406 research outputs found

    Nonsquare Spectral Factorization for Nonlinear Control Systems

    Get PDF
    This paper considers nonsquare spectral factorization of nonlinear input affine state space systems in continuous time. More specifically, we obtain a parametrization of nonsquare spectral factors in terms of invariant Lagrangian submanifolds and associated solutions of Hamilton–Jacobi inequalities. This inequality is a nonlinear analogue of the bounded real lemma and the control algebraic Riccati inequality. By way of an application, we discuss an alternative characterization of minimum and maximum phase spectral factors and introduce the notion of a rigid nonlinear system.

    Interconnection of port-Hamiltonian systems and composition of Dirac structures

    Get PDF
    Port-based network modeling of physical systems leads to a model class of nonlinear systems known as port-Hamiltonian systems. Port-Hamiltonian systems are defined with respect to a geometric structure on the state space, called a Dirac structure. Interconnection of port-Hamiltonian systems results in another port-Hamiltonian system with Dirac structure defined by the composition of the Dirac structures of the subsystems. In this paper the composition of Dirac structures is being studied, both in power variables and in wave variables (scattering) representation. This latter case is shown to correspond to the Redheffer star product of unitary mappings. An equational representation of the composed Dirac structure is derived. Furthermore, the regularity of the composition is being studied. Necessary and sufficient conditions are given for the achievability of a Dirac structure arising from the standard feedback interconnection of a plant port-Hamiltonian system and a controller port-Hamiltonian system, and an explicit description of the class of achievable Casimir functions is derived

    Port-Hamiltonian systems on graphs

    Get PDF
    In this paper we present a unifying geometric and compositional framework for modeling complex physical network dynamics as port-Hamiltonian systems on open graphs. Basic idea is to associate with the incidence matrix of the graph a Dirac structure relating the flow and effort variables associated to the edges, internal vertices, as well as boundary vertices of the graph, and to formulate energy-storing or energy-dissipating relations between the flow and effort variables of the edges and internal vertices. This allows for state variables associated to the edges, and formalizes the interconnection of networks. Examples from different origins such as consensus algorithms are shown to share the same structure. It is shown how the identified Hamiltonian structure offers systematic tools for the analysis of the resulting dynamics.Comment: 45 pages, 2 figure

    Equivalence of switching linear systems by bisimulation

    Get PDF
    A general notion of hybrid bisimulation is proposed for the class of switching linear systems. Connections between the notions of bisimulation-based equivalence, state-space equivalence, algebraic and input–output equivalence are investigated. An algebraic characterization of hybrid bisimulation and an algorithmic procedure converging in a finite number of steps to the maximal hybrid bisimulation are derived. Hybrid state space reduction is performed by hybrid bisimulation between the hybrid system and itself. By specializing the results obtained on bisimulation, also characterizations of simulation and abstraction are derived. Connections between observability, bisimulation-based reduction and simulation-based abstraction are studied.\ud \u