215 research outputs found

    A note on structured pseudospectra

    Get PDF
    AbstractIn this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant, Hankel and symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials. Indeed, we prove that the structured pseudospectrum equals the unstructured pseudospectrum for matrix polynomials with Toeplitz, circulant, Hankel and symmetric structures. We conclude by giving a formula for structured pseudospectra of real matrix polynomials. The particular type of perturbations used for these pseudospectra arise in control theory

    On Sound Relative Error Bounds for Floating-Point Arithmetic

    Full text link
    State-of-the-art static analysis tools for verifying finite-precision code compute worst-case absolute error bounds on numerical errors. These are, however, often not a good estimate of accuracy as they do not take into account the magnitude of the computed values. Relative errors, which compute errors relative to the value's magnitude, are thus preferable. While today's tools do report relative error bounds, these are merely computed via absolute errors and thus not necessarily tight or more informative. Furthermore, whenever the computed value is close to zero on part of the domain, the tools do not report any relative error estimate at all. Surprisingly, the quality of relative error bounds computed by today's tools has not been systematically studied or reported to date. In this paper, we investigate how state-of-the-art static techniques for computing sound absolute error bounds can be used, extended and combined for the computation of relative errors. Our experiments on a standard benchmark set show that computing relative errors directly, as opposed to via absolute errors, is often beneficial and can provide error estimates up to six orders of magnitude tighter, i.e. more accurate. We also show that interval subdivision, another commonly used technique to reduce over-approximations, has less benefit when computing relative errors directly, but it can help to alleviate the effects of the inherent issue of relative error estimates close to zero

    Compensated Horner Scheme

    Get PDF
    Using error-free transformations, we improve the classic Horner Scheme (HS) to evaluate (univariate) polynomials in floating point arithmetic. We prove that this Compensated Horner Scheme (CHS) is as accurate as HS performed with twice the working precision. Theoretical analysis and experiments exhibit a reasonable running time overhead being also more interesting than double-double implementations. We introduce a dynamic and validated error bound of the CHS computed value. The talk presents these results together with a survey about error-free transformations and related hypothesis

    On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic

    Get PDF
    International audienceWe improve the usual relative error bound for the computation of x^n through iterated multiplications by x in binary floating-point arithmetic. The obtained error bound is only slightly better than the usual one, but it is simpler. We also discuss the more general problem of computing the product of n terms

    Algorithms for Accurate, Validated and Fast Polynomial Evaluation

    Get PDF
    International audienceWe survey a class of algorithms to evaluate polynomials with floating point coefficients and for computation performed with IEEE-754 floating point arithmetic. The principle is to apply, once or recursively, an error-free transformation of the polynomial evaluation with the Horner algorithm and to accurately sum the final decomposition. These compensated algorithms are as accurate as the Horner algorithm performed in K times the working precision, for K an arbitrary integer. We prove this accuracy property with an \apriori error analysis. We also provide validated dynamic bounds and apply these results to compute a faithfully rounded evaluation. These compensated algorithms are fast. We illustrate their practical efficiency with numerical experiments on significant environments. Comparing to existing alternatives these K-times compensated algorithms are competitive for K up to 4, i.e., up to 212 mantissa bits

    Comparaison de strategies de calcul de bornes sur NoC

    Get PDF
    The Kalray MPPA2-256 processor integrates 256 processing cores and 32 management cores on a chip. Theses cores are grouped into clusters, and clusters are connected by a high-performance network on chip (NoC). This NoC provides some hardware mechanisms (egress traffic limiters) that can be configured to offer bounded latencies. This paper presents how network calculus can be used to bound these latencies while computing the routes of data flows, using linear programming. Then, its shows how other approaches can also be used and adapted to analyze this NoC. Their performances are then compared on three case studies: two small coming from previous studies, and one realistic with 128 or 256 flows. On theses cases studies, it shows that modeling the shaping introduced by links is of major importance to get accurate bounds. And when packets are of constant size, the Total Flow Analysis gives, on average, bounds 20%-25% smaller than all other methods

    Approximated structured pseudospectra

    Get PDF
    Pseudospectra and structured pseudospectra are important tools for the analysis of matrices. Their computation, however, can be very demanding for all but small-matrices. A new approach to compute approximations of pseudospectra and structured pseudospectra, based on determining the spectra of many suitably chosen rank-one or projected rank-one perturbations of the given matrix is proposed. The choice of rank-one or projected rank-one perturbations is inspired by Wilkinson's analysis of eigenvalue sensitivity. Numerical examples illustrate that the proposed approach gives much better insight into the pseudospectra and structured pseudospectra than random or structured random rank-one perturbations with lower computational burden. The latter approach is presently commonly used for the determination of structured pseudospectra
    • …
    corecore