Contribution of the subthalamic nucleus to visually guided locomotion

Abstract

Les ganglions de la base (GB) jouent un rôle important dans le contrôle locomoteur. Ceci est illustré par les troubles locomoteurs dont souffrent les patients atteints de maladies dégénératives qui affectent les GB, telles que la maladie de Parkinson, caractérisées par de petits pas lents et traînants, ainsi qu’un gel de la marche (freezing of gait). Une structure centrale dans les GB est le noyau sous-thalamique (NST), de par son rôle de structure d’entrée et ses projections vers le globus pallidus. Cependant, la nature de la contribution du NST au contrôle de la locomotion, ainsi que les caractéristiques de son activité cellulaire durant la marche, sont peu connues. Afin de mieux comprendre cette contribution, nous avons examiné les propriétés de l’activité neuronale du NST lors de la locomotion non-obstruée et celle sous guidage visuel. Ainsi, nous avons effectué des enregistrements neuronaux chez un chat intact, entraîné à marcher régulièrement sur un tapis roulant et à franchir des obstacles se déplaçant à la même vitesse. Nous avons enregistré 40 cellules montrant une activité reliée au movement du membre antérieur, dont 30 ont montré une activité phasique au cours de la locomotion non obstruée liée aux différentes phases du cycle de la marche, principalement la phase de balancement. Au cours de la modification volontaire de la marche, un groupe de 37/40 cellules, incluant certaines qui étaient modulées pendant la locomotion non-obstruée, ont changé leur fréquence de décharge par rapport à l’obstacle. Ces changement étaient principalement des augmentations de fréquence, mais parfois des diminutions ou une diminution suivie d’une augmentation. Ces modifications se produisaient soit avant l’enjambement de l’obstacle (step-advanced), soit lors de l’enjambement de l’obstacle (step-related). L’activité des cellules step-advanced était indépendante des membres (limb-independent), tandis que celle des cellules step-related était spécifique aux membres (limb-dependent). Cette étude est la première à examiner les caractéristiques de décharge du NST lors de la marche et montre que cette structure contribue au contrôle de la locomotion non obstruée ainsi que la modification volontaire de la marche, en jouant un rôle dans la planification et l’exécution de cette dernière.The Basal ganglia (BG) plays an important role in locomotor control. This is emphasized by the impaired walking of patients with neurodegenerative disorders that affect the BG such as Parkinson’s disease. One important structure in the BG is the subthalamic nucleus (STN), which acts as an input structure for the BG and projects to its output structures. Although the STN has been shown to display movement-related activity during reaching, the nature of its contribution to the control of locomotion, together with the characteristics of its neural activity during locomotion, is poorly known. In order to better understand this contribution, we examined the properties of the neural activity in the STN during unobstructed and visually guided locomotion. To do so, we recorded single neurons in an intact cat trained to walk steadily on a treadmill and to step over obstacles attached to the treadmill belt and moving at the same speed. We recorded 40 neurons which activity was related to the movement of the forelimb during the task. We found that during unobstructed locomotion, many of these cells (30/40) showed phasic step-by-step modulation of their activity pattern, mostly during the swing phase. Most of these swing-related cells discharged throughout the swing phase with no relationship to changes in the pattern of different muscle groups. During voluntary modifications of gait, 37/40 cells, including both cells that were and were not modulated during unobstructed locomotion, changed their firing rate in relationship to the step over the obstacle. The changes observed were mostly increases of activity, but a few cells showed decreases of activity and some showed a decrease followed by an increase of activity. These changes occurred either before the modified step and were classified as step-advanced activity, or they occurred during the modified step and were classified as step-related activity. Step advanced cells mostly showed limb-independent activity, while step related cells showed limb-specific activity. This is the first detailed account of the contribution of the STN to the control of locomotion and our results indicate that the STN is involved in the control of both unobstructed and visually guided locomotion. The results suggest that during unobstructed locomotion, the STN contributes to the general control of the limb trajectory and to both the planning and execution of voluntary changes of gait

    Similar works

    Full text

    thumbnail-image