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Nonsquare Spectral Factorization for Nonlinear
Control Systems

Mark A. Petersen and Arjan J. van der Schaft

Abstract—This paper considers nonsquare spectral factoriza-
tion of nonlinear input affine state space systems in continuous
time. More specifically, we obtain a parametrization of nonsquare
spectral factors in terms of invariant Lagrangian submanifolds
and associated solutions of Hamilton–Jacobi inequalities. This
inequality is a nonlinear analogue of the bounded real lemma
and the control algebraic Riccati inequality. By way of an appli-
cation, we discuss an alternative characterization of minimum
and maximum phase spectral factors and introduce the notion
of a rigid nonlinear system.

Index Terms—Hamilton–Jacobi inequalities, invariant La-
grangian manifolds, nonlinear nonsquare spectral factors.

I. INTRODUCTION

THE multivariable spectral factorization problem originated
several decades ago in such areas of interest as stochastic

realization theory (see [21] and [59]), network synthesis (see
[1]) and control (see [56]). More recently, applications of this
problem to linear and nonlinear systems and control theory (see
[13] and [19]), in particular -control [9], [12], [29], [30],
[36], [37], [61], chemical process control (see [20] and [69]),
geometric control theory (see [28] and the references therein)
and stochastic (realization) theory (see [27], [41], and [46]) have
continued to evolve. Despite the fact that it is difficult to factor
nonlinear systems, nonlinear versions of spectral factorization
and the associated concept of inner–outer factorization have
been analyzed by using various techniques in [3]–[7], [9], [10],
[12], [13], [31], [48], [54], [55], and [64].

Our main aim in this paper is to establish a nonlinear analogue
of certain parametrizations of the special class of nonsquare
minimal spectral factors that are stable. This we will accomplish
in terms of nonlinear analogues of invariant subspaces and re-
lated solutions of algebraic Riccati equations. Our investigation
of the nonlinear spectral factorization problem outlined above is
motivated by its importance in applications in systems and con-
trol theory. For instance, we can identify several relationships
with the control of mechanical systems (see, for instance, [43]
and [64]), -control (see [12]) and chemical process control
(see, for instance, [20] and [69]). A further reason for investi-
gating this problem is its connection with stochastic control via
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stochastic realization theory; although this connection may not
be as well-understood as in the linear case. In particular, in sto-
chastic realization problems any stable spectral factor, square or
nonsquare, is interesting to consider (see [40] and [42]). Also, in
economics, one could try to explain a multivariable time series
in terms of the dynamics of less variables (factors) and white
noise disturbances. Multichannel signal transmission is another
reason for understanding the nonsquare spectral factorization
problem. In practice, this has implications for (amongst other
things) mobile phones that have to decode signals from sur-
rounding transmitters that themselves have to be able to transmit
signals to other phones.

Next, we discuss the contribution of the current paper in rela-
tion to recent literature on the subject of spectral factorization of
nonlinear control systems. The first attempts to understand non-
linear, nonsquare, stable, and spectral factors were made in [49]
and [54]. In those contributions, we obtain a parametrization of
nonsquare spectral factors in terms of an invariant Lagrangian
submanifold but make no attempt to understand the related ex-
tremal factors. This paper is an extension to the nonsquare case
of results determined for nonlinear, minimal, square, and stable
spectral factors by Ball and Petersen in [10] and Ball and van der
Schaft in [13]. In [10], we extended the notion of the correspon-
dence between minimal square spectral factors of a given spec-
tral density, invariant subspaces of an associated Hamiltonian
matrix, solutions of an appropriate algebraic Riccati equation
and minimal unitary left divisors of a certain unitary function
on the imaginary line to the nonlinear scenario. In particular,
we exposed a bijective equivalence between nonlinear, minimal,
square, stable spectral factors, invariant Lagrangian subman-
ifolds, solutions of Hamilton–Jacobi equations, and minimal
right inner divisors.

Because the current paper treats the situation where the non-
linear, minimal, stable spectral factors may be nonsquare the
techniques used are more sophisticated. By contrast to [10],
the work in this paper entails studying a slightly different type
of Hamilton–Jacobi equation when parametrizing spectral fac-
tors in terms of invariant Lagrangian submanifolds. In [13], a
nonlinear square state space system is expressed as the cascade
connection of an inner (lossless) system and a stable minimum
phase (outer) system that is found to be a solution of an associ-
ated nonlinear spectral factorization problem. This idea also has
an important part to play in the present paper.

II. NONLINEAR SPECTRAL FACTORIZATION PROBLEM

In this section, we provide a brief description of the class of
nonlinear control systems that we analyze. Also, we consider
recent spectral factorization results for linear systems that we
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generalize to the nonlinear case. In Section II-C, we formulate
the main problem that we will solve in Section III. Finally, we
comment on the novel features and the format of this paper.

A. Description of the Nonlinear Control System

The system that we consider is input affine, i.e., its input vari-
ables are linear. This assumption ensures that we obtain explicit
formulas for our factors that resemble those found in the linear
case. We consider a smooth nonlinear input-affine system

(1)

where we have that , ,
and is a smooth func-

tion (at least ). Here, we assume that (1) is of full rank,
where we make use of the Nijmeijer–van der Schaft definition
of the rank of a nonlinear system given in [44]. We will sup-
pose that and that is injective for all , where

are local coordinates for the -di-
mensional state–space manifold , with globally asymptoti-
cally stable equilibrium for (so
and ). From this it follows that
is invertible for each . Furthermore, we let , denote the
tangent space to at . In this regard, the space
given by is called the tangent bundle. As a re-
sult of the fact that is a linear space, we can find its
dual known as the cotangent space at . The
space corresponding to , is called the cotan-
gent bundle. We suppose that is com-
plete for each . This means that there exists a unique
solution of for all for any initial
condition . Hence, given any initial condi-
tion , the system of (1) induces a well-defined causal
input–output map . Opera-
tors arising in this way from a system of (1) are automati-
cally causal, i.e., for whenever

for . We assume that extends by con-
tinuity to define a well-defined map on (the space
of measurable -valued functions on such that

for all ). We only consider sys-
tems that are stable. In other words, at the systems level,
the vector field is globally asymptotically stable
while is a diffeomorphism of for each at
the input–output level. If we reduce these notions to the linear
case, it means that the transfer function of the system is de-
fined and bounded in the right half-plane, i.e., all poles of the
transfer function lie in the left half-plane. The aforementioned
stability assumption is made in order to avert the problem of
having to find a nonlinear analogue of the filtering algebraic
Riccati equation. The square case, corresponds to the situation
where . [10] discusses the case where also is in-
vertible for each , i.e., is invertible. In particular, this paper
investigates the situation where is square, invertible and
satisfies . We recall that

is a sufficient condition for to be
square. On the other hand, at certain instances, this paper in-
volves analyzing nonsquare systems (not invertible).
In either situation, the system of (1) is a (state-space) realization

of the input–output operator .
We assume that all maps of the type given by are Frechet
differentiable (see [17]). The Frechet derivative of in the
above for an element of , denoted by , is
a linear mapping from to . In this case,
the transpose with respect to the inner product
exists. The realization is said to be minimal if the dimen-
sion of the state manifold is as small as possible among
all possible state space realizations of the given input–output
operator . In the context of realizations, minimality plays
an important role at various levels. For instance, it has a vital
part to play when establishing the uniqueness of a realization
of a given input–output map (see, for example, Theorem 10).
In addition, the major objective of our paper is to characterize
minimal, stable, spectral factors and provide explicit formulas
for them. Here, the assumption that the realizations for most of
the nonlinear systems are minimal makes computations much
easier. In a nonlinear setting, the interpretation of a system of
the form as a covariance matrix of a sto-
chastic system is less obvious. The realization problem for such
systems was solved in [19], where it was postulated that a non-
linear system of this type has a Hamiltonian structure. In this
regard, the Hamiltonian extension of [where is given as
in (1)] has the form

(2)

(see [19]), where , and . Moreover, (2)
has a state space equal to the cotangent bundle, , of
the state–space manifold with natural local coordinates

with inputs equal to
and outputs equal to . If we impose the interconnection
law in (2), we get the Hamiltonian system of the form

(3)

with Hamiltonian function given by

(4)

Here, the state–space is , inputs and the out-
puts . In (3), the effect of in
which produces the output needs more than just the output

if but in addition requires the state of the right
factor at each time . Note that the input–output map
can be viewed as the composition
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of the input–output map with the transpose (in the -inner
product) of its Frechet derivative (evaluated at the
same input ). We view as the nonlinear analogue of a spectral
density function exhibited in spectral factorization form

. Systems of the type previously described sat-
isfy an energy conservation law that resembles the idea of the
conservative system in Willems’ theory (see [67]). In turn this is
related to the control of mechanical systems (see [43] and [62]).
We introduce the notion of the Hamiltonian extension of a non-
linear system in (2) to transform the (all-pass) inner-outer factor-
ization problem into a nonlinear spectral factorization problem
(see [64] for more details). In this regard, appearing in (3) is
known as a spectral factor of . In this paper, we discuss a large
variety of spectral factors, that, for instance, may be minimal,
stable, antistable, minimum phase or maximum phase. More-
over, we introduce an important regularity property of the spec-
tral system in (3) in the following way. is said to be weakly
coercive if all its spectral factors are at least one-sided invert-
ible. In particular, in the sequel, we compute right-sided inverses
of various extremal spectral factors.

Next, we describe some of the other geometric structure of a
realization of the form (see [10]) given as in (2).
Before, we discuss this important issue, we provide a character-
ization of a Lagrangian invariant submanifold. A submanifold

is called a Lagrangian submanifold if
and the restriction of the symplectic form to is

zero. In other words, for the vector fields and in
we have that . Fur-

thermore, is an invariant manifold under the vector field
if for every . Suppose that
is a smooth function that is called a Hamiltonian function. Then,
the Hamiltonian vector field on associated with is
defined by putting for every vector field

on . Suppose that is an equilibrium
point for , or equivalently , then the lin-
earization of at is given by a Hamiltonian matrix
denoted by . Here, defines a linear
Hamiltonian vector field corresponding to the quadratic Hamil-
tonian given by the quadratic terms in the Taylor expansion of

around . Moreover, the manifold is known
as a stable invariant manifold of if is tangent at
to the stable eigenspace of . Similarly, is known
as an antistable invariant manifold of if is tangent at

to the antistable eigenspace of .
It is a well-known fact that if is invertible

then is causally invertible. In this case, the
inverse system is also of the Hamiltonian form (3) with
Hamiltonian equal to the Legendre transform of

satisfying (5)

or, more explicitly

(6)

where . In addition, the Hamiltonian system
that corresponds to is given by

(7)

In this case, the submanifold is
a stable invariant Lagrangian manifold for with . On
the other hand, the submanifold
is the antistable invariant manifold for with and is
Lagrangian.

B. Linear Case

The results that we establish in our analysis in subsequent
sections of this paper may be regarded as natural nonlinear ana-
logues of some of those obtained in [28], [39], and [50]–[52] for
rational matrix functions. In particular, the explicit formulas for
the spectral factors derived in the latter sections bear a resem-
blance to those in [28] and [51], where the formulas are written
in terms of solutions of algebraic Riccati equations. Later, we
provide a brief discussion of the pertinent linear factorization
results for our purposes.

We denote the subspace of of functions analytic in the
right half-plane with sup norm by . is defined similarly
on the left half-plane. In the linear case, for a system given by
the state equations

(8)

is the series interconnection of and the adjoint
system having the state–space equations

.
(9)

This scheme has an associated transfer matrix ,
where

(10)

We say that a proper rational matrix function is a
spectral factor if , where .
Furthermore, spectral factor is called stable (antistable) if

. Linear spectral factors of matrix func-
tions were parametrized in several ways (see [22], [27], [28],
[40], [50]–[53], and [57]). In particular, in [51] it was shown
that one may determine a parametrization of all minimal square
spectral factors of a positive semidefinite rational matrix func-
tion in terms of invariant subspaces (see also [50], [57], and
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[58]), minimal unitary left divisors of a certain unitary func-
tion (see also [28] and [52]) and algebraic Riccati equations (see
[40] and [57]; also [47], [50], [58], and [66]). Reference [28] ap-
proaches the problem from a geometric viewpoint that involves
shift invariant subspaces. In particular, state space formulas for
matrix functions that arise from the analysis of singular, i.e.,
rectangular and not necessarily full rank, spectral factors, are de-
rived. The approaches in [47] and [45] are related to the methods
used in [28] because they emphasize stable spectral factors with

having some regularity properties on . A full-column rank
rational matrix function in is said to be minimum

phase or outer (on the right) if rank for .
A system is maximum phase if rank for .

Let the nonsquare spectral factor of the spectral function
, given by

(11)

be a minimal, stable spectral factor. In order to obtain an
appropriate form for of in (11) we assume that
in (10) is square and has full-rank almost everywhere. So, also,

has full-rank without loss of generality. Next, we can apply
some standard systems theory in order to write in (11) as

with invertible and . We may put the singular
values either in the columns of or in the rows of . Thus, we
may assume that (or ) is unitary if so needed. In this case, if
we have that then it follows that .
We are especially interested in the case where , i.e.,

, with in (11) having the form

(12)

The argument for obtaining the -term for a nonsquare spec-
tral factor, say , from the -term for a full rank square spec-
tral factor, say , can easily be extended to the nonlinear case
using the development in [44]. In particular, in the sequel, this
argument is needed for Theorem 3.

Furthermore, we can describe the minimal realizations of the
stable minimum- and maximum phase, spectral factors and

, respectively, of as follows.
A minimal realization of the stable, minimum phase, spectral

factor of has the form

(13)

where is the stabilizing solution of the algebraic Riccati
equation

(14)

A minimal realization of the stable, maximum phase, spectral
factor of has the form

(15)

where is the antistabilizing solution of the algebraic
Riccati equation

(16)

In the linear case, the function is said to be column
rigid if and is row rigid if

. A minimal column rigid function
satisfying has the form

A minimal row rigid function satisfying has
the form

By using the fact that the analysis involving the solution of the
Hamilton–Jacobi inequality and equality, (30) and (31), respec-
tively, may be reduced to the analysis involving the solutions
of an algebraic Riccati equation in the linear case, Theorem 3 of
this paper reduces to [51, Th. 2.2]. For ease of comparison we
formulate the statement of the latter theorem shown later. Sup-
pose that a positive–semidefinite rational matrix function has
a realization . There is a one-to-one
correspondence between the set of minimal nonsquare spectral
factors of such that and the
set of triples . Here, is an -invariant -La-
grangian subspace. To describe and , let and be
given by and . Furthermore, suppose
that is the -invariant, -Lagrangian
subspace such that . Let be the projec-
tion onto along and denote a matrix representation for

by . Then solves the Riccati inequality
and satisfies

.
This correspondence is given by

C. Nonlinear Spectral Factorization Problem Formulation

We are now in a position to formally state the problem that
we will investigate in the sequel.
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Given a stable, nonlinear, square, input-affine system as be-
fore, describe certain nonsquare, stable, nonlinear, input-affine
systems

(17)

(with state–space manifold equal to having local coordinate
and with having local coordinates )

so that , or, at the input–output
level, for each there is a unique so that

for all . We note that by comparison with [10], in
our case need not necessarily be invertible. The geometric
structure of given by (17) with input–output map acting
on may be laid down as follows.
is a Hamiltonian system (compare (3)) with state space equal to
the cotangent bundle of the state manifold for with
Hamiltonian function given by

Under the assumption that is invertible we
know that the inverse system is also of
the Hamiltonian form (7) with Hamiltonian equal
to the Legendre transform of

satisfying

or, more explicitly

(18)

The submanifold is the anti-
stable invariant manifold for with and is Lagrangian.
The submanifold is a La-
grangian invariant manifold for the system with .
We note that when referring to (18) the term “Legendre” may
be replaced by the term “Young” (see [38] and the references
therein for further information). In other words, in our case, the
argument will hold equally well if we consider the Young trans-
forms instead of the Legendre transforms.

As was mentioned before, spectral factorization is intimately
related to inner-outer factorization. Since nonlinear inner
systems play a role in the ensuing analysis (see, for instance,
Lemma 8 and Theorem 9), we provide a brief description

of such a nonlinear system. Nonlinear is inner (or stable
conservative) if is stable (w.r.t. assumed equilibrium
point ) and there is a nonnegative-valued storage function

with such that

(19)
over all trajectories of the system. This is true
for all and , with denoting the state at time

originating from the initial state at time and input
on the time interval . Alternatively, is said to be

inner if it is lossless with respect to the -gain supply rate
. The above characterization

of nonlinear inner systems, was achieved within the dissipa-
tive systems framework of Hill–Moylan–Willems (see [33] and
[66]). Here the dissipation equality in (19) may be derived from
a state space-implementation of the -gain condition in the for-
mulation of the nonlinear -problem (see [63] and [64]). Note
that the function defined in (19) may also be thought of as a
Lyapunov function (see [33]). If is assumed to be smooth, the
energy balance relation (19) can be expressed as

for all and or, equivalently, in infinitesimal form as

Although some of the concepts mentioned in this paragraph
have not yet been formally defined, a comment on notation is in
order at this point. Throughout this paper, denotes a square
nonlinear system that is a spectral factor with the property
that is invertible. On the other hand,
is a nonsquare spectral factor that is the starting point for
our analysis in the sense that subsequent explicit formulas for
various types of spectral factors and inner systems are written
in terms of its components and associated Hamilton–Jacobi
equation. Given a general spectral system we denote by

and , the minimal, stable, minimum and maximum
phase spectral factors, respectively. In fact, as for the case of
regular, square spectral factors in [10] a range of extremal
spectral factors like (minimal, stable, minimum phase),
(minimal, stable, maximum phase), (minimal, antistable,
minimum phase) and (minimal, antistable, maximum phase)
form the basis for our analysis of all square and nonsquare
spectral factors ([10] for the square case). and is
the notation used for column rigid and row rigid systems,
respectively (see Section IV-B for a full characterization of
rigid systems). is the symbol used to denote the nonlinear
(spectral) system that undergoes spectral factorization of the
type given in (3).
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D. Novel Features and Structure of This Paper

Some of the novel features of this paper are given as follows.

• In Proposition 1 of Section III, we derive a nonsquare
spectral factor from a square one by comparing the
components of their respective Hamiltonian systems
(and corresponding Hamiltonian functions). In partic-
ular, this proposition provides a necessary and suffi-
cient condition for a (square or nonsquare) nonlinear
system to be a spectral factor in the case where our
starting point is a given square spectral factor.

• In the main result of this paper, we establish a bijective
correspondence between nonsquare, stable, nonlinear,
spectral factors of of the form (17) and the set of
triples . Here, is an invariant Lagrangian
submanifold of where , is a smooth
solution of a certain Hamilton–Jacobi inequality and

is a component of with special properties (see
Theorem 3 in Section III).

• In Proposition 5 of Section IV, we verify the existence
of stable, minimum and maximum phase spectral fac-
tors of that are related to the square spectral factor

in (1).
• We determine connections between the nonsquare

spectral factor of the form given by (17) and the ex-
tremal spectral factors mentioned before. For instance,
in Theorem 6 we express stable, minimum phase and
stable, maximum phase spectral factors explicitly
in terms of the components of the nonsquare spec-
tral factor . Also, in Theorem 7, the right inverses
of the aforementioned extremal spectral factors are
computed. Lemma 8 and Theorem 9 establish useful
relationships between nonlinear extremal spectral
factors and inner systems.

• In Section IV-B, we introduce the notions of column
and row rigid systems. In addition, we consider the
connection between rigid systems, the extremal spec-
tral factors and the nonsquare spectral factor (see
Theorem 10). Explicit formulas for these rigid systems
are provided in Theorem 11.

Next, we briefly outline other issues that arise in this paper. In
Section II-B, we make connections between literature dealing
with linear spectral factorization problems and the theory de-
veloped in our paper. Section III provides remarks relating
Theorem 3 to pre-existing papers that discuss the square non-
linear case (see Remark 4). The main technique that we will
employ to prove our results in the sequel involves a comparison
between the Hamiltonian functions of the Hamiltonian system
corresponding to the spectral factors for which we would like
to establish some properties. This usually is accompanied by
an appropriately chosen change of coordinates. This method
of proof underlies the verification of Proposition 1, Theorem
3, Theorem 6, Lemma 8, and Theorem 10.

III. PARAMETRIZATION IN TERMS OF LAGRANGIAN

MANIFOLDS AND HAMILTON–JACOBI INEQUALITIES

The next result attempts to relate the components of stable,
nonlinear, square, input-affine systems given by in (1) to non-
square, stable, nonlinear, input-affine systems given by in

(17). Recall from the discussion on the geometric structures of
and that and are the -dimensional state manifolds

of and , respectively. In order to simplify notation note that
by the requirement for that for all there exists a
unique we can identify with , and with .

Proposition 1: Assume that
, where and are given as in (1) and (17), respectively,

with Hamiltonian functions given by (4) and (18), respectively.
Furthermore, suppose that is
invertible. In this case, we have that

(20)

(21)

(22)

(23)

(24)

for some smooth function on . Conversely, for any smooth
function on the previous equations define a system .

Proof: In the proof, we follow the scheme suggested in
[13] in order to show that a solution of the Hamilton–Jacobi
equation corresponds to a spectral factor. The argument is as
follows. By assumption, has a state space real-
ization of the form (3) with Hamiltonian given by (4). On
the other hand, if is given by (17) and ,
then has the Hamiltonian form (3) but with given by
(18) in place of . Under the assumption that is a smooth
function, it follows that is a canonical
change of coordinates (see [2], [13], or [10]), transforming the
Lagrangian submanifold into

. Conversely, for any choice
of local canonical coordinates for there exists (lo-
cally) a smooth function such that

. The main requirement
for the completion of the proof is to express in terms of the
new coordinates and then identify , , ,
so as to ensure that . Calculation
shows that

(25)

We are required to define , , and so that
, where

(26)

Since , we know that (25) must
correspond to (26). Hence it is easy to see that (20)–(24) are
satisfied.
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The proof of Proposition 1 is dependent on an important part
of the proof of [10, Th. 2.3], where square, stable spectral factors
are considered. The said proposition will be used extensively in
the sequel (see, for instance, Theorems 3 and 6).

Remark 2: Proposition 1 and the related discussion on the
geometric structure of and in the preceding section are
suggestive of the fact that Lagrangian invariant manifolds and
nonlinear spectral factors are intimately connected. In turn,
these notions can also be shown to be related to Hamilton–Ja-
cobi equations in the following way. A method for finding a
Lagrangian invariant manifold for with is to
consider the Hamilton–Jacobi equation ,
where is given as in (5) and (6) and is some
smooth function with (compare the statement of
Proposition 1). If there exists such a then the said manifold

has the form

(27)

The main result that follows shows that certain nonlinear min-
imal nonsquare stable spectral factor can be expressed com-
pletely in terms of a square minimal stable spectral factors and
solutions of a certain type of Hamilton–Jacobi equation. The
proof of this result has a heavy reliance on the analysis in Propo-
sition 1.

Theorem 3: Suppose for in (1) that
is invertible and the spectral system

is given by (3). Then there is a bijective correspondence between
nonsquare, stable, nonlinear systems given by

(28)

where

(29)

which provide a spectral factorization for and
the set of triples . Here, is an invariant Lagrangian
submanifold of where , is a smooth solution of
the Hamilton–Jacobi inequality

(30)

and satisfies the equation

(31)

where . Moreover, if is any solution of the
Hamilton–Jacobi equation (31) then there exists a map such
that

(32)

Proof: Proposition 1 and the discussion in Section II sug-
gest that the Lagrangian invariant manifold of where

given by (27) and the nonlinear spectral factors and
are related. Also, from Remark 2 we have that a relation-

ship exists between these notions and Hamilton–Jacobi inequal-
ities (and ultimately Hamilton–Jacobi equations) (see [13] and
[64] for more information). From (24) in Proposition 1 where

, without loss of generality, we may
choose

(33)

Putting , it is clear from (23) that
. Finally, from this and (22), we have

that

For , (30) and (31) will hold. Furthermore,
we note that the that we obtain before is stable since the
drift-dynamics vector field for is equal to the drift-dy-
namics vector field for and is assumed to be stable.
The fact that (32) holds, follows directly from the form of the
Hamilton–Jacobi equation (31).

The generality of the choice of in (33) can easily be justi-
fied by applying an analogous argument as that for (full-rank)
linear spectral factors provided in Section II-B. The reasoning
in Theorem 3 follows the discussion in the main result of [64,
Sec. 6.3] rather closely. Indeed, if we consider the Hamilton–Ja-
cobi inequality [64, (6.60)] and compute and substitute the min-
imizing , we obtain inequality (30) in Theorem 3.

Remark 4: Our analysis suggests that the minimal nonlinear
nonsquare stable spectral factors described in Theorem 3 can
be reduced to the square case. For instance, in [10] it is postu-
lated that there is a one-to-one correspondence between certain
square, stable nonlinear systems which provide a spectral fac-
torization for and Lagrangian, invariant sub-
manifolds of which are parametrizable by the base
manifold of or, equivalently, smooth solutions of
the Hamilton–Jacobi equation
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Moreover, all minimal stable square spectral factors are of the
form

This corresponds exactly with the square stable spectral factor
determined in [10, Th. 2.3].

IV. RELATIONSHIPS WITH OTHER CONTROL SYSTEMS

In this section, we provide an alternative characterization of
minimum and maximum phase spectral factors and introduce the
notions of column and row rigid systems. In particular, we ex-
plain how explicit state–space formulas for these systems may
be determined in terms of the formula (28) for and special
classes of solutions of Hamilton–Jacobi equations.

A. Minimum and Maximum Phase Systems

In the literature, it is usual to define a system as being
minimum phase, for instance, when the dynamics of its inverse
system is Lyapunov stable. However, since the classes of spec-
tral factors that we consider in this paper are not necessarily
invertible we need to find an alternative description for min-
imum and maximum phase systems. The following discussion
deals with these notions. We recall that the output nulling (or
zero) dynamics of a system is the set of all system trajectories

generated by the some input trajectory such that
is identically zero. Under some regularity conditions it can be
computed as

(34)

Under additional conditions, it will actually be a system without
inputs , . In this case, the system is
minimum phase if is asymptotically stable and maximum
phase if is antistable. For (34), we define the system to be
minimum phase if there exists such that the system is
stable and maximum phase if there exists such that the
system is antistable. Our first result informs us that it is always
possible to derive a stable, minimum (maximum) phase spectral
factor from a spectral factor of the type given by (1).

Proposition 5: Suppose that , where is
given as in (1) with Hamiltonian function given by (4) and

being invertible. Then, the following
statements hold.

1) There exists a stable, minimum phase spectral factor
such that

(35)

2) There exists a stable, maximum phase spectral factor
such that

(36)

Proof:

1) For the outer spectral factor , we have that

(37)

has a form of the type given as in (3) with some asso-
ciated Hamiltonian function . We note
from [13] that we can compute the antistable invariant
manifold of (37) for . Since
is invertible it follows that (37) is causally invert-
ible. From [13, Th. 2], we know that we can find a
stable invariant manifold for the Hamiltonian flow
associated with the inverse system
with output and its inverse Hamiltonian

[compare (5) and (6)]. Next, we want
to factor as . In order to
accomplish this, we introduce a canonical change of
coordinates so that the Hamil-
tonian system corresponding to , written in
terms of the new coordinates will have the form of the
Hamiltonian system corresponding to .
Furthermore, is causally invertible, so that
we can find a Hamiltonian system for
together with its inverse Hamiltonian .
In order to calculate a Lagrangian invariant mani-
fold for we have to investigate the
Hamilton–Jacobi equation given by ,
for some smooth function with . The
next step is too simply compare the with
the Hamiltonian in the new coordi-
nates. This leads to .

2) The proof that there exists a such that (36) holds is
analogous to the argument above.

An important follow-up result to Proposition 5 is the following
one that allows us to determine explicit formulas for the ex-
tremal factors and described previously.

Theorem 6: Assume that is the nonsquare, stable, non-
linear, spectral factor of given by (28). Then, it follows that

1) a minimal realization of the stable, minimum phase
spectral factor of is given by

(38)
where is given by (29), is the smooth solu-
tion of the Hamilton–Jacobi equation

(39)

with and stability side condition

(40)

is Lyapunov stable;
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2) a minimal realization of the stable, maximum phase
spectral factor of is given by

(41)
where is given by (29), is the smooth solu-
tion of the Hamilton–Jacobi equation

(42)

with and antistability side condition

(43)

is antistable.

Proof: Since , and are all spectral factors of
we have that .
Hence, we may proceed via the hypothesis of Proposition 1 in
the following way. From (20) and (21), it is clear that the differ-
ential equation in the first lines of (38) and
(41) will hold. In order to compute the “ ” term in the said for-
mulas we consider (23), formula (28) and in each case choose
the “ ” term to be . If, for instance, we denote the “ ”
term of (38) by , then it is follows that

. If we multiply each term on the right
by then formula (38) will follow. Moreover, we
can determine formula (41) by a similar calculation. Further-
more, the Hamilton–Jacobi equations (39) and (42) can be es-
tablished by a consideration of (22) in Proposition 1.

The existence of the smooth solutions and of the
Hamilton–Jacobi equations (39) and (42), respectively, are
suggested by [64, Ch. 8, Cor. 8.1.18]. We note that the stable,
minimum and maximum phase spectral factors described in the
result above are necessarily square because of our assumption
that is invertible. Our next
task is to determine the (one-sided) right inverses of the spectral
factors and , where we assumed that in (3) is weakly
coercive. The result is as follows.

Theorem 7: Assume that the hypothesis of Theorem 6 holds.
If we suppose that is weakly coercive then we can compute
minimal realizations for the right inverses of the stable, min-
imum phase spectral factor and the stable, maximum phase
spectral factor as

(44)

and

respectively.
Proof: We may prove the result by direct computation.

The following lemma provides further information about the
relationships between extremal spectral factors and certain inner
systems (see Section II for a characterization).

Lemma 8: Assume that the hypothesis of Theorem 6 holds
where is stable, minimum phase spectral factor of , is a
stable, maximum phase spectral factor of , is an antistable,
minimum phase spectral factor of and is an antistable,
maximum phase spectral factor of . Then there exists inner
systems , , and such that

(45)

(46)

(47)

(48)

Proof: First, we establish that (45) holds. Since and
are spectral factors of it follows that

. In this case, if we are given any initial state for
, we can choose the initial state for so that

the input–output map for , corresponds to the input–output
map related to , This argument, of course, also applies
for (46) and (47). Next, we use (45) and (46) to show that (48)
holds. From (45), we have that . Replace this
expression for into (46) in order to obtain

. The final step is to choose .
It remains to show that the systems , , and are

indeed inner. We, firstly, prove this fact for ; the verifications
that and are inner are analogous. Since and in
(45) are both spectral factors of we have that

In addition, we recall that is an outer factor. Then the conclu-
sion that in (45) is inner is an immediate consequence of [13,
Th. 2] (alternatively, see [10, Prop. 3]). Because ,
also is inner.

This result is a consequence of the properties of and as
spectral factors of . The factorizations occurring in (45), (46),
and (47) are all examples of inner–outer factorizations that have
an important role to play in control theory. Moreover, we can
use (41) for and (44) for to compute appearing
in (45) explicitly. In the linear case, the system in (46) is
known as the phase function which, as is the case below, plays
an important role in understanding minimal spectral factors. In
addition, we can find linear versions of the inner system, ,
that makes (47) stable and that makes (48) antistable. The
next result uses the outcomes of Lemma 8 to establish further
connections between the extremal spectral factors.
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Theorem 9: Assume that the hypothesis of Theorem 6 holds.
If we suppose that is weakly coercive then for the stable,
minimum phase spectral factor , the stable, maximum phase
spectral factor and the antistable, maximum phase spectral
factor we have that

(49)

(50)

(51)

Proof: From , we have
. Furthermore, from (48), we see that

. This proves (49). Next,
we note that by using (45), we have

(52)

If we multiply by on either side of (52) and apply (45)
once again, we find that (50) holds. In order to verify the identity
(51), we simply substitute from (45) into

.

B. Column and Row Rigid Systems

Consider the Hamiltonian system (Hamiltonian
extension with ) with Hamiltonian

(53)
Consider the observability function (see [60] and the refer-
ences contained therein) defined as the solution of

and define new coordinates
. Then

Now, if satisfies then the subman-
ifold is an invariant manifold, and the system
restricted to this manifold is given by the static input–output
identity map In this case, the system is
said to be column rigid. Next, consider the Hamiltonian system

(Hamiltonian extension with ) with Hamil-
tonian

Consider the controllability function (see [60] and the refer-
ences contained therein) defined as the solution of

and define canonical coor-
dinates . Then

Now, if satisfies then the subman-
ifold is an invariant manifold, and the system
restricted to this manifold is given by the static input–output
identity map . In this case, the system is row
rigid.

The next result that we obtain is one which postulates the
existence of a factorization of a minimal, stable, spectral factor
into a column rigid system and an outer system.

Theorem 10: Suppose that is the minimal, stable, non-
square, spectral factor of the weakly coercive system given
by (28).

1) If is the stable, minimum phase (outer) spectral
factor of given by (38), then there exists an essen-
tially unique column rigid system for which

(54)

2) If is the stable, maximum phase spectral factor of
given by (41), then there exists an essentially unique

row rigid system for which

(55)

Proof:

1) First, we know that if and are spectral factors
of , then . As a
result of this, we may verify that (54) is true by using an
argument analogous to the one that was used to prove
that (45) holds. Furthermore, we note that

with outer and . Then,
by the previous definition, satisfies the criteria for
a system to be column rigid.

2) We define , where is given by (41).
Also, we define , which shows that is
rigid. Furthermore, we have to show that .
By using the first part with and

from (51) of Proposition 9 we may
conclude that

We can also show that Proposition 10 holds by a Morse theory
argument (cf. [13, Th. 2]). The next proposition tells us that we
can express the rigid systems and in terms of smooth
solutions of the Hamilton–Jacobi equations (39) and (42), re-
spectively, and components of the state–space formula for (28).
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Theorem 11: Suppose as in (3), with
given by (28).

1) The minimal column rigid system satisfying
in (54) is given by

(56)
where is the smooth solution of the (39) with sta-
bility side condition (40).

2) The minimal row rigid system satisfying
in (55) is given by (57), as shown at the bottom of the
page, where is the smooth solution of the (42) with
antistability side condition (43).

Proof: The explicit formulas are obtained via a process of
direct computation. We can compute in (56) directly from

, where and are given by (28) and (44), respec-
tively. In order to determine the explicit formula for row rigid

in (57) a similar approach as the one shown previously may
be adopted.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper generalizes results on nonlinear stable square
spectral factors (see [10], as well as [54] and [55]) to the less re-
strictive case of stable nonsquare spectral factors. In particular,
we use several contributions of Ball, Helton, van der Schaft,
and Petersen on the factorization of nonlinear control systems
([5], [7], [10], [13], [31], and [49]) to establish the equivalence
between stable nonsquare spectral factors, invariant Lagrangian
submanifolds and associated solutions of Hamilton–Jacobi
inequalities. In order to accomplish this we had to consider
the natural subclass of spectral factors that are stable and input
affine. Here, the formulas are found to be explicit and sugges-
tive of the linear case. Also, in all of the above, we considered
the situation where is invertible for each

. There are several interesting problems involving nonlinear
spectral factorization (and the related inner–outer factorization)
that remain open. In discussing the Hamilton–Jacobi equations
arising in connection with stable, spectral factors of a given
Hamiltonian system we always assumed that solutions were
smooth. We expect that this smoothness assumption can be
removed if one works with viscosity-sense solutions [8], [14],
[18], [32], [35] of these equations. The extent to which all so-
lutions of the Hamilton–Jacobi equation (31) are of the a priori
special type discussed in Section III remains an interesting
open question. We have not yet been able to extend our analysis
to the parametrization of more general (not necessarily affine,
minimal or stable) nonlinear spectral factors. However, the
assumption that can be removed has been
discussed in [65] and further investigation is envisaged for the

outer-spectral factorization case [11]. On the other hand, great
difficulty has been experienced with finding an inner-outer
factorization for nonstable systems. However, it seems likely
that a nonstable spectral factor can be constructed by replacing
the Hamilton–Jacobi equation used in this paper by a functional
Hamilton–Jacobi equation. For such a factor, we will deal with
an infinite-dimensional state–space, which necessitates a recon-
sideration of the minimality property. In this regard, however,
[16] discusses a more general nonminimal factorization with a
different type of Hamilton–Jacobi equation. Also, a nonlinear
version of the pole-zero cancellation technique used in [45] to
solve the general inner-outer and spectral factorization problem
may be an interesting but difficult prospect. Nevertheless,
the questions raised in the above are likely to be useful areas
for subsequent research. As for the linear case, we hope to
apply the concepts developed in these papers to scenarios in
stochastic realization theory, network synthesis and systems
and control theory. In this regard, chemical process control
is discussed in the joint paper by Ball, Petersen, and van der
Schaft (cf. [11]) on noninvertible nonlinear systems. Also, it
remains an open question whether our results are applicable
to mechanical systems with Hamiltonian structure. Recently
a study (see [49]) has been launched in order to characterize
the null-pole structure of nonlinear control systems. As is
well known, in the linear setting, a close relationship exists
between the spectral factorization problem in systems and
control theory and null-pole structure (see, for instance, [50]
and [51]). An appropriate generalization of the associated
“null-pole triple” approach to the nonlinear case may in all
likelihood prove useful for analysing these problems. Further-
more, parametrizations of nonlinear nonsquare spectral factors
in terms of coprime inner–inner factorizations is discussed in
detail in [49]. The analysis in the aforementioned paper by
Petersen has connections with linear geometric control, in the
style of Wonham (see [68]), where output nulling controlled
invariant and reachability subspaces play a natural role. It is
well-known that the behavioral approach to linear systems
theory that was initiated by Willems is underpinned by the
analysis of rectangular (polynomial) matrices. In future, it may
be possible to extend some of the recent results on optimal
control by Ferrante and Zampieri (see [23]) and the work by
Trentelman and Willems on dissipative systems (see [25], [26],
and the references contained therein) to the nonlinear setting
by considering the class of nonsquare systems discussed in the
present paper. However, the notion of a nonlinear system that
does not differentiate between input and output variables and
makes a choice of control variables from among the systems
variables is something that requires further thought. If this issue
is successfully resolved, we believe that the solution of the state
space -control problem for behavioral linear systems by
means of dissipativeness obtained in [24] provides ample clues
for deriving a nonlinear analogue.

(57)
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