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Abstract:19

In the UK, there is a growing interest in constructing on-farm irrigation reservoirs, however deciding20

the optimum reservoir capacity is not simple. There are two distinct approaches to generating the21

future daily weather datasets needed to calculate future irrigation need.22

The change factor approach perturbs the observed record using monthly change factors derived23

from downscaled climate models. This assumes that whilst the climate changes, the day-to-day24

climate variability itself is stationary. Problems may arise where the instrumental record is25

insufficient or particularly suspect. Alternatively, probabilistic weather generators can be used to26

identify options which are considered more robust to climate change uncertainty because they27

consider non-stationary climate variability.28

This paper explores the difference between using the change factor approach and a probabilistic29

weather generator for informing farm reservoir design at three sites in the UK. Decision outcomes30

obtained using the current normal practice of 80% probability of non-exceedance rule and simple31

economic optimisations are also compared.32

Decision outcomes obtained using the change factor approach and probabilistic weather generators33

are significantly different; whether these differences translate to real-world differences is discussed.34

This study also found that using the 80% probability of non-exceedance rule could potentially result35

in maladaptation.36

Key Words:37

Irrigation demand, Adaptation, UKCP09, Weather generator, Change factor, WaSim38



ACCEPTED JUNE 2013 Page 3 of 23

Background39

Water is integral to the UK’s ability to grow high quality horticultural produce. In the UK,40

approximately 150,000 ha are irrigated during a dry year (Knox et al, 2010). The sustainability of41

irrigated production is however under threat from competition for water from other sectors, new42

legislation designed to enhance environmental protection, and climate change (Weatherhead et al,43

2008).44

Water resources in many catchments are already strained. During summer, many existing water45

sources become increasingly unreliable and new licenses for summer abstractions are now widely46

unobtainable or are issued with tight minimum flow or minimum level constraints. Increasingly47

farmers, agribusiness and water resource managers are being encouraged to build on-farm irrigation48

reservoirs as part of their water resource strategy to avoid the restrictions and environmental49

impact of abstraction during summer months (Weatherhead et al, 2008). Climate change is expected50

to simultaneously increase water demand and reduce water availability (Kang et al, 2009).51

The unpredictability of the future climate is perhaps the greatest challenge facing the water industry52

(Harris et al, 2012). In the UK at least, much of the current infrastructure including irrigation53

reservoirs were built on the assumption that the climate in which it was built would endure for its54

entire lifetime – this is no longer the case (Harris et al, 2012).55

Two responses have emerged in reaction to the risks posed by future climate change, namely56

mitigation and adaptation (Füssel, 2007). Mitigation refers to “an anthropogenic intervention to57

reduce the sources or enhance the sinks of greenhouse gases” (IPCC, 2001). In contrast, adaptation,58

studied in this paper, refers to “the adjustment in natural or human systems in response to actual or59

expected climatic stimuli or their effects which moderates harm or exploits beneficial opportunities”60

(Parry et al, 2007, p.6). In the UK, adaptation planning emerged as a policy issue in 1997 in response61

to the formulation of the UK Climate Impacts Programme (UKCIP) (Hedger et al, 2006), receiving62
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renewed interest with the passing of the Climate Change Act 2008 (Tang and Dessai, 2012). The63

apparent ‘failure’ of high profile climate change protocols (e.g. the Kyoto protocol) has undermined64

confidence in the success of mitigation efforts, making adaptation a more attractive surrogate65

(Anderson and Bows, 2011; Fung et al, 2011 and Sanderson et al, 2011; Harris et al, 2012).66

A number of approaches to adaptation have been identified. Vulnerability-led adaptation includes67

methods aimed at identifying and reducing present community/system vulnerability; thereby68

reducing future exposure to potentially damaging impacts. Scenario-led adaptation, studied here,69

uses future climate change projections to assess future climate change impacts. Downscaled70

regional-scale climate scenario data can be fed into impact models; the outputs are then used to71

inform adaptation, to maximise potential benefits and/or minimise potential risks (Wilby and Dessai,72

2010). A hybrid approach, combining elements of vulnerability-led and scenario-led approaches has73

recently emerged, though is not the focus of this paper (Brown and Wilby, 2012).74

Scenario-led adaptation is limited by the financial and technical capacity of the individuals75

undertaking the adaptation; their risk appetite, the availability of high quality downscaled climate76

change information and the type of adaptation options being considered (Adger et al, 2005; Dessai77

et al, 2005). Despite greater awareness of its benefits (Füssel, 2007; Ranger et al, 2010), few real-78

world cases of scenario-led adaptation decisions have been realised (Tompkins et al, 20120), with79

large sector and regional differences in the type of adaptation considered. This limited uptake has80

been attributed to a variety of factors; see Moser and Ekstrom (2010) for an extensive discussion.81

Scenario-led adaptation is used here to model irrigation demand and inform farm reservoir design in82

a semi-humid climate. A sufficiently long daily weather record is essential to adequately gauge the83

amount of water required. For the baseline period (1961-1990), irrigation demand calculations are84

often based on the observed record, though this may be substituted with a synthetic series from a85

weather generator provided it has been suitably calibrated (Green and Weatherhead, 2013).86

Similarly, a sufficiently long record of future daily weather data is required to model irrigation87
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demand under the effects of climate change. Future weather data is typically generated from88

downscaled global climate models (GCM). GCM outputs are often only available as monthly values89

(Holman et al, 2009), which are generally insufficient for modelling dry year supplemental irrigation90

demand and many hydrological processes. They can however be used to perturb an observed or91

synthetic daily series using the ‘change factor’ approach (Loaiciga et al, 2000), elsewhere referred to92

as perturbation or the “delta-change” method (Prudhomme et al, 2002). A change factor is obtained93

for each month in the future series, these figures are then used to perturb an observed baseline94

daily series to produce a future series i.e. applying a January monthly change factor of 10% to an95

observed series would make all of the daily values in the future series for the month of January +10%96

larger (Holman et al, 2009). A criticism of the change factor approach is that it assumes that the97

climate variability is stationary, e.g. the same patterns of wet and dry days will occur in the future98

dataset as in the original baseline (Harris et al, 2012). Despite this, it remains a popular approach,99

given its relative simplicity and low computation demands (e.g. Dacacche et al, 2012). Alternatively,100

a probabilistic weather generator can be used to generate multiple future time series using101

perturbed synthetic baselines. Unlike the conventional change factor approach, weather generators102

are not dependant on the individual having access to a suitably long observed record (Green and103

Weatherhead, 2013) nor do they assume that the future climate variability is stationary, making104

them an attractive tool for supporting robust decision making (Groves and Lempert, 2007; Dessai et105

al, 2009; Lempert and Groves, 2010; Harris et al, 2012). The change factor approach and UKCP09106

weather generator (Semenov 2007; Wilks and Wilby, 2009) are both examples of statistical107

downscaling (Wilby et al, 2004), while they are not utilised here, alternative methods collectively108

referred to as dynamical downscaling techniques also exist (Mearns et al, 2003). An extensive109

discussion of the merits and weaknesses of these and other downscaling techniques can be found110

elsewhere and in greater detail (Prudhomme et al, 2002; Fowler et al, 2007)111

The primary source of future climate projections in the UK is the UKCP09 dataset (Murphy, 2009).112

UKCP09 provides 10,000 probabilistic climate projections at a 25km scale resolution generated from113
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a perturbed ensemble experiment using the HadCM3 Global climate model (GCM). These are114

provided in the format of monthly change factors. Alternatively, daily (and even hourly) projections,115

and at a finer spatial resolution of 5km2, are readily available as outputs from UKCP09’s weather116

generator (Jones et al, 2009). The weather generator provides baseline (“control”) and future117

scenario sequences for three different greenhouse gases emission scenarios (low, medium and high)118

and for selected 30 year time-slices (centred around the 2020s, 2030s, 2040s, 2050s, 2060s, 2070s119

and 2080s respectively).120

These daily weather datasets can be imported into soil water balance models such as WaSim, freely121

available via the Cranfield University website, to model the irrigation demand of various crops (Hess122

and Counsell, 2000). WaSim simulates inflow (infiltration) and outflow (evapotranspiration and123

drainage) and storage of soil water in response to climate, irrigation and drainage (Depeweg and124

Fabiola Otero, 2004). WaSim has proven invaluable across a range of previous studies including125

determining irrigation requirements, optimising water management, assessing the performance of126

sub-surface drainage systems and studying the effects of climate change on water resources127

(Depeweg and Fabiola Otero, 2004; Hirekhan et al, 2007, Warren and Holman, 2011). WaSim divides128

the soil profile into five layers, water moves from upper layers to lower layers when the water129

content of the respective layer exceeds field capacity. The first three layers are comprised of the130

surface layer (0-0.15m), the active root zone layer (0.15-root depth) and the unsaturated layer131

below the root zone (root depth-water table). The remaining 2 layers are comprised of the saturated132

layer above drain depth (water table – drain depth) and the saturated layer below drain depth133

(depth drain – impermeable layer). The boundary between the second and third layers changes in134

response to root growth (e.g. in the case of potatoes, layer 2 has zero thickness when root depth is135

less than 0.15m, and then increases as the potato develops). Guidance values covering crop136

development and root depths are provided for selected crops within WaSim, and up to three crops137

can be combined in a cropping pattern (Hess and Counsell, 2000).138



ACCEPTED JUNE 2013 Page 7 of 23

In the field of irrigated agriculture, decision makers have typically relied on the design dry year rule139

for estimating the volume of irrigation required. A design dry year is defined in the UK as a year with140

an 80% probability of non-exceedance (roughly equivalent to the older “fourth driest year of five”141

rule of thumb). This rule of thumb is generally considered the ‘best practice approach’ and forms the142

basis of most water allocation for UK irrigated agriculture (Weatherhead and Knox, 2000).143

This study explores the difference between using the change factor approach and the UKCP09144

weather generator for modelling future irrigation demand and informing reservoir design at three145

sites in the UK. Decision outcomes are obtained using the 80% probability of non-exceedance rule146

and an economic optimisation and compared.147

Method:148

A previous study by Green and Weatherhead (2013) found that the weather generator was149

reasonably calibrated at a number of UK sites. Three sites representing different agro-climatic150

conditions distributed around the UK were selected as case studies. These particular sites were151

chosen because they had the most complete record for the baseline period. Brooms Barn is located152

in the county of Suffolk, near Bury St Edmunds, approximately 30km east of Cambridge and is the153

driest of the investigated sites. Slaidburn is located in the district of Lancashire, approximately 60km154

north-west of Leeds and is the wettest site with an average annual rainfall of 1515 mm.year-1 for the155

baseline period. Lastly, Woburn is situated in the county of Bedfordshire, 50km north-west of156

London and is marginally wetter than Brooms barn but with slightly lower annual157

evapotranspiration. Observed climate data was extracted for the baseline period from the weather158

station at each site. Additional hydroclimatology data for the baseline period is shown in Table 1.159

160
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Table 1 Weather station sites and records used161

Station Lat. Long.
Elevation

(m AOD)

Average annual (1961-1990) Data

Rain (mm) ETo (mm) From To

Brooms Barn 52.260 0.567 75 588 585 1964 1990

Slaidburn 53.987 -2.433 192 1515 487 1961 1990

Woburn 52.014 -0.595 89 632 564 1961 1990

162

163

All 10,000 monthly change factor climate projections were extracted from the UKCP09 sample164

ensemble for the single 25km2 grid square overlying each weather station, for each emission165

scenario (i.e. low, medium and high) for the 2050s time slice (i.e. 2040-2069). Baseline166

evapotranspiration and monthly evapotranspiration change factors were estimated using Penman-167
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Monteith (Monteith, 1965); wind speed was assumed to be the same as the observed baseline168

(1969-1990) due to the lack of earlier baseline data and future projections of wind speed.169

Ten thousand climate projections were simultaneously generated using the UKCP09 weather170

generator, using the same ID codes to allow direct comparison, again for each weather station and171

each emissions scenario. The UKCP09 weather generator was previously found to be reasonably172

calibrated at these sites with the exception of some extreme events (which are beyond the scope of173

our analysis and do not impact the reservoir design) (Green and Weatherhead, 2013).174

As the weather generator offers a much greater spatial resolution of 5km2, data was generated for a175

grouping of 25 individual grid squares (i.e. a combined area of 25km2) overlying each weather176

station, to be directly comparable with the 10,000 member ensemble 25km2 grid square. It should177

be noted that the weather generator and 10,000 member sample ensemble spatial grids differ178

slightly in their orientation which may create subtle differences in the projected climate, though179

because of the large areas used, the impact is considered somewhat negligible. Despite this, the180

potential impacts on the outcomes of this study are an acknowledged limitation.181

Next, WaSim was used to model irrigation demand at each site. In its basic format WaSim is not182

capable of processing multiple climate files succinctly, so a modified version was developed and183

employed for this study to read-in multiple climate files and output a single results file containing184

the daily irrigation demand for each of the 10000 climate files. A potato crop was simulated with a185

planting depth of 0.15m, max root depth of 0.7m and planting date of 1st April. A rule based186

irrigation schedule was modelled based on best practice guidelines including scab control (Defra,187

2005). This schedule consisted of 4 periods (1 non-irrigation followed by 2 irrigation and 1-non188

irrigation), applying 15mm of water early in the growing season whenever the root zone deficit189

exceeded 18mm during period 2 (15th May-30th June) and applying 25mm of water whenever the190

root zone deficit exceeded 30mm during period 3 (30th June-31st Aug). Irrigation early in the growing191

season is essential for some varieties for minimising the chance of potato scab, a common bacterial192
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blight which can severely reduce the market value of produce (Liu et al 1996). Irrigation is also193

important for promoting higher tuber numbers, accelerating crop canopy growth, reducing the194

chance of uneven growth and thumbnail cracking and reducing crop damage during harvesting195

(Defra, 2005). The soil type was set as sandy loam, which is the dominant soil type for potato crops196

in England, with an assumed saturation of 43.3% and field capacity of 24.5%.197

The irrigation demand was calculated for each year in the 10,000 x 30 year sequences for each site198

and emission scenario, using both the change factor and weather generator datasets. The values199

within each sequence were then ranked from smallest to largest. The irrigation demand during the200

design dry year, (referred to hereafter as 80% dry year irrigation demand) was calculated for each of201

the 10,000 sequences, using the 80% probability of non-exceedance rule. The median, mean,202

quartile and extreme values for each site, emission scenario and dataset were identified.203

For the economic evaluation, typical costs and benefits for clay agricultural reservoirs were obtained204

from a concurrent study (Weatherhead et al, 2008). The economic benefit of the water contained205

within each reservoir was calculated on the basis of average water use, assuming an average net206

benefit (for potatoes) of £1.56/m3 of water used (Morris et al, 1997). Earthwork costs were assumed207

to be £1.125 per m3 of earth moved, plus an additional 15% reflecting site investigation costs. A208

further £20k was added, representing the assumed connection costs of 3-phase electricity. Annual209

OPEX was assumed to be 1% of CAPEX, representing the low maintenance cost of clay reservoirs210

(Weatherhead et al, 2010). Each of the 10,000 sequences was then used to calculate the net present211

value (NPV) of a range of reservoir sizes, with usable storage capacities equivalent to 0 to212

1000mm.year-1 for the area irrigated. NPV provides a measure of the present value of the difference213

between the assumed costs and benefits of a decision. NPV was calculated by discounting the214

annual net benefit of the reservoir loss OPEX costs with a lumped (non-discounted) CAPEX in year 0,215

assuming current government discount rate guidelines of 3.5% on investments of up to 30 years216

(Treasury HM, 2011). Each reservoir was assumed to last 30 years, representing their typical life217
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cycle. The optimum reservoir capacity, defined as the size providing the highest NPV was calculated218

for each of the 10,000 sequences. The median, mean, quartile and extreme values for each site,219

emission scenario and dataset were identified as before.220

The Mann-Whitney U-test (Mann and Whitney, 1947) was used to establish whether there was221

significant differences between the change factor and weather generator datasets in terms of both222

the 80% dry year irrigation demands and the optimum reservoir capacities. The Mann-Whitney U223

test was chosen due to the non-parametric nature of the data even after applying transformations.224

The Mann-Whitney U test is used to test the equality of two population medians. It is considered the225

non-parametric alternative to the 2-sample t-test, it assumes that the populations are independent226

and have a similar distribution shape. Unlike the 2-sample t-test it does not require the two227

populations to be normally distributed.228

In addition, a sensitivity analysis was undertaken to establish how sensitive the decision outcome229

was to the choice of discount rate, benefit of the water and earthwork costs. Each parameter was230

varied in turn, keeping the other parameters fixed, and the median optimum reservoir capacity231

identified, calculating the percentage difference before and after varying each parameter. The232

discount rate was initially fixed at 3.5%, water benefit at £1.56/m3 and earthworks at £1.1.25/m3,233

and subsequently scaled up and down using a linear coefficient.234

Results and Discussion:235

The 80% dry year irrigation demands were compared between the change factor and weather236

generator sequences for each sites and emission scenario (Figure 1). The median 80% dry year237

irrigation demand was similar across both datasets. Both also had a similar interquartile and extreme238

range. These results support the assumption that the weather generator was reasonably calibrated239

with the observed record (Green and Weatherhead, 2013) and suggest that using the UKCP09240
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weather generator instead of the conventional change factor approach may not necessarily lead to241

more robust decision making.242

243

Figure 1. Median (-), mean (X), quartile and extreme values of the 80% dry year irrigation demand244

for the change factor (CF) and weather generator (WG) sequences for each site and emission245

scenario.246

Next, the economic performance of various reservoir capacities generated using the full 10000247

change factor and weather generator sequences were compared against each other for each site248

and emission scenario. Figure 2 shows the results obtained for the site of Woburn using the medium249

emission scenario. Despite subtle differences in the projected NPV, both datasets showed a similar250

trend in NPV against reservoir capacity. The weather generator projected a higher NPV for most251

reservoir capacities, based on the median projection, with the exception of small reservoirs with a252

capacity of less than 100mm.yr-1. The NPV range (i.e. the difference between the max payoff and253

minimum payoff for each reservoir size) is initially quite narrow and increases with reservoir254

capacity. The NPV range is larger for the weather generator dataset than for the change factor255
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dataset for all the reservoir capacities considered. For the change factor dataset, the median256

optimum reservoir capacity was 340mm.year-1. In contrast, the weather generator estimated the257

median optimum reservoir capacity to be marginally smaller at 320mm.year-1 but with a 20% larger258

NPV. Similar results were recorded for all three emission scenarios for all three sites.259

260

Figure 2. Median, quartile and extreme values of NPV against reservoir capacity for the change261

factor (CF) and UKCP09 weather generator (WG) sequences for the Woburn site and medium262

emission scenario.263
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demand and 2) the optimum reservoir capacity. The 80% dry year irrigation demand values obtained266
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statistically significant at the 95CI (Table 2), the difference in the 80% dry year irrigation demand was270

generally less than 25mm.year-1, which is only the depth of a typical single application of water. The271

difference in the optimum reservoir capacities was similarly small (though generally >25mm.year-1),272

with the exception of the Brooms Barn site. These results again suggest that using the weather273

generator in place of the conventional change factor, while theoretically leading to more robust274

decision making, in reality is unlikely to greatly affect the decision outcome.275

Table 2. Results of Mann-Whitney U-test statistical analysis comparing 80% dry year irrigation276

demand and optimum reservoir capacity obtained using economic optimisation with change factor277

(CF) and weather generator (WG) datasets, showing median reservoir capacity, whether they are278

significantly different and using 95 confidence interval (95CI).279

Site Brooms Barn
Criteria 80% Dry year irrigation demand Optimum reservoir capacity
Emission scen. Low Med High Low Med High
Data source CF WG CF WG CF WG CF WG CF WG CF WG

Res. capacity 270 280 280 290 270 300 360 310 370 320 370 330
Sig. difference? Yes Yes Yes Yes Yes Yes
P-value (95CI) 0.00 0.00 000 0.00 0.00 0.00

280

Site Slaidburn
Criteria 80% Dry year irrigation demand Optimum reservoir capacity
Emission scen. L M H L M H
Data CF WG CF WG CF WG CF WG CF WG CF WG

Res. capacity 100 130 110 110 110 120 0 0 0 0 0 0
Sig. difference? Yes Yes Yes Yes Yes Yes
P-value (95CI) 0.00 0.00 0.00 0.00 0.00 0.00

281

Site Woburn
Criteria 80% Dry year irrigation demand Optimum reservoir capacity
Emission scen. Low Med High Low Med High
Data source CF WG CF WG CF WG CF WG CF WG CF WG

Res. capacity 240 270 260 270 260 290 320 300 340 320 340 320
Sig. difference? Yes Yes Yes Yes Yes Yes
P-value (95CI) 0.00 0.00 0.00 0.00 0.00 0.00

282
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Finally, the optimum reservoir capacity was directly compared with the dry year irrigation demand283

calculated using a range on probability of non-exceedance values (80%, 85%, 90%, 95% and 100%).284

Based on these initial findings, the 80% probability of exceedance rule appears to underestimate the285

optimum reservoir capacity at Brooms Barn and Woburn and overestimate the optimum reservoir286

capacity at Slaidburn (the wettest site), with a difference of between -120 to +100mm.ha-1 (Figure 3).287

The 95% probability of non-exceedance rule had a smaller difference of between 0 to + 170mm.year-288

1. Visual comparison would suggest that the 95% probability of non-exceedance rule is much closer289

to the optimum reservoir capacity at the sites of Brooms Barn and Woburn. However at the site of290

Slaidburn, all five probability of non-exceedance rules tested appear to considerably overestimate291

the optimum reservoir capacity (see Figure 3). This result should serve as a warning to those292

stakeholders who do not consider the underlying economics of their decision; blind use of293

probability of non-exceedance rules can lead to maladaptation with stakeholders either over-294

designing or under-designing their assets.295
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296

Figure 3. Differences between the median dry year irrigation demands using 80% to 95%297

exceedance rules and the median optimum reservoir capacity, for the change factor (CF) and298

weather generator (WG) sequences for each site and emission scenario.299
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costs, with larger earthworks costs favouring smaller reservoirs, again as expected. The value of the310

water in the reservoir had the largest effect on the optimum reservoir capacity; below £0.78.m-3 the311

reservoir produced a negative NPV and was no longer economically viable at this site. Increasing the312

value of water above £1.56.m-3 had surprisingly little effect on the optimum reservoir capacity,313

increasing it by only 9.7% even up to a value of £4.68.m-3; this reflects the point that useful capacity314

is limited by demand, with decreasing returns to additional capacity.315

316
Figure 4. Sensitivity analysis comparing optimum reservoir capacity against discount rate, water317

benefit and earthworks cost, showing changes relative to base parameter values, for the Woburn318

site and medium emission scenario. The 80% and 95% dry year irrigation demands are also shown319

for comparison.320

These variations in median optimum reservoir capacity were subsequently compared to the321
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(>7%) the 80% rule works better, and for lower earthwork costs (less than £1.80.m-3) the two rules325

-20

-10

0

10

20

-100 -50 0 50 100 150 200

R
e

se
rv

o
ir

ca
p

ac
it

y
ch

an
ge

(%
)

Input parameter change (%)

Discount rate

Water benefit

Earthworks

80% prob. Non-exceed

95% prob. Non-exceed



ACCEPTED JUNE 2013 Page 18 of 23

are equally close. For all water values, the 95% probability of non-exceedance rule was nearer the326

optimum value, but both rules failed to show that the reservoir was no longer economically viable327

when the water value was less than £0.78.m-3. More case studies would be needed to confirm328

theses are general results, but they suggest that the 80% rule may be misleading.329

It should be noted that these findings are conditional on the view that the median optimum330

reservoir capacity of the 10,000 sequences represents the most appropriate course of action (akin to331

the ‘Laplacian’ view of investment appraisal) (French, 1986). Decision makers who are particularly332

risk averse or risk seeking may disagree with this assumption and may instead use the quartile or333

even best/worst case projections, though for the vast majority of stakeholders our stated334

assumptions should suffice.335

Global climate models (GCM) providing “high” resolution daily projections are few in number and336

those which do are considered less accurate (Paluktikof et al, 1997; Huth et al, 2001). As a result,337

GCM climate change projections often need to be downscaled both spatially and temporally before338

they can be of any use for decision makers. Numerous downscaling approaches are available,339

including but not limited to the change factor approach and UKCP09 weather generator considered340

here. Different downscaling techniques come with their own advantages and disadvantages; see341

Wilby et al (2004) and Fowler et al (2007) for extensive reviews. The UKCP09 weather generator is342

theoretically better than the conventional change factor approach, given that it allows for non-343

stationary variability to be simulated and thus incorporated into climate change risk assessments344

and adaptation planning (Harris et al, 2012). The UKCP09 weather is however not without its flaws, a345

previous study by Tham et al (2011) found that the weather generator initially released with UKCP09346

was unable to reproduce observations of key climate variables including sunshine duration and solar347

irradiation.348

In later versions of the UKCP09 weather generator, modifications were made to the weather349

generator to improve its predictive capabilities, which were later verified by Eames et al, (2012).350
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They found that the weather generator was capable of producing weather data that was consistent351

with historical monthly observations of wind, speed, direct irradiation, diffuse irradiation, global352

irradiation, maximum temperature, minimum temperature and mean temperature. This result is353

consistent with previous findings by Green and Weatherhead (2013) which showed that the UKCP09354

was capable of reproducing observed precipitation and evapotranspiration and annual irrigation355

demand reasonably well. Eames et al (2012) also noted that subsequent iterations of the UKCP09356

weather generator had issues reproducing a realistic distribution of sunshine hours and direct and357

diffuse irradiation which can lead to absurd conclusions. We expect that the UKCP09 weather358

generator will be gradually improved over time to reduce or remove these concerns; while they did359

not affect the findings of this study they may have implications for other applications where hourly360

data is of high importance.361

A criticism of the change factor method, as previously noted, is that it assumes that the temporal362

and spatial structure of future precipitation and evapotranspiration remains unchanged (Diaz-Nieto363

and Wilby, 2005; Fowler et al, 2005; Minvlle et al, 2008; Harris et al, 2012). In some situations, it is364

necessary to evaluate changes in climate variability and not just changes in means (Semenov et al,365

1998). Despite this, the change factor approach remains popular because of its simplicity and is366

useful for converting monthly change factors into daily projections needed to model most367

hydrological processes without incurring excessive expense (Minville et al, 2008).368

Conclusions369

This study found that use of a weather generator not greatly alter the decision outcome compared370

to using the conventional and relative crude change factor approach, suggesting that the changes in371

day-to-day climate variability that is simulated by the weather generator are not significant enough372

to warrant action when informing irrigation reservoir design. This result is contrary to the373

expectation that the UKCP09 weather generator lends itself to more robust decision making; in374

reality the difference between the two approaches is negligible.375
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The core benefits of the weather generator may continue to make it an attractive tool to use, those376

being that it provides hourly climate data and readily available evapotranspiration data. Whether377

these benefits outweigh its fundamental limitations including the poor simulation of extreme378

meteorological events, is subject to the sensitivity of each application and the user’s requirements.379

The study also found that the “best-practice” approach of using the 80% probability of non-380

exceedance rule is inadequate and designers should instead investigate the fundamental economics381

(e.g. NPV) that underpin the decision making process.382
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