1.36

(1.28)

1.55

(1.35)

1.12

(0.70)

0.92

(0.56)

1.09

(0.54)

0.96

(0.56)

1.02

(0.82)

1.29

(0.94)

UTIL 2.37

(0.94)

2.31

(0.99)

2.47

(0.71)

2.15

(0.17)

2.44

(0.15)

1.61

(-0.28)

2.37

(0.88)

2.33

(0.88)

REES 6.52

(0.91)

5.80

(0.82)

3.42

(0.32)

3.72

(0.26)

3.03

(-0.08)

2.63

(-0.18)

5.15

(0.62)

5.56

(0.64)

*Note: MW is the abbreviations of the moving window. The numbers in parenthesis indicate the

improvement.
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In order to further analyze the prediction performance on each sector, we draw

the scatter plots for adjusted accuracy in Figure 4.5. Note that the sector-by-sector

mean of the prediction performance is on the X-axis, whereas the mean of improve-

ment achieved by integrating ETE network indicator is on the Y -axis. We set the

means of X− and Y− axes as red dashed lines and the ±1σ, an indifferent region, as

a gray box. Specifically, the first quadrant of the scatter plot is the best-case scenario

for the proposed prediction framework containing the sectors with high prediction

adjusted accuracy and improvement. The second (fourth) quadrant encompasses

sectors that have poor (decent) prediction performance but have decent (poor) per-

formance improvement from ETE indicator. The third quadrant is the worst-case

scenario containing sectors with poor performance in both prediction performance

and performance improvement from ETE indicator.

In Figure 4.5, INDS, UTIL, and REES are all located in the first and fourth

quadrant except for UTIL of MLP in 3M, showing consistent high accuracy. In

particular, INDS and REES have the high adjusted accuracy in all models. HCLA

except for RF, XGB in 3M and INFT except for LSTM and RF in 6M are located

in the second quadrant, showing the high improvement in the consistent prediction

performance. Also, the high improvement in adjusted accuracy is observed in TELE

for MLP and XGB, FINC for RF, XGB in 6M, and LSTM. Sectors belonging to the

third quadrant of the worst-case scenario are COND and MTRS. Especially, MTRS

is located in the third quadrant in all conditions, whereas COND is located in the

third quadrant of RF in 3M, XGB in 3M, and LSTM. Note that CONS is mostly

located in the indifferent region except for XGB in 6M.

In conclusion, the first quadrant sector consistently outperforms the other sec-
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Figure 4.5: Prediction performance vs. prediction improvement
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tors in all cases, while the third quadrant sector consistently performs poorly. Thus,

we claim that there is a more suitable sector for the application of ETE network

indicators in predicting the direction of the stock.

4.4 Summary and Discussion

In this chapter, the evolution of ETE network indicators is utilized as an input

variable in predicting the direction of future stock price based on the LR, MLP, RF,

XGB, and LSTM. For five machine learning algorithms, we set up a parameter set

of 3M and 6M moving windows ETE, 3M, 6M, and 1Y of lag and 1W, 1M, and 3M

of the prediction period. For each dataset, we compare the prediction performances

of the mixture of log-returns and ETE network indicator against that of plain log-

returns in terms of models and sectors through adjusted accuracy.

At first, the average prediction adjusted accuracy of all models for different

moving windows, lags, and prediction periods are analyzed. The improvement of

prediction performance by utilizing the ETE network indicator is detected in all

parameter sets. Notably, as the lag increases, the prediction adjusted accuracy, in

general, tends to decrease slightly and the prediction adjusted accuracy tends to

decrease in the long term rather than the short term.

Secondly, the prediction performances for different machine learning algorithms

are analyzed. From the perspective of adjusted accuracy, we verify that all five ma-

chine learning algorithms have improved the prediction performance through the

ETE network indicator and suggest that the MLP and LSTM are the most suit-

able models for predicting future stock price direction predictions considering the
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adjusted accuracy and paired t-test.

Lastly, the prediction performances for each sector are analyzed. Through the

numerical and scatter plot analysis about adjusted accuracy and its improvement

by ETE network indicators for MLP, RF, XGB, LSTM of each sector, we claim

that there is a more suitable sector for the application of ETE network indicators

in predicting the direction of the stock.

In conclusion, the ETE network indicators can be used to improve the perfor-

mance of the stock price direction for all cases of the LR, MLP, RF, XGB, and

LSTM. Notably, the MLP and LSTM as more suitable machine learning algorithms

in predicting the direction of stock price based on the adjusted accuracy. After all,

the application of Black-Litterman model based on the characteristics of the ETE

network indicator and the prediction of stock price direction using machine learning

algorithms integrating the ETE network indicator will be discussed in Chapter 5.
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Chapter 5

The Black-Litterman model for ETE and machine
learning

5.1 The Black-Litterman model

The Black-Litterman model(Black and Litterman, 1990) is proposed to overcome

the problems that investors face when they actually apply modern portfolio the-

ory to establish an investment strategy. The Markowitz’s mean-variance portfolio

is determined solely by expected returns and asset covariance matrices, resulting in

significant changes in asset weight despite small changes in these two parameters.

The Black-Litterman model introduces various parameters to alleviate this problem

and reduce the sensitivity to parameters through the reflection of the investor’s view.

In this dissertation, the Black-Litterman model with a bayesian approach is

used(Pyo and Lee, 2018). The Black-Litterman model starts with implied excess

equilibrium returns which are the expected return based on the information when

the investor has prior information about the optimal portfolio obtained from the

following quadratic utility maximization problem: maxw wTπ − 1

2
λwTΣw.

π = λΣwmkt (5.1)

where π ∈ Rn×1, Σ = E[(r − µ)(r − µ)T ] where mean of excess returns µ =
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E[r] , wmkt ∈ Rn×1 are the implied excess equilibrium return vector r, the n × n

covariance matrix of excess returns, and the market capitalization weights of the

assets, respectively.

The risk aversion coefficient λ represents the risk premium rate which is an

appropriate excess return per unit of risk considered by the investors. The greater

the risk aversion coefficient, the greater the excess return required per unit of risk.

λ can be obtained by multiplying both sides of (5.1) by wT
mkt as

λ = (r̄mkt − rf )/σ2 (5.2)

where r̄mkt = wT
mktπ + rf , rf , σ2 = wT

mktΣwmkt are the total expected return

on the market portfolio, the risk free rate, and the variance of the market portfolio,

respectively.

When the prior expected excess returns µ are as follows,

µ ∼ N (π, τΣ) =
1

(2π)n/2|Σ|1/2
exp[−1

2
(µ− π)TΣ−1(µ− π)] (5.3)

where τ is a scalar, the risk-adjustment constant. The view vector of returns q ∈

Rk assumed in the Black-Litterman model is a random vector having the following

conditional distribution.

q|µ ∼ N (Pµ,Ω) (5.4)

where P, Ω are the k × n matrix of the asset weights within each view and a

diagonal k× k matrix of the covariance of the views representing uncertainty of the

view.
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There are two ways to apply view portfolio weights: (1) absolute view that the

sum of the weight is 0 and (2) relative view that the sum of the weight is 1.

The marginal distribution for q is derived from annotation 1.

q ∼ N (Pπ,Ω + P(τΣ)PT ) (5.7)

Then, the new posterior combined expected excess returns are as follows.

µposterior ∼ N (µBL,ΣBL) (5.8)

where

ΣBL = [(τΣ)−1 + PTΩ−1P]−1 (5.9)

µBL = ΣBL[(τΣ)−1π + PTΩ−1q] (5.10)

= π + τΣPT [P(τΣ)PT + Ω]−1(q−Pπ) (5.11)

The equation (5.9) and (5.10) can be derived from (5.6). The equation (5.11)

1 When a marginal Gaussian distribution for x and a conditional Gaussian distribution y given
x is

p(x) ∼ N (x|µ,Σx)

p(y|x) ∼ N (y|Ax + b,Σy|x)

The marginal Gaussian distribution for y and a conditional Gaussian distribution x given y are

p(y) ∼ N (y|Aµ + b,Σy|x + AΣxAT ) (5.5)

p(x|y) ∼ N (x|Σx|y(ATΣ−1
y|x(y− b) + Σ−1

x µ),Σx|y) (5.6)

where Σ−1
x|y = (Σ−1

x + ATΣ−1
y|xA)
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can be derived by applying the following the Sherman-Woodbury-Morrison formula.

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 (5.12)

5.2 Data and experiment set-ups

5.2.1 Data

The classification of industry and its constituent stocks are based on The MSCI(Morgan

Stanley Capital International) USA IMI(Investable Market Index) Sector Indexes as

of September 30, 2019. In this chapter, total return index (RI), which is used in-

stead of the stock price and market value (MV) are used. RI is an index that not

only tracks stock price changes but also measures the performance of a group of

stocks, assuming that all cash distributions have been reinvested. The price index

only considers the price fluctuations such as capital gains or losses of the stocks that

make up the index, while the RI includes dividends, interests, rights offerings, and

other distributions realized during a given period of time. RI is generally considered

a more accurate measure of performance.

According to the data reference date, the existing sector name of ‘Telecommu-

nication Services’ has been changed to the ‘Communication Services’, but in this

dissertation, the ‘Communication services’ is referred to as ‘Telecommunication Ser-

vices’ for consistency. In addition, there are changes in two stocks among 55 stocks

used in Chatper 3 and 4 depending on the data reference date. ‘Activision Blizzard,
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Inc.’ (ATVI) instead of FOXA in TELE, and ‘Linde plc’ (LIN) instead of DWDP in

MTRS are reflected. The data period is the same as that used in Chapter 3 and 4.

5.2.2 Experiment set-ups

As mentioned in Chapter 3, the two properties of ETE are identified: (1) ETE

tends to rise in the financial crisis periods and (2) In the financial crisis periods,

the difference of outflow and inflow ETE of the sector related to the financial crisis

shows the most positive value. In Chapter 4, the improvement of prediction adjusted

accuracy by integrating the ETE network indicators are detected in all cases of the

LR, MLP, RF, XGB, and LSTM, and the MLP and LSTM are suitable models for

predicting the stock price direction using ETE network indicators. These results are

applied to the investor’s view of the Black-Litterman model.

At first, from the perspective of prediction of the stock price direction using

machine learning models, the adjusted accuracy and its improvement of the stock

price direction prediction by the ETE network indicator are verified against the new

data sets of MLP and LSTM. As in the previous chapter, the prediction periods are

set for 1 week (1W, 5 days), 1 month (1M, 20 days), and 3 months (3M, 60 days)

and applies equally to the rebalancing period (RP). The application of ETE moving

windows is only for 60 days moving windows ETE due to the slight difference in

performance between 60 and 120 days. The lag is applied as 3M lags considering the

tendency for accuracy to improve as the number of lags decreases. The rest of the

experimental framework such as training methods and define prediction performance

is the same as in Chapter 4. The parameter pairs used in machine learnings are

summarized in Table 5.1.
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Table 5.1: Parameter set-ups for machine learning algorithms

Model Parameters Levels

MLP Neuron of first layer 256, 128, 64, 32,16
LSTM Hidden unit 2, 4, 8, 16, 32

When applying the investor’s view of the Black-Litterman model, there are two

investor’s views as follows.

• View 1: Absolute View

In the prediction of the stock price direction through a machine learning algo-

rithms, for each prediction period, the stocks predicted by positive (negative)

cumulative returns will rise (fall) by q%.

• View 2: Relative View

Stocks with a negative (positive) difference of outflow and inflow ETE are

expected to outperform stocks with a positive (negative) by q%.

The methodology of the ‘View 1’ applies the results predicted only by its plain

log-returns and the mixture of log-returns and the ETE network indicator using

machine learning models to absolute view of Black-Litterman model. In the stock

price direction prediction result through machine learning models, both MLP and

LSTM generate up/down results of five parameter sets, and only stocks in which at

least three out of five predictions predict the same direction is reflected in the view

vector in order to increase the reliability of the investor’s view vector.
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Pabs =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 (5.13)

where Pabs is an example of an absolute investor’s view. When a column is a stock,

the first, third, and fourth stocks are applied to investor’s view.

The methodology of the ‘View 2’ considering the problem that the relative

view effect cannot be properly reflected due to a large number of absolute views

starts from the optimal weight obtained from results predicted only by its plain

log-returns to avoid overlapping ETE effects and applies to relative view according

to the difference of outflow and inflow ETE. The market capitalization weighting

scheme is used for the method of applying the relative view according to Idzorek

(2007). For stocks with positive (negative) difference of outflow and inflow ETE,

the relative view of each positive (negative) stock is applied as follows; the market

cap of each positive (negative) stock divided by the sum of market cap of a positive

(negative) stocks. In order to select stocks that are influential in the information

flow, only the top 70% of the number of stocks with a positive (negative) difference

of outflow and inflow ETE are applied to the relative view.

Prel =

(
0.3 0.5 0 −0.2 −0.8 0

)
(5.14)

where Prel is an example of an relative investor’s view. When a column is a stock,

the first and second stocks are positive difference of outflow and inflow ETE and the

fourth and fifth stocks are negative.

The rest of the detailed parameters except the investor’s view of the black-litre
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model are as follows. The normal return is used as unit of yield. The past period,

which is the reflection period of the past to derive the risk aversion coefficient, is set

to 1 year (1Y, 240 days). The scalar τ is set to 0.025 by referring to previous studies

of He and Litterman (2002). The expected rate of return q is set as the average

rate of return of stocks in the past 240 days at the time point plus its standard

deviation.The objective function is taken as the Sharpe ratio. The uncertainty of

view Ω is as follows.

Ω =


σ1 0 0

0
. . . 0

0 0 σk

 =


(p1Σp′1)τ 0 0

0
. . . 0

0 0 (pkΣp′k)τ

 (5.15)

For convenience of description, we define an abbreviation for the portfolio of

the Black-Litterman model having a certain investor’s view as follows. The Black-

Litterman portfolio with the investor’s view of applying the prediction performance

by its plain log-returns is abbreviated to ‘woETE’ and the mixture of log-returns and

the ETE network indicator to ‘wETE’. And the Black-Litterman portfolio for the in-

vestor’s view of applying the return of the stocks with a negative (positive) difference

of outflow and inflow ETE is expected to outperform that of the stocks with a posi-

tive (negative) are abbreviated to ‘dETE(N)>dETE(P)’ and ‘dETE(P)>dETE(N)’,

respectively.

The performances of the Black-Litterman model with all these four investor’s

views are compared with the performance of the market portfolio that weights ac-
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cording to the market value and market index ‘S&P 500’. The performance of the

portfolios is evaluated through the cumulative returns for the rebalancing period

from the first day of the test set, that is, the cumulative return of portfolios.

The performance metric of the portfolio is defined as follows. From the per-

spective of the cumulative return of portfolio, cumulative return, Sharpe ratio, and

Sortino ratio are used. The process of deriving performance measures through port-

folio establishment from stock price direction prediction using MLP and LSTM is

repeated 10 times to verify the average and standard deviation for adjusted accuracy

and portfolio performance. Finally, the overall framework can be summarized as a

step-by-step procedure described in Figure 5.1.
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5.3 Results

5.3.1 Prediction performance in different models and sectors

The values of outflow ETE minus inflow ETE is shown in Figure 5.2 and Table 5.2

summarizes adjusted accuracy for MLP and LSTM, prediction periods, and integra-

tion of ETE network indicator.

Note that Figure 5.2 for the evolution of outflow minus inflow ETE and Fig-

ure 3.8 in Chapter 3 shows a similar trend across all sectors. In Table 5.2, although

RI is used instead of the stock price, it can be seen that the tendency of adjusted

accuracy is not significantly different from the results of the stock prices. Also, in

Table 5.3, for all prediction periods and models, the null hypothesis of the paired

t-test that the adjusted accuracy of two cases are equal is rejected, confirming that

the adjusted accuracy is statistically improved through ETE network indicator.

Table 5.4 summarizes the adjusted accuracy and its improvement of each sector

for MLP and LSTM, prediction periods, and integration of ETE network indicator.

The adjusted accuracy is improved through the ETE network indicator in all pre-

diction periods except ENRG in the MLP’s 3M prediction period. There are sectors

with similar adjusted accuracy as the prediction period increases whereas others

have decreased adjusted accuracy as the prediction period increases.

5.3.2 Portfolio performances for cumulative return

In this section, the performances of an actual investment strategy based on the pro-

posed portfolios are evaluated. Table 5.5 summarizes the cumulative return, Sharpe

ratio, and Sortino ratio for each rebalancing period, model and portfolios.

At first, there is no significant difference in cumulative return according to
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Table 5.3: Paired t-test for machine learnings

Model p-value

1W 1M 3M

MLP 0.000 0.000 0.000
LSTM 0.000 0.000 0.000

rebalancing period or model. The woETE and wETE does not show any tendency

according to the rebalancing period, and the portfolios of dETE tend to increase the

cumulative return as the rebalancing period increases.

From the perspective of the investor’s view of machine learning with ETE, The

wETE shows higher performance in cumulative return, Sharpe ratio, and Sortino

ratio than the woETE including benchmarks. This indicates that the improvement

in the stock price direction prediction adjusted accuracy due to the ETE network

indicator also results in an improvement in the yield of the actual portfolio through

the Black-Litterman model. Notably, the wETE performances of LSTM are better

than those of MLP in all rebalancing period except 1W rebalancing period.

From the perspective of the investor’s view of the ETE network indicator,

dETE(N)>dETE(P) shows the best cumulative return in all rebalancing period.

Meanwhile, dETE(P)>dETE(N) shows the worst performance for all rebalancing

period. This supports the results of chapter 3, in which the difference of outflow and

inflow ETE of stocks associated with the crisis in the crisis period is positive.

The cumulative returns for each rebalancing period of the portfolios are de-

scribed in Figure 5.3, 5.4, and 5.5. Note that the cumulative return is defined that

the average cumulative return of portfolios for 10 trials. For all rebalancing periods,

it can be seen that the cumulative return of the wETE is larger than the woETE in
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most time periods. In addition, the dETE(N)>dETE(P) shows the best cumulative

return with high volatility whereas the dETE(P)>dETE(N) shows the worst cumu-

lative return.

5.4 Summary and Discussion

In this chapter, the result of machine learning with ETE and the feature of ETE

network indicator are conducted to the investor’s view of the Black-Litterman model.

The prediction results of the stock price direction of MLP and LSTM that have been

verified to be suitable models for stock price prediction in the previous chapter and

the sign of difference of outflow and inflow ETE are used to the investor’s view.

Accordingly, the Black-Litterman portfolios with four investor’s views are compared

with market portfolio and market index. The RI is used for analysis data instead of

stock price to confirm more accurate performance.

At first, the analysis for the evolution of ETE and the prediction performance

of the stock price direction using machine learning are conducted. Although RI is

used instead of the stock price, it can be seen that the tendency of the adjusted

accuracy is not significantly different from the those of stock prices.

Next, the evaluation of the performance of the proposed portfolios is analyzed.

The cumulative return, Sharpe ratio, and Sortino ratio are used as evaluation met-

rics. Note that the wETE is larger than woETE including benchmarks. In terms

of the investor’s view of ETE, the dETE(N)>dETE(P) shows lower in the Sharpe

ratio compared to the wETE and woETE including some cases of benchmarks, but

it shows the best cumulative return. The dETE(P)>dETE(N) shows the worst per-
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formance for all parameter sets.

In conclusion, through the Black-Litterman model with the investor’s view of

machine learning, the use of the prediction results of the stock price direction leads

to an improvement in returns, and the possibility of applying the ETE network

indicator to investor’s view in the Black-Litterman model is confirmed.
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Chapter 6

Conclusion

6.1 Contributions and Limitations

Throughout the dissertation, we analyze the statistical explanatory power among

major US stocks according to financial events based on the time-varying ETE using

the moving window method. Then, we utilize and examine the ETE network indica-

tor as a feature to improve the prediction performance of the direction of the stock

price through machine learning algorithms and optimal asset allocation using the

Black-Litterman model.

Many previous studies are describing statistical explanatory power between

elements in the financial system using TE, which can identify asymmetry information

flow between components. In this context, the ETE used in this dissertation is an

advanced method for controlling noise in measuring the information flow, which is

a disadvantage of TE. Furthermore, the previous research on TE has focused on

analyzing market phenomena in connection with information flows, whereas this

dissertation focuses on a more practical question such as the utilization of ETE in

the financial market. Thus, the novelty of this dissertation lies in the fact that, in

our best knowledge, this is the first attempt to integrate the ETE of an individual

US stock to analyze the US market and to predict the direction of the stock price.
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It is also the first attempt to apply these results to the investor’s view of the Black-

Litterman model.

The findings of this dissertation can be summarized as follows. At first, we dis-

cover that the time-varying ETE based on the 3M and 6M moving windows have

market explanatory power using 55 stocks from 11 sectors and six cases of financial

crises in the US financial market. Secondly, we detect the increases in the statistical

explanatory power of sectors related to the financial crisis and the absolute size of

information flow in the market. Thirdly, the utilization of ETE network indicators

as new features improves the prediction performance on the stock price direction

for all cases of the LR, MLP, RF, XGB and LSTM. Fourthly, we identify the MLP

and LSTM as more suitable machine learning algorithms in predicting the direction

of stock price based on the adjusted accuracy, newly introduced performance mea-

sure based on the concept of risk-adjusted return. Notably, we reveal the suitable

sectors for the utilization of ETE network indicators. Lastly, the portfolios of the

Black-Litterman model applying the results of stock price direction prediction using

machine learnings with the ETE network indicators outperform the market portfolio

and market index in terms of the return on risk. From the perspective of practical

application of this study, it is meaningful that the prediction of stock price direction

using machine learning with the ETE network indicators actually led to an increase

in the profit on investment through the Black-Litterman model.

The limitation of this research that should be addressed in future studies is the

computation time to obtain the time-varying ETE and multiple results of machine

learnings. Especially, it is necessary to optimize the ETE computation algorithm to

apply the mechanism to all stocks in S&P 500 broadly.
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6.2 Future Work

It is required to increase the number of market constituents by expanding the compu-

tational power to derive and analyze ETE. In addition, advanced tuning of machine

learning parameters is necessary for good performance in stock price prediction. As

confirming the practical usage of ETE in the market through prediction of stock

price direction and asset allocation, developing an alarm index to detect market

crisis using ETE would be a future work.
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Jiang, J. and Gu, R. (2016). Using rényi parameter to improve the predictive power

of singular value decomposition entropy on stock market. Physica A: Statistical

Mechanics and its Applications, 448:254–264.

Jiang, M., Liu, J., Zhang, L., and Liu, C. (2020). An improved stacking framework for

stock index prediction by leveraging tree-based ensemble models and deep learning

algorithms. Physica A: Statistical Mechanics and its Applications, 541:122272.

Jizba, P., Kleinert, H., and Shefaat, M. (2012). Rényi’s information transfer be-
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국문초록

주식 시장은 경제 분야의 중요한 부분으로 광범위하게 연구되고 있다. 특히, 주식

시장의 구성 요소들인 주식 가격과 그 수익률의 관계를 예측하고 분석하는 연구는 투

자자들이 최적 투자 전략을 세우기 위해 중요한 과업 중 하나이다. 이러한 맥락에서,

어떠한 시스템의 구성 요소들 간의 관계를 분석하는 데 있어 전이 엔트로피(Transfer

entropy)는 비모수 지표로써 상관 관계나 그레인저-인과관계에 비해 요소 간 통계적

설명력을 확인하기에 용이하다. 주식 가격의 예측과 이를 통한 최적 자산 배분 전략에

대한 연구 또한 전통적인 선형 모델부터 최신의 머신 러닝 모델의 적용까지 다양하게

연구되고 있다.

본 학위논문의 목적은 경제물리학과 정보이론 분야에서 사용되는 효율적 전이 엔

트로피(Effective transfer entropy, ETE)를 이용하여 미국 주식 시장에서 시장 구성

요소 간 발생하는 정보 흐름의 특징을 파악하여 시장의 특성을 나타낼 수 있는 시장

설명력 있는 ETE 기반의 네트워크 지표를 도출하고, 이 네트워크 지표의 사용이 다

양한 머신 러닝 알고리즘을 통한 주가 방향 예측에서 성능 향상을 가져다 주는 지에

대해 연구한다. 나아가, 시장 설명력 있는 ETE 네트워크 지표의 구조적 특징과 머신

러닝 알고리즘을 통한 주가 방향 예측 결과를 투자자 관점을 고려한 최적 포트폴리오

구성 전략인 블랙-리터만 모형(Black-Litterman model)에 적용하여 결과적으로 정보

이론과 머신 러닝 기법을 이용한 실제 투자 전략 활용성에 대해 연구한다.

먼저, 미국 주식 시장의 주요 금융 위기들과 주식들 간의 통계적 설명력을 ETE를

통해 분석함으로써 3개월과 6개월 이동창을 기반으로 하는 ETE가 미국 주식 시장에

대해 설명력 있는 지표임을 확인했다. 해당 지표가 주요 금융 위기에서 그 값이 커지고,

ETE 네트워크 지표의 시계열 분석을 통해 각 금융위기에서 해당 금융 위기와 관련된
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섹터들이 다른 섹터들에 통계적 설명력이 있는 것을 확인했다.

다음으로,로지스틱회귀(Logistic regression, LR),다층퍼셉트론(Multilayer per-

ceptron, MLP), 랜덤 포레스트(Random forest, RF), XGBoost(XGB) 및 Long short-

term memory network(LSTM)의 5개 머신 러닝 알고리즘에 대해 ETE 네트워크 지

표가 새로운 변수로 추가되었을 때 주가 방향 예측에 대한 예측 성능이 향상되는 것을

확인했다. 한편, 예측 모델의 예측 성능 평가에 대한 지표로 금융 분야에서 쓰이는 위험

조정수익률로부터도출한수정정확도활용을제안했고,이평가지표를이용한분석을

통해 해당 5개 모델 중 MLP와 LSTM이 미국 주식 시장에 대한 주가 방향 예측에서 더

적합한 모델임을 확인했다.

마지막으로, 시장 설명력 있는 유입 및 유출 ETE 네트워크 지표의 특징과 머신

러닝 알고리즘을 이용한 주가 방향 예측 결과를 블랙-리터만 모형의 투자자 관점에 적

용하여, 머신 러닝 알고리즘을 이용한 주가 방향 예측 결과를 투자자 관점에 적용한

블랙-리터만 포트폴리오는 시장 포트폴리오와 시장 인덱스보다 나은 위험 대비 수익률

을보이고, ETE네트워크지표를적용한블랙-리터만포트폴리오는가장높은수익률을

보임을 확인했다. ETE와 주가 방향 예측의 사용이 투자 수익률 향상으로 이어지고, 예

측 성능을 향상시키면 투자 수익률도 함께 증가하는 결과를 활용하여 투자자들이 ETE

와 머신 러닝을 활용한 블랙-리터만 모형을 통해 수익을 극대화 할 수 있는 투자 전략을

수립할 수 있는 가능성에 대해 확인했다.

본 학위논문은 정보 이론의 ETE를 금융 투자 분야에 적용할 수 있도록, 머신 러닝

알고리즘을 이용한 주가 방향 예측과 블랙-리터만 모형을 통한 최적 포트폴리오 구성

전략에 대한 첫 번째 연구이다.

주요어: 정보 이론, 경제물리학, 전이 엔트로피, 머신 러닝, 특성 추출, 예측 알고리즘,

주식 시장, 시계열 분석, 블랙-리터만 모형, 최적 자산 배분

학번: 2016-30252
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