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Abstract

Port-based network modeling of physical systems leads to a model class of nonlinear systems known as port-Hamiltonian systems. Port-
Hamiltonian systems are defined with respect to a geometric structure on the state space, called a Dirac structure. Interconnection of port-
Hamiltonian systems results in another port-Hamiltonian system with Dirac structure defined by the composition of the Dirac structures of
the subsystems. In this paper the composition of Dirac structures is being studied, both in power variables and in wave variables (scattering)
representation. This latter case is shown to correspond to the Redheffer star product of unitary mappings. An equational representation of the
composed Dirac structure is derived. Furthermore, the regularity of the composition is being studied. Necessary and sufficient conditions are
given for the achievability of a Dirac structure arising from the standard feedback interconnection of a plant port-Hamiltonian system and a
controller port-Hamiltonian system, and an explicit description of the class of achievable Casimir functions is derived.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction
Port-based network modeling of complex physical systems

(with components stemming from different physical domains)
leads to a class of nonlinear systems, called port-Hamiltonian
systems, see e.g. Dalsmo and van der Schaft (1999); Escobar,
van der Schaft, and Ortega (1999); Golo, van der Schaft,
Breedveld, and Maschke (2003); Maschke and van der Schaft
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(1997a,b); Maschke, van der Schaft, and Breedveld (1992); van
der Schaft (2000); van der Schaft (2004); van der Schaft and
Maschke (1995, 2002). Port-Hamiltonian systems are defined
by a Dirac structure (formalizing the power-conserving inter-
connection structure of the system), an energy function (the
Hamiltonian), and a resistive relation. A key property of Dirac
structures is that the power-conserving interconnection of Dirac
structures again defines a Dirac structure, see Maschke and van
der Schaft (1997b); van der Schaft (1999). This implies that any
power-conserving interconnection of port-Hamiltonian systems
is again a port-Hamiltonian system, with the Dirac structure
being the composition of the Dirac structures of its constituent
parts, Hamiltonian the sum of the Hamiltonians, and resistive
relations determined by the individual resistive relations. As a
result power-conserving interconnections of port-Hamiltonian
systems can be studied to a considerable extent in terms of the
composition of their Dirac structures. In particular, the feed-
back interconnection of a plant port-Hamiltonian system with
a controller port-Hamiltonian system can be studied from the
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vantage-ground of the composition of a plant Dirac structure
with a controller Dirac structure.

In this work we present some fundamental results about the
composition of Dirac structures. First, we derive expressions for
the composition of Dirac structures, and we study its regular-
ity properties. Secondly, we describe the composition in wave
variables (scattering representation). We show how this leads to
the Redheffer star product of unitary operators. Thirdly, we ex-
tend the results concerning the achievable ‘closed-loop’ Dirac
structures obtained in Maschke and van der Schaft (1997b);
van der Schaft (1999), and we derive an explicit characteri-
zation of the obtainable Casimir functions of the closed-loop
system. In previous publications, see e.g. Dalsmo and van der
Schaft (1999); Ortega, van der Schaft, Mareels, and Maschke
(2001); Stramigioli, Maschke, and van der Schaft (1998); van
der Schaft (2000), these closed-loop Casimirs have shown to be
instrumental in problems of stabilization of port-Hamiltonian
systems. Partial and preliminary versions of the material cov-
ered in this paper have been presented in Cervera, van der
Schaft, and Baños (2002); van der Schaft and Cervera (2002).

2. Dirac structures and port-Hamiltonian systems

2.1. Dirac structures

Let us briefly recall the definition of a Dirac structure. We
start with a space of power variables F×F∗, for some linear
space F, with power defined by

P = 〈f ∗ | f 〉, (f, f ∗) ∈ F × F∗, (1)

where 〈f ∗ | f 〉 denotes the duality product, that is, the linear
functional f ∗ ∈ F∗ acting on f ∈ F. We call F the space of
flows f, and F∗ the space of efforts e = f ∗, with 〈e | f 〉 the
power of the pair (f, e) ∈ F×F∗. Typical examples of power
variables are pairs of voltages and currents (with, say, the vec-
tor of currents being the flow vector, and the vector of voltages
being the effort vector), or conjugated pairs of generalized ve-
locities and forces in the mechanical domain. By symmetrizing
the definition of power we define a bilinear form >,? on the
space of power variables F × F∗, given as

>(f a, ea), (f b, eb)? := 〈ea | f b〉 + 〈eb | f a〉,
(f a, ea), (f b, eb) ∈ F × F∗. (2)

Definition 1 (Courant, 1990; Dorfman, 1993). A (constant)
Dirac structure on F × F∗ is a subspace

D ⊂ F × F∗,

such that D = D⊥, where ⊥ denotes orthogonal complement
with respect to the indefinite bilinear form >,?.

It follows that 〈e | f 〉 = 0 for all (f, e) ∈ D, and hence
any Dirac structure is power-conserving. Furthermore, if F
is finite-dimensional, then any Dirac structure D ⊂ F × F∗
satisfies dim D = dim F.

Remark 2. For many systems, especially those with 3-D me-
chanical components, the interconnection structure is actually
modulated by the energy or geometric variables. This leads
to the notion of non-constant Dirac structures on manifolds,
see e.g. Courant (1990); Dalsmo and van der Schaft (1999);
Dorfman (1993); van der Schaft (1998, 2000). For simplicity
of exposition we focus in the current paper on the constant
case, although everything can be extended to the case of Dirac
structures on manifolds.

Dirac structures on finite-dimensional linear spaces admit
different representations. Here we just mention one type that
will be used in the sequel. Every Dirac structure D can be
represented in kernel representation as

D = {(f, e) ∈ F × F∗ | Ff + Ee = 0} (3)

for linear maps F : F → V and E : F∗ → V satisfying

(i) EF∗ + FE∗ = 0,

(ii) rank F + E = dim F, (4)

where V is a linear space with the same dimension as F, and
where F ∗ : V∗ → F∗ and E∗ : V∗ → F∗∗ = F are the
adjoint maps of F and E, respectively. It follows that D can be
also written in image representation as

D = {(f, e) ∈ F × F∗ | f = E∗�, e = F ∗�, � ∈ V∗}. (5)

Sometimes it will be useful to relax the choice of the linear
mappings F and E by allowing V to be a linear space of di-
mension greater than the dimension of F. In this case we shall
speak of relaxed kernel and image representations.

Matrix kernel and image representations are obtained by
choosing linear coordinates for F, F∗ and V. Indeed, take any
basis f1, . . . , fn for F and the dual basis e1 =f ∗

1 , . . . , en =f ∗
n

for F∗, where dim F= n. Furthermore, take any set of linear
coordinates for V. Then the linear maps F and E are repre-
sented by n×n matrices F and E satisfying EFT +FET =0 and
rank [F |E]=dim F. In the case of a relaxed kernel and image
representation F and E will be n′ × n matrices with n′ > n.

2.2. Port-Hamiltonian systems

Consider a lumped-parameter physical system given by a
power-conserving interconnection defined by a constant Dirac
structure D, and a number of energy-storing elements with total
vector of energy-variables x. For simplicity we assume that the
energy-variables are living in a linear space X, although every-
thing can be generalized to the case of manifolds (see Remark
2). The constitutive relations of the energy-storing elements are
specified by their individual stored energies, leading to a total
energy (or Hamiltonian) H(x).

The space of flow variables for the Dirac structure D is
split into X × F with fx ∈ X the flows corresponding to
the energy-storing elements, and f ∈ F denoting the remain-
ing flows (corresponding to dissipative elements and external
ports). Correspondingly, the space of effort variables is split as
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X∗×F∗, with ex ∈ X∗ the efforts corresponding to the energy-
storing elements and e ∈ F∗ the remaining efforts. Thus D ⊂
X × X∗ × F × F∗.

On the other hand, the vector of flows of the energy-storing
elements is given by ẋ, and the vector of efforts is given by
�H/�x(x). (We will write both vectors throughout as column
vectors; in particular, �H/�x(x) is the column vector with i-
th component given by �H/�xi(x).) Indeed, the energy stor-
ing elements satisfy the total energy balance dHdt/(x(t)) =
�TH/�x(x(t))ẋ(t). The flows and efforts of the energy-storing
elements are interconnected by setting fx =−ẋ (the minus sign
is included to have a consistent power flow direction; see the
discussion in the next section) and ex = �H/�x(x). By substi-
tution of the interconnection constraints into the specification
of the Dirac structure D, that is, (fx, ex, f, e) ∈ D, this leads
to the dynamical system(

−ẋ(t),
�H

�x
(t), f (t), e(t)

)
∈ D, (6)

called a port-Hamiltonian system. Because of the power-
conserving property of Dirac structures we immediately obtain
the power balance

dH(x(t))

dt
= �TH

�x
(x(t))ẋ(t)

= − 〈ex(t) | fx(t)〉 = 〈e(t) | f (t)〉, (7)

expressing that the increase of internal energy of the port-
Hamiltonian system is equal to the externally supplied power.

Equational representations of the port-Hamiltonian system
(6) are obtained by choosing a specific representation of the
Dirac structure D. For example, if D is given in matrix kernel
representation

D = {(fx, ex, f, e) ∈ X × X∗ × F × F∗

| Fxfx + Exex + Ff + Ee = 0}, (8)

with ExF
T
x +FxE

T
x +EFT +FET =0 and rank [Fx

...Ex

...F
...E]=

dim(X×F), then the port-Hamiltonian system is given by the
equations

Fxẋ(t) = Ex

�H

�x
(x(t)) + Ff (t) + Ee(t), (9)

consisting in general of differential equations and algebraic
equations in the state variables x (DAEs), together with equa-
tions relating the state variables to the external port variables
f, e.

An important special case of port-Hamiltonian systems is
the class of input-state-output port-Hamiltonian systems, where
there are no algebraic constraints on the state variables, and the
flow and effort variables f and e are split into power-conjugate
input-output pairs (u, y):

ẋ = J (x)
�H

�x
(x) + g(x)u,

y = gT(x)
�H

�x
(x),

x ∈ X, (10)

where the matrix J (x) is skew-symmetric, that is J (x) =
−J T(x). The Dirac structure of the system is given by the
graph of the skew-symmetric map:[−J (x) −g(x)

gT(x) 0

]
. (11)

3. Composition of Dirac structures

First we study the composition of two Dirac structures with
partially shared variables. Consider a Dirac structure DA on a
product space F1 ×F2 of two linear spaces F1 and F2, and
another Dirac structure DB on a product space F2 ×F3, with
F3 being an additional linear space. The space F2 is the space
of shared flow variables, and F∗

2 the space of shared effort
variables; see Fig. 1. Since the incoming power in DA due to the
power variables in F2 ×F∗

2 should equal the outgoing power
from DB we cannot simply equate the flows fA and fB and
the efforts eA and eB , but instead we define the interconnection
constraints as

fA = −fB ∈ F2,

eA = eB ∈ F∗
2. (12)

Thus, the composition of the Dirac structures DA and DB ,
denoted by DA‖DB , is defined as

DA‖DB := {(f1, e1, f3, e3) ∈ F1 × F∗
1 × F3 × F∗

3 |
∃(f2, e2) ∈ F2 × F∗

2 s.t. (f1, e1, f2, e2) ∈ DA

and (−f2, e2, f3, e3) ∈ DB}. (13)

The fact that the composition of two Dirac structures is again a
Dirac structure has been proved in Dalsmo and van der Schaft
(1999); van der Schaft (1999). Here we provide a simpler alter-
native proof (inspired by a result in Narayanan, 2002), which
provides a constructive way to derive the equations of the com-
posed Dirac structure from the equations of the individual Dirac
structures. Furthermore, this proof will also allow us to study
the regularity of the composition in the next subsection.

Theorem 3. Let DA, DB be Dirac structures as in Definition
1 (defined with respect to F1 × F∗

1 × F2 × F∗
2, respectively

F2 ×F∗
2 ×F3 ×F∗

3, and their bilinear forms). Then DA‖DB

is a Dirac structure with respect to the bilinear form on F1 ×
F∗

1 × F3 × F∗
3.

Proof. We make use of the following basic fact from linear
algebra:

[(∃� s.t. A� = b)] ⇔ [∀� s.t. �TA = 0 ⇒ �Tb = 0].

Fig. 1. The composition of DA and DB .
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Consider DA, DB given in matrix image representation as

DA = im [E1 F1 E2A F2A 0 0]T,

DB = im [0 0 E2B F2B E3 F3]T. (14)

Then,

(f1, e1, f3, e3) ∈ DA‖DB

⇔ ∃�A, �B s.t. [f1 e1 0 0 f3 e3]T

=
[
E1 F1 E2A F2A 0 0

0 0 E2B −F2B E3 F3

]T [�A

�B

]

⇔ ∀(�1, �1, �2, �2, �3, �3) s.t.,

(�T
1 �T

1 �T
2 �T

2 �T
3 �T

3 )

[
E1 F1 E2A F2A 0 0

0 0 E2B −F2B E3 F3

]T

= 0,

�T
1 f1 + �T

1 e1 + �T
3 f3 + �T

3 e3 = 0

⇔ ∀(�1, �1, �2, �2, �3, �3) s.t.,[
F1 E1 F2A E2A 0 0

0 0 −F2B E2B F3 E3

]
[�T

1 �T
1 �T

2 �T
2 �T

3 �T
3 ]=0,

�T
1 f1 + �T

1 e1 + �T
3 f3 + �T

3 e3 = 0

⇔ ∀(�1, �1, �3, �3) ∈ DA‖DB ,

�T
1 f1 + �T

1 e1 + �T
3 f3 + �T

3 e3 = 0

⇔ (f1, e1, f3, e3) ∈ (DA‖DB)⊥.

Thus DA‖DB = (DA‖DB)⊥ and is a Dirac structure. �

In the following theorem an explicit expression for the com-
position of two Dirac structures in terms of matrix kernel/image
representations is given.

Theorem 4. Let Fi , i = 1, 2, 3, be finite-dimensional linear
spaces with dim Fi = ni . Consider Dirac structures DA ⊂
F1 ×F∗

1 ×F2 ×F∗
2, nA = dim F1 ×F2 = n1 + n2, DB ⊂

F2 × F∗
2 × F3 × F∗

3, nB = dim F2 × F3 = n2 + n3, given
by relaxed matrix kernel/image representations (FA, EA) =
([F1|F2A], [E1|E2A]), (FA, EA) n′

A×nA matrices, n′
A �nA, re-

spectively (FB, EB)=([F2B |F3], [E2B |E3]), (FB, EB) n′
B×nB

matrices, n′
B �nB . Define the (n′

A + n′
B) × 2n2 matrix

M =
[

F2A E2A

−F2B E2B

]
(15)

and let LA, LB be m×n′
A, respectively m×n′

B , matrices with

L = [LA|LB ], ker L = im M . (16)

Then

F = [LAF1|LBF3],
E = [LAE1|LBE3]. (17)

is a relaxed matrix kernel representation of DA‖DB .

Proof. Consider the notation corresponding to Fig. 1 where
for any �A ∈ Rn′

A , �B ∈ Rn′
B their associated elements in DA,

respectively DB , are given by

⎡
⎢⎢⎢⎢⎣

f1

e1

fA

eA

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ET
1

F T
1

ET
2A

F T
2A

⎤
⎥⎥⎥⎥⎦ �A;

⎡
⎢⎢⎢⎢⎣

f3

e3

fB

eB

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ET
3

F T
3

ET
2B

F T
2B

⎤
⎥⎥⎥⎥⎦ �B . (18)

Since[
ET

2A

F T
2A

]
�A =

[
fA

eA

]
=

[−fB

eB

]
=

[−ET
2B

F T
2B

]
�B

⇔
[�A

�B

]
∈ ker MT, (19)

it follows that (f1, f3, e1, e3) ∈ DA‖DB if and only if
∃[�T

A �T
B ]T ∈ ker MT such that (18) holds. By (16) we can

write [�T
A�T

B ]T ∈ ker MT as

[�A

�B

]
=

[
LT

A

LT
B

]
�, � ∈ Rm. (20)

Substituting (20) in (18) we obtain

DA‖DB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(f1, e1, f3, e3) |

⎡
⎢⎢⎢⎢⎣

f1

e1

f3

e3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

[
ET

1

F T
1

]
LT

A

[
ET

3

F T
3

]
LT

B

⎤
⎥⎥⎥⎦ �, � ∈ Rm

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (21)

which corresponds to representation (17). �

Remark 5. The minimal number of rows m in the definition
of the matrix L in (16) is given as m = dim ker MT (since
ker L = im M is equivalent to im LT = ker MT).

Remark 6. The relaxed kernel/image representation (17) can
be readily understood by premultiplying the equations charac-
terizing the composition of DA with DB

[
F1 E1 F2A E2A 0 0

0 0 −F2B E2B F3 E3

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

e1

f2

e2

f3

e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (22)
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by the matrix L = [LA|LB ]. Since LM = 0 this results as in
(17) in the relaxed kernel representation

LAF1f1 + LAE1e1 + LBF3f3 + LBE3e3 = 0. (23)

It readily follows that the power-conserving interconnection
of any number of Dirac structures is again a Dirac structure;
see also Maschke and van der Schaft (1997b); van der Schaft
(1999). Indeed, consider � Dirac structures Dk ⊂ Fk ×F∗

k ×
FIk × F∗

Ik, k = 1, . . . , �, interconnected to each other via a
Dirac structure DI ⊂ FI1 ×F∗

I1 ×· · ·×FI� ×F∗
I�. This can

be regarded as the composition of the product Dirac structure
D1 × · · · × D� with the interconnection Dirac structure DI .
Hence by the above theorem the result is again a Dirac structure.

Furthermore, it is immediate that the composition of Dirac
structures is associative in the following sense. Given two
Dirac structures DA ⊂ F1 × F∗

1 × F2 × F∗
2 and DB ⊂

F2 × F∗
2 × F3 × F∗

3, and their composition DA‖DB . Now
compose the composed Dirac structure DA‖DB with a third
Dirac structure DC ⊂ F3 × F∗

3 × F4 × F∗
4, resulting in the

composition (DA‖DB)‖DC . It is immediately checked that the
same composed Dirac structure results from first composing
DB with DC , and then composing the outcome with DA, that is

(DA‖DB)‖DC = DA‖(DB‖DC).

Hence we may as well omit the brackets, and simply write
DA‖DB‖DC .

Remark 7. Instead of the canonical interconnection fA=−fB ,
eA = eB another standard power-conserving interconnection is
the ‘gyrative’ interconnection

fA = eB, fB = −eA. (24)

(The standard feedback interconnection, regarding fA, fB as
inputs, and eA, eB as outputs, is of this type.) Composition of
two Dirac structures DA,DB by this gyrative interconnection
also results in a Dirac structure, since it equals the interconnec-
tion DA‖DI‖DB , where DI is the ‘symplectic’ Dirac structure
given by

fIA = −eIB, fIB = eIA, (25)

interconnected to DA and DB via the canonical interconnec-
tions fIA = −fA, eIA = eA, fIB = −fB, eIB = eB .

3.1. Regularity of compositions

In this subsection we study a particular property in the com-
position of Dirac structures, namely the property that the vari-
ables corresponding to the ports through which the connection
takes place (the internal power variables) are uniquely deter-
mined by the values of the external power variables.

Definition 8. Given two Dirac structures DA ⊂ F1 × F∗
1 ×

F2 × F∗
2 and DB ⊂ F2 × F∗

2 × F3 × F∗
3. Their composi-

tion is said to be regular if the values of the power variables in
F2 ×F∗

2 are uniquely determined by the values of the power

variables in F1 × F∗
1 × F3 × F∗

3; that is, the following im-
plication holds:

(f1, e1, f2, e2) ∈ DA, (−f2, e2, f3, e3) ∈ DB ,

(f1, e1, f̃2, ẽ2) ∈ DA, (−f̃2, ẽ2, f3, e3) ∈ DB

�⇒ f2 = f̃2, e2 = ẽ2. (26)

Proposition 9. The composition of two Dirac structures
DA and DB given in matrix kernel representation by
([F1|F2A], [E1|E2A]) and ([F3|F2B ], [E3|E2B ]), respectively,
is a regular composition if and only if the (n1 +2n2 +n3)×2n2
matrix M defined in (15) is of full rank (=2n2).

Proof. Let (f1, e1, f3, e3) ∈ DA‖DB , and let (f2, e2) be
such that (f1, e1, f2, e2) ∈ DA, (f3, e3, −f2, e2) ∈ DB . Then
(f ′

2, e
′
2) satisfies

(f1, e1, f
′
2, e

′
2) ∈ DA, (f3, e3, −f ′

2, e
′
2) ∈ DB

⇔ (f̃2, ẽ2) := (f2 − f ′
2, e2 − e′

2)

satisfies

{
(0, 0, f̃2, ẽ2) ∈ DA

(0, 0, −f̃2, ẽ2) ∈ DB

⇔
{ [F1|E1|F2A|E2A][0 0 f̃ T

2 ẽT
2 ]T = 0

[F3|E3| − F2B |E2B ][0 0 f̃ T
2 ẽT

2 ]T = 0

⇔
{ [F2A|E2A][f̃ T

2 ẽT
2 ]T = 0

[F2B | − E2B ][f̃ T
2 ẽT

2 ]T = 0
⇔ [f̃ T

2 ẽT
2 ]T ∈ ker M .

Hence f̃2 = 0, ẽ2 = 0 if and only if ker M = 0. �

Other ways to interpret regularity immediately follow. In
view of the image representations of the Dirac structures DA

and DB the matrix M has full rank if and only if

D�
A + D�

B = F2 × F∗
2, (27)

where the projections D�
A,D�

B are defined as D�
A ={(f2, e2) ∈

F2 × F∗
2 | ∃f1, e1 s.t. (f1, e1, f2, e2) ∈ DA} and simi-

larly for D�
B . Hence the composition DA‖DB is regular

if and only if (27) holds, which means that every value
(f2, e2) ∈ F2 × F∗

2 can be achieved as a linear combination
(f ′

2, e
′
2) + (f ′′

2 , e′′
2) by properly selecting (f1, e1) and (f3, e3)

satisfying (f1, e1, f
′
2, e

′
2) ∈ DA and (f ′′

2 , e′′
2 , f3, e3) ∈ DB .

Furthermore, we note that if the matrix M has full rank
(=2n2) then dim ker M = (n1 + 2n2 + n3) − 2n2 = n1 + n3,
and hence the matrix L as defined in Theorem 4 has n1 + n3
rows. Thus if we start in Theorem 4 from ordinary (that is,
non-relaxed) matrix kernel representations of DA and DB then
the matrix kernel/image representation F, E of the composi-
tion DA‖DB defined in (17) is again an ordinary kernel/image
representation. In fact, it follows that the matrix kernel/image
representation defined in (17) is ordinary if and only if the com-
position DA‖DB is regular. Summarizing

Proposition 10. The composition DA‖DB is regular if and
only if (27) holds, if and only if the matrix kernel/image
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representation defined in (17) (starting from ordinary ker-
nel/image representations for DA and DB ) is ordinary.

Finally, still another way to characterize regularity is to con-
sider the independency of the equations describing DA and DB .
(A similar notion of regularity of interconnection is employed
in the behavioral theory of interconnection of dynamical sys-
tems, c.f. Willems, 1997.)

Proposition 11. The composition of two Dirac structures DA

and DB , whose individual matrix kernel representations define
a set of n1 + n2, respectively n2 + n3, independent equations,
is regular if and only if the resulting n1 + 2n2 + n3 equations
obtained by taking together the equations of DA and DB are
independent.

Proof. The n1 +2n2 +n3 Eqs. (22) are independent if and only
if the dimension of the kernel of the matrix in (22) is equal to
2n1 + 2n2 + 2n3 − (n1 + 2n2 + n3) = n1 + n3. Because the
dimension of DA‖DB is equal to n1 + n3 (since DA‖DB is a
Dirac structure) it follows that the equations (22) are indepen-
dent if and only if (f2, e2) in (22) is determined by (f1, e1)

and (f3, e3). �

Example 12. A simple example of a non-regular composition
is a port-Hamiltonian system with dependent output constraints.
Indeed, consider an input-state-output port-Hamiltonian system
(10). In kernel representation its Dirac structure is given as

DA =
{
(fx, ex, u, y) |

[
I

0

]
fx +

[
J

gT

]
ex +

[
g

0

]
u +

[ 0

−I

]
y = 0

}
. (28)

Consider the composition with the Dirac structure DB corre-
sponding to the zero-output constraint y =gT(�H/�x)=0, i.e.,
DB = {(u, y) | y = 0}. The matrix M in this case is given by

M =
⎡
⎢⎣

g 0

0 −I

0 I

⎤
⎥⎦ ,

which has full rank if and only if rank g = dim y. Hence if
rank g < dim y, the composition is not regular, and the input
variable u is not uniquely determined. This irregularity is com-
mon in mechanical systems where dependent kinematic con-
straints lead to non-uniqueness of the constraint forces. (A typ-
ical example is a table with four legs standing on the ground.)

4. Scattering representation

In this section we show how by using in the total space of
power variablesF×F∗ a different splitting than the ‘canonical’
duality splitting (in flows f ∈ F and efforts e ∈ F∗), we
may obtain other useful representations of Dirac structures (and
port-Hamiltonian systems).

Consider the space of power variables given in general form
as F × F∗, for some finite-dimensional linear space F. The
duality product 〈e | f 〉 defines the instantaneous power of the
signal (f, e) ∈ F × F∗. The basic idea of a scattering repre-
sentation is to rewrite the power as the difference between two
non-negative terms, that is, the difference between an incom-
ing power and an outgoing power. This is accomplished by the
introduction of new coordinates for the total space F × F∗,
based on the canonical bilinear form (2). From a matrix rep-
resentation of >,? it immediately follows that >,? is an
indefinite bilinear form, which has n singular values +1 and n
singular values −1 (n = dim F).

A pair of subspaces �+, �− ⊂ F × F∗ is called a pair of
scattering subspaces if

(i) �+��− = F × F∗.
(ii) >�+

1 , �+
2 ?> 0 for all �+

1 , �+
2 ∈ �+ unequal to

0.>�−
1 , �−

2 ?< 0 for all �−
1 , �−

2 ∈ �− unequal to 0.
(iii) >�+, �−?= 0 for all �+ ∈ �+, �− ∈ �−.

It is readily seen that any pair of scattering subspaces (�+, �−)

satisfies dim �+ = dim �− = dim F. The collection of pairs of
scattering subspaces can be characterized as follows.

Lemma 13. Let (�+, �−) be a pair of scattering subspaces.
Then there exists an invertible linear map R : F → F∗, with

〈(R + R∗)f | f 〉 > 0, for all 0 �= f ∈ F, (29)

such that

�+ := {(R−1e, e) ∈ F × F∗ | e ∈ F∗},
�− := {(f, −R∗f ) ∈ F × F∗ | f ∈ F}. (30)

Conversely, for any invertible linear map R : F → F∗ satis-
fying (29) the pair (�+, �−) defined in (30) is a pair of scat-
tering subspaces.

Proof. Let (�+, �−) be a pair of scattering subspaces. Since
>,? is positive definite on �+, �+∩(F×0)=0 and �+∩(0×
F∗)=0. Hence we can write �+ as in (30) for some invertible
linear map R. Checking positive-definiteness of >,? on �+
then yields (29). Similarly, �−∩(F×0)=0, �−∩(0×F∗)=0.
Orthogonality of �− with respect to �+ (condition (iii)) implies
that �− is given as in (30). Conversely, a direct computation
shows that (�+, �−) defined in (30) for R satisfying (29) defines
a pair of scattering subspaces. �

The fundamental relation between the representation in terms
of power vectors (f, e) ∈ F × F∗ and the scattering repre-
sentation is given by the following. Let (�+, �−) be a pair of
scattering subspaces. Then every pair of power vectors (f, e) ∈
F × F∗ can be also represented as

(f, e) = �+ + �− (31)

for uniquely defined �+ ∈ �+, �− ∈ �−, called the wave
vectors. Using orthogonality of �+ w.r.t. �− it immediately
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follows that for all (fi, ei) = �+
i + �−

i , i = 1, 2

>(f1, e1), (f2, e2)?= 〈�+
1 , �+

2 〉�+ − 〈�−
1 , �−

2 〉�− , (32)

where 〈, 〉�+ denotes the inner product on �+ defined as the
restriction of>,? to �+, and 〈, 〉�− denotes the inner product
on �− defined as minus the restriction of >,? to �−. Taking
f1 =f2 =f, e1 =e2 =e and thus �+

1 =�+
2 =�+, �−

1 =�−
2 =�−,

leads to

〈e | f 〉 = 1
2>(f, e), (f, e)?

= 1
2 〈�+, �+〉�+ − 1

2 〈�−, �−〉�− . (33)

Eq. (33) yields the following interpretation of the wave vectors.
The vector �+ can be regarded as the incoming wave vector,
with half times its squared norm being the incoming power,
and the vector �− is the outgoing wave vector, with half times
its squared norm being the outgoing power.

Remark 14. Note that the incoming wave vector �+ corre-
sponding to (f, e) is zero if and only if e = −R∗f . The phys-
ical interpretation of this condition is that the incoming wave
vector is zero if the port is terminated on the ‘matching’ re-
sistive relation eR = R∗fR (with the standard interconnection
eR = e, fR = −f ).

Let D ⊂ F×F∗ be a Dirac structure, that is, D=D⊥ with
respect to >,?. What is its representation in wave vectors?
Since>,? is zero restricted to D it follows that for every pair
of scattering subspaces (�+, �−):

D ∩ �+ = 0, D ∩ �− = 0, (34)

and hence (see also van der Schaft, 2000) D can be represented
as the graph of an invertible linear map O : �+ → �−

D = {�+ + �− | �− = O�+, �+ ∈ �+}. (35)

Furthermore, by (32) 〈�+
1 , �+

2 〉�+ = 〈O�+
1 ,O�+

2 〉�− for every
�+

1 , �+
2 ∈ �+, and thus

O : (�+, 〈, 〉�+) → (�−, 〈, 〉�−) (36)

is a unitary map (isometry). Conversely, every unitary map O
as in (36) defines a Dirac structure by (35). Thus for every
pair of scattering subspaces (�+, �−) we have a one-to-one
correspondence between unitary maps (36) and Dirac structures
D ⊂ F × F∗.

4.1. Inner product scattering representations

A particular useful class of scattering subspaces (�+, �−)

are those defined by an invertible map R : F → F∗ satisfying
(29) such that R=R∗. In this case R is determined by the inner
product on F defined as

〈f1, f2〉R := 〈Rf 1 | f2〉 = 〈Rf 2 | f1〉, (37)

or equivalently by the inner product on F∗ defined as

〈e1, e2〉R−1 := 〈e2 | R−1e1〉 = 〈e1 | R−1e2〉. (38)

In this case (see also van der Schaft (2000); Stramigioli, van
der Schaft, Maschke, & Melchiorri (2002)) we may define
an explicit representation of the pair of scattering subspaces
(�+, �−) as follows. Define for every (f, e) ∈ F × F∗ the
pair s+, s− by

s+ := 1√
2
(e + Rf ) ∈ F∗,

s− := 1√
2
(e − Rf ) ∈ F∗. (39)

Let s+
i , s−

i correspond to (fi, ei), i =1, 2. Then by direct com-
putation

2〈s+
1 , s+

2 〉R−1 = 〈e1, e2〉R−1 + 〈f1, f2〉R
+>(f1, e1), (f2, e2)?,

2〈s−
1 , s−

2 〉R−1 = 〈e1, e2〉R−1 + 〈f1, f2〉R
−>(f1, e1), (f2, e2)?. (40)

Hence, if (fi, ei) ∈ �+, or equivalently s−
i = ei − Rf i = 0,

then 2〈s+
1 , s+

2 〉R−1 =2>(f1, e1), (f2, e2)?, while if (fi, ei) ∈
�−, or equivalently s+

i = ei + Rf i = 0, then 2〈s−
1 , s−

2 〉R−1 =
−2>(f1, e1), (f2, e2)?. Thus the mappings

�+ = (f, e) ∈ �+ �−→ s+ = 1√
2
(e + Rf ) ∈ F∗,

�− = (f, e) ∈ �− �−→ s− = 1√
2
(e − Rf ) ∈ F∗, (41)

are isometries (with respect to the inner products on �+ and
�−, and the inner product on F∗ defined by (38)). Hence we
may identify the wave vectors �+, �− with s+, s−.

Let us now consider the representation of a Dirac structure D
in terms of the wave vectors (s+, s−) (see also the treatment in
van der Schaft, 2000, Section 4.3.3). For every Dirac structure
D ⊂ F × F∗ there exist linear mappings F : F → V and
E : F∗ → V satisfying (4). Thus for any (f, e) ∈ D the wave
vectors (s+, s−) defined by (41) are given as

s+ = 1√
2
(F ∗� + RE∗�) = 1√

2
(F ∗ + RE∗)�,

s− = 1√
2
(F ∗� − RE∗�) = 1√

2
(F ∗ − RE∗)�, � ∈ V∗.

The mapping F ∗+RE∗ is invertible. Indeed, suppose that (F ∗+
RE∗)(�) = 0. By (4(i)) also EF∗� + FE∗� = 0. It follows that
ERE∗� + FR−1F ∗� = 0, and hence by positive-definiteness of
R and (4(ii)) � = 0. Therefore

s− = (F ∗ − RE∗)(F ∗ + RE∗)−1s+. (42)

Hence the unitary map O : F∗ → F∗ associated with the
Dirac structure (recall that we identify �+ and �− with F∗ by
(41)) is given as

O = (F ∗ − RE∗)(F ∗ + RE∗)−1. (43)
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By adding EF∗ + FE∗ = 0 it follows that:

(FR−1 + E)(F ∗ + RE∗) = (FR−1 − E)(F ∗ − RE∗),

and hence also (since similarly as above it can be shown that
FR−1 − E is invertible)

O = (FR−1 − E)−1(FR−1 + E). (44)

From here it can be verified that O∗R−1O=R−1, showing that
indeed (as proved before by general considerations) O : F∗ →
F∗ is a unitary mapping.

Given a kernel/image representation (F, E) for a Dirac struc-
ture D, it is obvious that for any invertible map C : V → V′
also D = ker C(F + E) = ker(CF + CE). Hence there are
infinitely many (F, E) pairs representing D in kernel/image
representation, corresponding to only one O map in the chosen
scattering representation.

Theorem 15. Consider any inner product R on F and the re-
sulting scattering representation. The set of (F, E) pairs repre-
senting a given Dirac structure D on F×F∗ with scattering
representation O is given as

{(F, E) | F = X(O + I )R, E = X(O − I ), X:

F∗ → V invertible}. (45)

Proof. Obviously, any (F, E) pair corresponding to D can be
expressed as F = (A+B)R, E =A−B, where A= 1

2 (FR−1 +
E), B = 1

2 (FR−1 − E). By (44) the mappings A and B are
invertible, while O=B−1A. Hence substituting A=BO F and
E can be expressed as F = B(O + I )R, E = B(O − I ), and
taking C =B−1 the following ‘canonical’ kernel representation
for D is found{

F ′ = (O + I )R,

E′ = O − I,
(46)

yielding the parametrization of D given in (45). �

4.2. Composition in scattering representation

Recall that composition in power vector representation is
simply given by the interconnection constraints

fA = −fB ∈ F, eA = eB ∈ F∗. (47)

Now consider the scattering representation of the power vectors
(fA, eA) with respect to an inner product RA as given by the
wave vectors

s+
A := 1√

2
(eA + RAfA) ∈ F∗,

s−
A := 1√

2
(eA − RAfA) ∈ F∗, (48)

and analogously the scattering representation of the power
vectors (fB, eB) with respect to another inner product RB ,

given by

s+
B := 1√

2
(eB + RBfB) ∈ F∗,

s−
B := 1√

2
(eB − RBfB) ∈ F∗. (49)

Then the interconnection constraints (47) on the power vectors
yield the following interconnection constraints on the wave
vectors

s+
A − s−

B := 1√
2
(RA − RB)fA,

s+
B − s−

A := 1√
2
(RA − RB)fA, (50)

together with

s+
A − s−

A := √
2RAfA,

s−
B − s+

B := √
2RBfA, (51)

leading to

s+
A − s−

B = s+
B − s−

A ,

R−1
A (s+

A − s−
A ) + R−1

B (s+
B − s−

B ) = 0. (52)

The first equation of (52) can be interpreted as a power balance
of the wave vectors. Indeed, in our convention for power flow
s+ are incoming wave vectors for the system and thus outgo-
ing wave vectors for the point of interconnection, while s− are
outgoing wave vectors for the system and thus incoming wave
vectors for the point of interconnection. Hence the first equation
of (52) states that the loss (= difference) between the outgoing
wave vector s+

A and the incoming wave vector s−
B is equal to

the loss between the outgoing wave vector s+
B and the incom-

ing wave vector s−
A . The second equation expresses a balance

between the loss as seen from A and the loss as seen from B.
The scattering at A is said to be matching with the scattering

at B if RA =RB . In this case (47) is equivalent to the following
interconnection constraints between the wave vectors:

s+
A = s−

B ,

s+
B = s−

A , (53)

simply expressing that the outgoing wave vector for A equals the
incoming wave vector for B, and conversely. In the rest of this
section we restrict ourselves to the matching case RA=RB =R.
Also, in order to simplify computations, we consider a coordi-
nate representation such that R is given by the identity matrix
(= Euclidean inner product). Furthermore, for ease of notation
we denote s+

A , s+
B by vA, vB and s−

A , s−
B by zA, zB . Thus we

consider the composition as in Fig. 2 of two Dirac structures
DA,DB by the interconnection equations (in scattering repre-
sentation) vA = zB, zA = vB . By redrawing Fig. 2 in standard
feedback interconnection form as in Fig. 3 it is readily seen
that this corresponds to the well-known Redheffer star product
(see e.g. Redheffer, 1960) of OA and OB.
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Fig. 2. Composition of DA and DB using wave vectors.

Fig. 3. Fig. 2 redrawn as the Redheffer star product of OA and OB.

Proposition 16. The scattering representation of DA‖DB is
given by OA �OB , with the unitary mappings OA and OB being
the scattering representation of DA and DB respectively, and
� denoting the Redheffer star product.

Note that this immediately yields that the Redheffer star
product of two unitary mappings is again a unitary mapping
(since DA‖DB is again a Dirac structure.) Explicit formulas
for OA � OB have been recently obtained in Kurula, van der
Schaft, and Zwart (2006) (see also Cervera et al., 2002).

5. Achievable Dirac structures

A main question in the theory of ‘control by interconnection’
of port-Hamiltonian systems is to investigate which closed-loop
port-Hamiltonian systems can be achieved by interconnecting
a given plant port-Hamiltonian system P with a to-be-designed
controller port-Hamiltonian system C. Desired properties of the
closed-loop system may e.g. include the internal stability of the
closed-loop system and its behavior at an interaction port. The
Impedance Control problem as formulated in e.g. Hogan (1985)
as the problem of designing the controller system in such a way
that the closed-loop system has a desired ‘impedance’ at the
interaction port may be approached from this point of view.

Within the framework of the current paper the control by in-
terconnection problem of port-Hamiltonian systems is restricted
to the investigation of the achievable Dirac structures of the
closed-loop system. That is, given the Dirac structure DP of
the plant system P and the to-be-designed Dirac structure DC

of the controller system C, what are the achievable Dirac struc-
tures DP ‖DC (see Fig. 4).

Theorem 17. Given a plant Dirac structure DP with port vari-
ables f1, e1, f2, e2, and a desired Dirac structure D with port

Fig. 4. DP ‖DC .

Fig. 5. D = DP ‖D∗
P ‖D.

variables f1, e1, f3, e3. Then there exists a controller Dirac
structure DC such that D = DP ‖DC if and only if one of the
following two equivalent conditions is satisfied

D0
P ⊂ D0, (54)

D� ⊂ D�
P , (55)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D0
P := {(f1, e1) | (f1, e1, 0, 0) ∈ DP },

D�
P := {(f1, e1) | ∃(f2, e2) s.t. (f1, e1, f2, e2) ∈ DP },

D0 := {(f1, e1) | (f1, e1, 0, 0) ∈ D},
D� := {(f1, e1) | ∃(f3, e3) s.t. (f1, e1, f3, e3) ∈ D}.

(56)

Remark 18. A partial version of this theorem was given in van
der Schaft (1999).

The following simple proof of Theorem 17 (using an idea
from Narayanan, 2002; compare with the proof given in van der
Schaft, 1999) is based on the following, partially sign-reversed,
copy (or ‘internal model’) D∗

P of the plant Dirac structure DP

D∗
P := {(f1, e1, f2, e2) | (−f1, e1, −f2, e2) ∈ DP }, (57)

which is easily seen to be a Dirac structure if and only if DP

is a Dirac structure.

Proof of Theorem 17. First we will show that there exists a
controller Dirac structure DC such that D=DP ‖DC if and only
if the two conditions (54) and (55) are satisfied. At the end we
will prove that conditions (54) and (55) are actually equivalent.

Necessity of (54) and (55) is obvious. Sufficiency is shown
using the controller Dirac structure

DC := D∗
P ‖D

(see Fig. 5). To check that D ⊂ DP ‖DC , consider (f1, e1, f3,

e3) ∈ D. Because (f1, e1) ∈ D�, applying (55) yields that
∃(f2, e2) such that (f1, e1, f2, e2) ∈ DP . It follows that
(−f1, e1, −f2, e2) ∈ D∗

P . Recall the following interconnection
constraints in Fig. 5:

f2 = −f ∗
2 , e2 = e∗

2, f ∗
1 = −f ′

1, e∗
1 = e′

1.



J. Cervera et al. / Automatica 43 (2007) 212–225 221

By taking (f ′
1, e

′
1) = (f1, e1) in Fig. 5 it follows that

(f1, e1, f3, e3) ∈ DP ‖DC . Therefore, D ⊂ DP ‖DC .
To check that DP ‖DC ⊂ D, consider (f1, e1, f3, e3) ∈

DP ‖DC . Then there exist f2 =−f ∗
2 , e2 =e∗

2, f ∗
1 =−f ′

1, e
∗
1 =e′

1
such that

(f1, e1, f2, e2) ∈ DP , (58)

(f ∗
1 , e∗

1, f ∗
2 , e∗

2) ∈ D∗
P ⇐⇒ (f ′

1, e
′
1, f2, e2) ∈ DP , (59)

(f ′
1, e

′
1, f3, e3) ∈ D. (60)

Subtracting (59) from (58), making use of the linearity of DP ,
we get

(f1−f ′
1, e1−e′

1, 0, 0)∈DP ⇐⇒ (f1−f ′
1, e1−e′

1)∈D0
P .

(61)

Using (61) and (54) we get

(f1 − f ′
1, e1 − e′

1, 0, 0) ∈ D. (62)

Finally, adding (60) and (62), we obtain (f1, e1, f3, e3) ∈ D,
and so DP ‖DC ⊂ D.

Finally, we show that conditions (54) and (55) are equivalent.
In fact, we prove that (D0)⊥ = D� and the same for DP .
Here, ⊥ denotes the orthogonal complement with respect to the
canonical bilinear form on F1 × F∗

1 defined as

>(f a
1 , ea

1), (f b
1 , eb

1)? := 〈ea | f b〉 + 〈eb | f a〉
for (f a

1 , ea
1), (f b

1 , eb
1) ∈ F1 × F∗

1. Then since D0
P ⊂ D0

implies (D0)⊥ ⊂ (D0
P )⊥ the equivalence between (54) and

(55) is immediate.
In order to show (D0)⊥ = D� first take (f1, e1) ∈ (D�)⊥,

implying that

>(f1, e1), (f̃1, ẽ1)?= 〈e1|f̃1〉 + 〈ẽ1|f1〉 = 0

for all (f̃1, ẽ1) for which there exists f̃3, ẽ3 such that
(f̃1, ẽ1, f̃3, ẽ3) ∈ D. This immediately implies that (f1, e1, 0, 0)

∈ D⊥ = D, and thus that (f1, e1) ∈ D0. Hence, (D�)⊥ ⊂ D0

and thus (D0)⊥ ⊂ D�. To prove the converse inclusion, take
(f1, e1) ∈ D�, implying that there exists (f3, e3) such that
(f1, e1, f3, e3) ∈ D = D⊥. Hence,

〈e1|f̃1〉 + 〈ẽ1|f1〉 + 〈e3|f̃3〉 + 〈ẽ3|f3〉 = 0

for all (f̃1, ẽ1, f̃3, ẽ3) ∈ D implying 〈e1|f̃1〉 + 〈ẽ1|f1〉 = 0 for
all (f̃1, ẽ1, 0, 0) ∈ D, and thus (f1, e1) ∈ (D0)⊥. �

Remark 19. By allowing DP to be interconnected to an inter-
connection structure KC that is not necessarily a Dirac struc-
ture we do not gain anything for the set of achievable Dirac
structures. Indeed, let KC be any subspace (not necessarily
a Dirac structure) of the space of variables f2, e2, f3, e3 and
suppose that DP ‖KC = D (where the composition DP ‖KC

is defined in the same way as for Dirac structures). Then, as
in the necessity part of the proof of Theorem 17, this implies
that (54, 55) are satisfied, and thus, by the sufficiency part
of the proof, there also exists a Dirac structure DC such that

Fig. 6. Port-Hamiltonian plant system P.

Fig. 7. Port-Hamiltonian desired system Q.

DP ‖DC = D. This means that if we want to realize a power-
conserving interconnection structure there is no loss of gener-
ality in restricting to ‘controller’ interconnection structures that
are power-conserving.

The proof of Theorem 17 immediately provides us with a
closed expression for a ‘canonical’ controller Dirac structure
DC such that D = DP ‖DC :

Proposition 20. Given a plant Dirac structure DP , and D
satisfying the conditions of Theorem 17. Then DC := D∗

P ‖D,
with D∗

P defined as in (57), achieves D = DP ‖DC .

Example 21. Consider the plant system P

⎡
⎢⎢⎢⎢⎣

q̇1

ṗ1

q̇2

ṗ2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�HP

�q1

�HP

�p1

�HP

�q2

�HP

�p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎦

[
u1

u2

]
(63)

(see Fig. 6), composed by two masses m1 and m2, linked by
a spring k1, subject to external forces u1 and u2. The state
of the plant system is xP = (q1, p1, q2, p2), with qi denoting
the positions of both masses and pi the corresponding mo-
menta, i = 1, 2. The Hamiltonian of the plant system P is
HP (xP ) = 1

2 (p2
1/m1 + (p2

2/m2) + k1(q2 − q1)
2) and the Dirac

structure DP ∈ F1 × F∗
1 × F2 × F∗

2 of P is given in ker-
nel/image representation by (see van der Schaft, 2000 for an
explicit computation)

FP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, EP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 −1 0 0 1 0

0 0 0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The desired port-Hamiltonian system Q (Fig. 7) is the same as
P with the second mass m2 connected to an extra mass m3 by
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a spring k2. The equations of Q are given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

ṗ1

q̇2

ṗ2

�̇q3

ṗ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1

0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�HQ

�q1

�HQ

�p1

�HQ

�q2

�HQ

�p2

�HQ

��q3

�HQ

�p3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u1

with u1 the external force. The state of Q is xQ=(q1, p1, q2, p2,

�q3, p3), with qi, i = 1, 2, denoting as before the position of
masses m1, m2 and �q3 the elongation of spring k2. Further-
more, pi, i = 1, 2, 3, denote the momenta of the three masses.
The Hamiltonian of Q is HQ(xQ) = 1

2 (p2
1/m1 + (p2

2/m2) +
(p2

3/m3) + k1(q2 − q1)
2 + k2(�q3)

2) while the Dirac structure
D ∈ F1 ×F∗

1 ×F3 ×F∗
3 of Q is given in kernel/image rep-

resentation as

F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 −1 0 1 0 0

0 0 0 −1 0 1 0

0 0 0 0 −1 0 0

0 −1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By construction, D is trivially achievable from DP by inter-
connection. In the following, this will be formally checked as
an illustration of Theorem 17. Furthermore, we will explic-
itly compute the controller Dirac structure DC as defined in
Proposition 20 and show how this corresponds to the Dirac
structure of the extra mass–spring system, and that the desired
Dirac structure D is indeed obtained by composition of DP

with DC . According to Theorem 17, conditions (54) or (55)
should be satisfied. This can be most easily checked as fol-
lows. Since DP is given in kernel representation as ker[FP |EP ]
it follows that D0

P = ker[F 0
P |E0

P ], where F 0
P and E0

P are ob-
tained from FP , respectively EP , by deleting the columns cor-
responding to F2, respectively F∗

2. Similarly, D0 is obtained
from D=ker[F |E] as D0 =ker[F 0|E0], where F 0 and E0 are
obtained from F, respectively E, by deleting the columns cor-
responding to F3, respectively F∗

3. Checking condition (54)
D0

P ⊂ D0 now amounts to checking that the rows of [F 0|E0]
are linear combinations of the rows of [F 0

P |E0
P ], which is eas-

ily seen to be the case for the Dirac structures DP and D at
hand. Proposition 20 defines the controller Dirac structure DC

as D∗
P ‖D (whose composition with DP should be equal to D).

Note that D∗
P is simply given by F ∗

P = −FP and E∗
P = EP .

Application of Theorem 4 yields after some calculations that
DC is given in kernel/image representation as

FC =
⎡
⎢⎣

−1 0 0

0 1 0

0 0 1

⎤
⎥⎦ , EC =

⎡
⎢⎣

0 1 0

1 0 1

0 −1 0

⎤
⎥⎦ . (64)

This is directly seen to be the Dirac structure of the controller
system

�̇q3 = p3

m3
+ v,

ṗ3 = −k2�q3,

F = k2�q3, (65)

which can be identified with a mass–spring system with mass
m3 and spring k2, with v denoting the velocity of the left-end
of the spring k2 and F the spring force at this point. It directly
follows that D = DP ‖DC .

In scattering representation Proposition 20 takes the follow-
ing form. First note that if OP is the scattering representation of
DP , then the scattering representation of D∗

P is given by O−1
P .

Indeed, if we substitute in (39) −f for f, then s+ becomes s−
and conversely. Thus the unitary map corresponding to D∗

P is
the inverse of the map OP corresponding to DP .

Corollary 22. Given a plant Dirac structure DP , and D satis-
fying the conditions of Theorem 17, in scattering representation
given by OP , respectively O. Then DC with scattering repre-
sentation OC defined by OC := O−1

P �O achieves O=OP �OC .
Hence, under the conditions of Theorem 17, O=OP �O−1

P �O.

5.1. Achievable Casimirs and constraints

An important application of Theorem 17 concerns the char-
acterization of the Casimir functions which can be achieved for
the closed-loop system by interconnecting a given plant port-
Hamiltonian system with associated Dirac structure DP with a
controller port-Hamiltonian system with associated Dirac struc-
ture DC . This constitutes a cornerstone for passivity-based con-
trol of port-Hamiltonian systems as developed e.g. in Ortega
et al. (2001), Ortega, van der Schaft, Maschke, and Escobar
(2002). Dually, we characterize the achievable algebraic con-
straints for the closed-loop system. In order to explain these
notions consider first a port-Hamiltonian system without exter-
nal (controller or interaction) ports. Also assume for simplicity
that there is no resistive port. Thus we consider a state space
X with Dirac structure D ⊂ X×X∗. Then the following sub-
spaces of X, respectively X∗, are of importance

G1 := {fx ∈ X | ∃ex ∈ X∗ such that (fx, ex) ∈ D},
P1 := {ex ∈ X∗ | ∃fx ∈ X such that (fx, ex) ∈ D}. (66)

The subspace G1 expresses the set of admissible flows, and P1
the set of admissible efforts.
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A Casimir function K : X → R of the port-Hamiltonian
system is defined to be a function which is constant along
all trajectories of the port-Hamiltonian system, irrespectively
of the Hamiltonian H. Since fx = −ẋ(t) ∈ G1, it follows
that K : X → R is a Casimir function if dK/dt (x(t)) =
�TK/�x(x(t))ẋ(t)=0 for all ẋ(t) ∈ G1. Equivalently, this can
be formulated by defining the following subspace of the dual
space of efforts:

P0 = {ex ∈ X∗ | (0, ex) ∈ D}. (67)

It can be readily seen that G1=P ⊥
0 where ⊥ denotes orthogonal

complement with respect to the duality product 〈|〉. Hence K is
a Casimir function iff �K/�x(x) ∈ P0.

Dually, the algebraic constraints for the port-Hamiltonian
system are determined by the space P1, since necessarily
�TH/�x(x) ∈ P1, which will induce constraints on the state
variables x. Similar to the above it can be seen that P1 = G⊥

0
where the subspace of flows G0 is given as

G0 = {fx ∈ X | (fx, 0) ∈ D}. (68)

Let us now consider the question of characterizing the set of
achievable Casimirs for the closed-loop system DP ‖DC , where
DP is the given Dirac structure of the plant port-Hamiltonian
system with Hamiltonian HP , and DC is the (to-be-designed)
controller Dirac structure. In this case, the Casimirs will depend
on the plant state x as well as on the controller state �. Since
the controller Hamiltonian HC(�) is at our own disposal we
will be primarily interested in the dependency of the Casimirs
on the plant state x. (Since we want to use the Casimirs for
shaping the total Hamiltonian H +HC to a Lyapunov function,
cf. Ortega et al., 2001, 2002.)

Consider the notation given in Fig. 4, and assume that
the ports (f1, e1) are connected to the (given) energy stor-
ing elements of the plant port-Hamiltonian system (that is,
f1 = −ẋ, e1 = �HP /�x), while (f3, e3) are connected to the
(to-be-designed) energy storing elements of a controller port-
Hamiltonian system (that is, f3 =−�̇, e3 =�HC/��). Note that
the number of ports (f3, e3) can be freely chosen. The achiev-
able Casimir functions are characterized as follows. K(x, �)

is an achievable Casimir function if there exists a controller
Dirac structure DC such that

(
0,

�K

�x
(x, �), 0,

�K

��
(x, �)

)
∈ DP ‖DC . (69)

Hence for every achievable Casimir function K(x, �) the partial
gradient �K/�x(x, �) belongs to the space

PCas = {e1 | ∃DC s.t. ∃e3 : (0, e1, 0, e3) ∈ DP ‖DC} (70)

and, conversely (under integrability conditions) for any e1 ∈
PCas there will exist an achievable Casimir function K(x, �)

such that �K/�x(x, �)=e1. Thus the question of characterizing
the achievable Casimirs of the closed-loop system, with respect
to their dependence on the plant state x, is translated to finding

a characterization of the space PCas . This is answered by the
following theorem.

Theorem 23. The space PCas defined in (70) is equal to

P̃ := {e1 | ∃(f2, e2) such that (0, e1, f2, e2) ∈ DP }.

Proof. PCas ⊂ P̃ trivially. By using the controller Dirac struc-
ture DC = D∗

P , we immediately obtain P̃ ⊂ PCas . �

Dually, the achievable constraints of the interconnection of
the plant system with Dirac structure DP and Hamiltonian
HP (x) with a controller system with Dirac structure DC and
Hamiltonian HC(�) are given as

(
�HP

�x
(x),

�HC

��
(�)

)
∈ P1,

where P1 is the subspace of efforts as described above
with respect to the Dirac structure DP ‖DC . It follows that
the plant state x satisfies the constraints �THP /�x(x)f1 =
−�THC/��(�)f3 for all f1, f3 such that (f1, 0, f3, 0) ∈
DP ‖DC . The possible flow vectors f1 in this expression are
given by the space

GAlg={f1 | ∃DC s.t. ∃f3 for which (f1, 0, f3, 0) ∈ DP ‖DC}.
(71)

Theorem 24. The space GAlg defined in (71) is equal to

G̃ := {f1 | ∃(f2, e2) such that (f1, 0, f2, e2) ∈ DP }.

Example 25. Consider the input-state-output port-Hamiltonian
plant system with inputs f2 and outputs e2

ẋ = J (x)
�HP

�x
(x) + g(x)f2, x ∈ X, f2 ∈ Rm,

e2 = gT(x)
�HP

�x
(x), e2 ∈ Rm. (72)

It is easily seen that

PCas = P̃ = {e1 | ∃f2 such that 0 = J (x)e1 + g(x)f2},

implying that the achievable Casimirs K(x, �) are such that
e1 = �K/�x(x, �) satisfies J (x)�K/�x(x, �) ∈ im g(x) for all
�, that is, K as a function of x (for any fixed �) is a Hamiltonian
function corresponding to a Hamiltonian vector field contained
in the distribution spanned by the input vector fields given by
the columns of g(x). Similarly

GAlg = G̃ = {f1 | ∃f2 s.t. f1 = −g(x)f2} = im g(x),

which implies that the achievable algebraic constraints are of
the form �THP /�x(x)g(x) = �THC/��(�)f3. This means that
the outputs e2 = gT(x)�HP /�x(x) can be constrained in any
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way by interconnecting the system with a suitable controller
port-Hamiltonian system.

6. Conclusions

The results obtained in this paper raise a number of ques-
tions. Port-based network modeling of multi-body systems
(see e.g. Maschke & van der Schaft, 1997b) lead to a (large
number of) implicit equations describing the dynamics and
the interconnection constraints. It is of interest to work out
the equational representation as obtained in Section 3 in this
case, and to give effective algorithms to reduce the obtained
(relaxed) kernel/image representation to a maximally explicit
form, making use of the available additional structure. Also
in other modeling contexts it is profitable to have an explicit
algorithm for the minimal representation of the complex com-
posed Dirac structure arising from a network interconnection
of Dirac structures at hand (combining graph-theoretical tools
with the geometric theory of Dirac structures).

Another venue for research concerns the extension of the
results obtained in this paper to infinite-dimensional Dirac
structures. Some results concerning the composition of finite-
dimensional Dirac structures with infinite-dimensional Dirac
structures of a special type, namely the Stokes-Dirac structures
as defined in van der Schaft and Maschke (2002), have been
obtained in Pasumarthy and van der Schaft (2004). For general
Dirac structures on Hilbert spaces in Golo (2002) a counterex-
ample has been provided showing that the composition of
infinite-dimensional Dirac structures may not always result in
another Dirac structure. Recently in Kurula et al. (2006), mak-
ing use of scattering representations, necessary and sufficient
general conditions have been derived for the composition of
infinite-dimensional Dirac structures to define again a Dirac
structure.

The interpretation of the canonical controller Dirac structure
as obtained in Section 5 deserves further study. In fact, the
definition of the canonical controller Dirac structure achieving
a certain desired closed-loop Dirac structure suggests an ’inter-
nal model’ interpretation, with ensuing robustness properties.
(Note that DC as constructed in Proposition 5.4 contains a
copy of the plant Dirac structure. Its construction can thus
be seen as a, static, network analogue of the usual, dynamic,
internal model principle, where (a part of) the plant dynamics
(or of the extended plant, that is, plant system together with
exosystem) is copied in the controller system.) Finally, the
characterization of the achievable Dirac structures is only a first
step towards characterizing the achievable port-Hamiltonian
closed-loop behaviors.
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