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A b s t r a c t  

In this paper we present an approach for modelling and analyzing flexible 
manufacturing systems (FMSs) using Petri nets. In this approach, we f'trst build 
a Petri net model ~NM) of the given FMS in a bottom-up fashion and then analyze 
important qualitative aspects of FMS behaviour such as existence/absence of dead- 
locks and buffer overflows. The basis for our approach is a theorem we state and 
prove for computing the invariants of the union of a finite number of Petri nets 
when the invariants of the individual nets are known. We illustrate our approach 
using two typical manufacturing systems: an automated transfer line and a simple 
FMS. 

K e y w o r d s  a n d  p h r a s e s  

Flexible manufacturing systems, concurrency, Petri net modelling, union of Petri 
nets, place invariants, deadlocks. 

1, I n t r o d u c t i o n  

In recent times, flexible manufacturing systems (FMSs) have become very 

popular  on account  of  their high levels o f  product ivi ty  and low levels o f  inventory 

costs. A typical  FMS comprises 5 - 2 0  machines and 1 0 - 5 0  par t  types and involves 

numerous,  complex  interactions. Much o f  the research in FMSs has sought to enable 

an easier understanding of  these interactions and to this end, many  modell ing schemes 

*A shorter version of this paper was presented at the 1st ORSA/TIMS Special Interest Conference 
on FMSs, University of Michigan, Ann Arbor, August 1984. 
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[3] have been proposed. One of the recent proposals is the Petri net model [4], the 
classical model of  concurrent systems. The Petri net model (PNM) is graphically 
elegant and is supported by rich mathematical theory. It provides a compact model 
to capture the intricacies of FMS interactions. 

In literature, Petri net models (PNMs) fall into one of two classes: Timed 
PNMs [10] and Untimed PNMs [1,9]. A timed PNM of  an FMS captures the actual 
physical behaviour of  the FMS by assuming specific durations for various activities 
in the FMS. An untimed PNM of  an FMS does not associate any times with the acti- 
vities and so models the physical behaviour of the FMS under all possible time de- 
pendencies. Hence, analysis using untimed PNMs yields more conservative results 
compared to those obtained using timed PNMs. Most of the useful theoretical results 
in Petri net theory pertain to untimed Petri nets. Moreover, the results that have been 
derived for timed Petri nets are valid only for a restricted class of nets and there is 
not much hope of deriving the results for more generalized timed Petri nets [10]. Un- 
timed PNMs are mainly used for understanding qualitative aspects of the modelled 
system, such as existence/absence of deadlocks, buffer overflows, and mutual exclu- 
sion [1,9]. Timed PNMs are useful in computing quantitative performance measures 
such as throughput rate and processing times [10]. In this paper, our main objective 
is to gain insights into the qualitative behaviour of a given FMS with regard to dead- 
locks, buffer overflows, invariance of number of jobs, etc. Hence, we use untimed 
Petri nets to model FMSs. In contrast to our using untimed Petri nets for qualitative 
analysis of  FMSs, Dubois and Stecke [4] use timed Petri nets for real-time control 
and performance evaluation of  FMSs. In the sequel of  this paper, a PNM refers to an 
untimed PNM. 

The contribution of this paper is twofold. First, we show how PNMs can be 
systematically built for given FMSs. The construction of PNMs follows a bottom-up 
approach in the sense that the given FMS is decomposed into functional sub-units and 
the PNM of the FMS is obtained by coalescing the PNMs of the functional sub-units. 
Secondly, we develop two useful theorems that enable computation of mvariants of 
the union of a finite number of Petri nets when the invariants of the individual nets 
are known and the nets satisfy certain conditions. We use the above theorem to com- 
pute the invariants of the overall PNM of the given FMS. We then use the classical 
invariant analysis of Petri net theory [2,6] to determine potential qualitative proper- 
ties of the FMS such as existence/absence of deadlocks, buffer overflows, invariance 
of number of jobs in the system, and recoverability from failures. Thus our approach 
helps in building PNMs for FMSs and in the analysis/verification of the qualitative 
properties of the FMSs. 

The rest of  the paper is organized as follows. In sect. 2, we present a com- 
prehensive review of relevant Petri net theory and bring out the relevance of Petri 
net modelling of FMSs. In sect. 3, we review Petri net invariants and prove the 
main results of  the paper. We show, in sect. 4, how a PNM can be systematically 
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constructed for a given FMS and how the results of  sect. 3 become useful in the 
qualitative analysis of  the FMS. In sect. 5, we present the application of  our approach 
to two illustrative manufacturing systems: A transfer line with three machines and two 
buffers, and a simple FMS with three machines and two part types. 

2. I n t r o d u c t i o n  to  Petr i  ne ts  

In this section, we give an introduction to Petri net theory through some 
definitions and examples. These definitions are quite standard and are mostly taken 
from [1] and [9]. We have slightly altered the standard notation to suit our subse- 
quent discussions. We also introduce certain potential properties of  a Petri net and 
discuss their significance in the FMS context. 

2.1. BASIC DEFINITIONS 

Definition 2.1. A Petri net G is a four-tuple (P, T, IN, OUT) where 

P = {PI 'P2 'P3  . . . . .  Pn} is aset  ofplaces, 

T = {t 1, t 2, t 3 . . . . .  t } is aset  of transitions, 

P U T 4 :  O, P N  T :  O, 

IN: (P×  T ) ~ N is an input function that defines directed arcs from places to 
transitions (N is the set of all non-negative integers), and 

OUT: (P × T ) -+ N is an output function that defines directed arcs from transi- 
tions to places. [] 

Pictorially, places are represented by circles and transitions by horizontal bars. 
If IN(Pi, tj) = k, where k > 1 is an integer, we include a directed arc from place Pi to 
transition t/ and label it by k. If IN(p/, t/) = 1, we include a directed arc but without 
any label. If IN(p/, §.) = 0, we do not include any directed arc from Pi to t]. 

Example 2.1. Let us consider a machine that processes one job at a time. As 
soon as the processing is over, another job is made available and the machine starts 
processing again. Figure l(a) depicts a Petri net model (PNM) of the above system. The 
places and the transitions have the following interpretation. 
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l /at  l f b l  1(c~ 

Fig. 1. (a) A PNM that represents the processing of a 
job on a machine. Co) Initial markingM 0 of the PNM. 
(c) MarkingM 1 reached after faring t I in (b). 

Pl : machine ready to process; 

P2 : job waiting for processing; 

P3 : job undergoing machining; 

t 1 : machining commences ; 

t 2 : machining concludes. 

In the above example, it may be noted that the places represent various condi- 
tions in the system, whereas transitions represent the commencement  or conclusion of  
events. We have assumed that the machine, if it breaks down, will be repaired and will 
resume its operation on the job. For the above PNM, 

P = { P l '  

IN (P l '  

IN (P3' 

OUT(p  3, 

OUT(p 1 , 

p2, P3 }, T = {tl, t2}, and 

t l )  = IN ( P 2 ' t l )  = IN ( P a ' t 2 )  = 1 

t l )  = IN ( P l ' t 2 )  = IN ( P 2 ' t 2 )  = 0 

t 1) = OUT(p l, t2) = OUT(p  2, t2) = 1 

t 1) = OUT(p 2, t 1) = OUT(P3, t2) = 0 .  

Definition 2.2. Let 2 e be the powerset of  P. We then define functions 
IP: T--> 2 e and OP: T-> 2 P as follows: 

I P ( t / )  = {Pi E P : I N  (Pr t )  ~ 0} 

OP(t/) = { Pi • P:OUT(Pi '  ~') :¢: 0 } 

V t . E  T ,  
/ 

c T.  



Y. Narahari and N. Viswanadham, A Petri net approach 453 

IP (t/) is called the set of input places oft j ,  and 

OP(t.) the set of output places of t i. [] 

For the PNM of fig l(a), 

IP ( t , )  = OP(t2) = { p l , P 2  } and 

OP( t l )  = IP(t2) = {P3} " 

Definition 2.3. A, markingM of a Petri net G is a function M: P --> N, where N 
is the set of all non.negative integers. [] A marked Petri net (MPN) W is a Petri net G 
together with a marking defined on it. We denote an MPN by (G,M)  and write 
W = (G,M).  We generally associate an initial marking M o with a given PNM. M o will 
represent the initial state of the system which the PNM is modelling. 

A marking of a Petri net with n places in an (n × 1) vector and associates with 
each place a certain number of tokens which are represented by means of dots inside 
the places. Figure l(b) gives a marked Petri net with markingM o given by 

M o = (Mo(Pl) ,Mo(P2),Mo(P3))  T = (1, 1, 0 )  T . 

In the above, the superscript T denotes transpose operation. 
The markingM 1 of the PNM of fig. l(c) is given by 

M 1 = (M 1 (p l ) ,  M] (P2)' M1 (P3))T = (0, 0, 1) T . 

Definition 2.4. A transition t i of a Petri net is said to be enabled in a marking 
M iff 

M(Pi) >1 IN(p/, t.) ~/' Pi E IP( t / ) .  

An enabled transition t/can fire anytime. When a transition t/, enabled in a marking M, 
fires, a new markingM' is reached according to the equation 

M' (Pi) = M(Pi) + OUT(p/, t.) - IN(pi, t.) V Pi E P.  

We say marking M' is reachable from M. [] 
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In fig. l(b),  transition t 1 is enabled in marking M o. When t I fires, the mark ingM 1 is 
reached. Transition t 2 is enabled in M 1 and when t 2 fires, the new marking is M o. 

Definition 2.5. Reachability of  markings is a retiexive and transitive relation 
on the set of  all markings. The set of  all markings reachable from an initial marking M o 
o f  a Petri net is said to be the reachability set of  M o and is denoted by R [M o ]. []  
It can be seen from figs. l (b)  and l(c) that 

R [ M o ]  = R[M1] = {Mo, M,}  . 

Definition 2.6. A Petri net G = (P, T, IN, OUT) is said to be pure or self-loop 
free iff there exists no pair (Pi, t/) E P× T for which 

IN(p/,  t.) 4= 0 and OUT(pi ,  t.) 4: 0 .  []  

In a pure Petri net, there exists no place which is an input place and an ou tpu t  place of  
the same transition. Given a Petfi net that is not pure, we can always get an equivalent 
pure Petfi net by introducing dummy places and dummy transitions, as shown in figs. 
2(a) and 2(b). 

~ Pl 

t l  

P2 

( 

) Pl 
tl / 

) 9; 
tl 

) P2 
2 (a) 2 (hi 

Fig. 2. (a) An impure Petri net. Co) A pure 
Petri net equivalent of the above Petri net. pl 

s is a dummy place, t 1 is a dummy transition. 

Definin'on 2. 7. The incidence matrix C of  a pure Petri net is an (n × m) 
matrix (n is the number o f  places and m is the number  of  transitions) defined by 

C(i, ] )  = - IN(p/,  t]) if IN (Pi' 4 ) =/: 0 
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= OUT(pi ,  t.) if OUT(pi, t.) 4 : 0  

= 0 otherwise.  [] 

In the above definitions, C(i,j) is the (i,j)th element of  C, where i = I, 2, 3 , . . . ,  n 
and/ '=  1 , 2 , 3  . . . . .  m. 

A pure Petri net is completely described by its incidence matrix. For the Petri 

net o f  fig. l(a), 

C ( 1 , 1 )  = - 1,  C ( 1 , 2 )  --- 1, C ( 2 , 1 )  = - 1 ,  

C ( 2 , 2 )  = 1, C ( 3 , 1 )  = 1, and C ( 3 , 2 )  = - 1 .  

Definition 2.8. Let G, = (P1, 7"1, IN, ,  OUT1) and G 2 = (P2, 7'2, IN2, OUT2) 
be two pure Petri nets such that there exists no pair, p E Pl  C3/'2 and t E T l f3 T2, 
satisfying 

either IN 1 (p,t) 4 : 0  and IN 2 (p,t) 4: 0 ,  

or O U T 1 ( p , t )  4 : 0  and O U T 2 ( p , t  ) 4: 0 .  

We define their union as the Petri net G = (P, T, IN, OUT) where 

e =e, ups, r = r ,  uT , 

IN = IN 1 U IN 2 ,  and O U T = O U T  1 U OUT 2 .  

The union of  any finite number of  Petri nets is also defined likewise. []  
For example, the Petri net o f  fig. 3(c) is the union of  the Petri nets in figs. 3(a) 

and 3(b). 

I . I" 1 1"3 tl t3 

P2 P3 t2 P 3 

L tz tz 

3(a) 3 (b) 3 (el 

Fig. 3. (a) and (b) Two Petri nets. (c) Union 
of the Petri nets in (a) and (b). 
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2.2. RELEVANCE OF PETRI NET MODELLING TO FMSs 

In our approach of modelling FMSs by Petri nets, we use the following inter- 
pretation for places, transitions, and tokens: 

(1) Places represent conditions or resources (pallets or machines) or parts 
(buffer). 
(2) If a place represents a condition, a token in the place indicates that the 
condition is true and no token indicates that the condition is false. If a place 
represents resources, a token in it represents a single resource and if a place 
represents a buffer, a token in it stands for a part. 
(3) Transitions represent either commencement or conclusion of events. 

We assume the above interpretation for all PNMs in the rest of the paper. We 
now define certain potential properties of a Petri net and discuss their relevance in 
the FMS context. 

Definition 2.9. Safeness and boundedness. A place Pi of a Petri net is said to 
be bounded in a marking M o iff there exists a positive integer B such that 

M(Pi) <~ B V M E R [Mo] . 

If B = 1, we say the place is safe. If all places of a Petri net are bounded (safe) in a 
marking M0, the Petri net itself is said to be bounded (safe) in that marking. [] 

Boundedness of a PNM refers to absence of overflows in the modelled system. 
If the PNM of an FMS is bounded, we can say that all buffers in the FMS are finite. 
In such a case, buffer sizes can be estimated by finding the bounds on the places that 
represent the buffers. 

Definition 2.10. Conservativeness. A marked Petri net W = (G, Mo) is said to 
be conservative iff 

n 

M(pi) = constant V M E R [Mo] . 
i = 1  

[] 

If a marked Petfi net is conservative, then the sum of all tokens will remain a constant 
in all reachable markings. Such a PNM will represent a system with constant number 
of  resources/jobs, for example, a closed queueing system. 

Definition 2.11. Properness. A marked Petfi net W = (G, Mo) is said to be 
proper iff 
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M o @ R [MI V M E R [Mo] . [] 

In a proper Petri net,  the initial marking is reachable from all reachable markings. 
Thus, properness implies re-initializability. This assumes much significance in the con- 
text  o f  fully automated manufacturing systems. For, properness in such systems will 
ensure that  the system will eventually re-initialize itself from any current state (which 
could be an illegal state or a failure state). I f  the PNM of  an FMS is not  proper, then 
we can say that manual intervention is necessary to restore the system to its initial 
state from certain states. 

Definition 2.12. Liveness. A transition t/ of  a marked Petri net W = (G, Mo) 
is said to be live iff, for all reachable markings M, there exists a sequence of  transition 
firings which results in a marking in which t i is enabled. A Petri net is said to be live 
if all its transitions are live. [] 

Liveness of  a PNM implies absence of  deadlocks in the modelled system. Dead- 
locks occur in a system when processes, which want to run, hold insufficient resources, 
as a result of  which the system comes to a standstill. Deadlocks could occur in an FMS 
because o f  the complex nature o f  the interactions in the FMS. Using the PNM of  an 
FMS, we can determine i f  deadlocks exist and take the necessary action for their 
prevention. 

Examples. The marked Petri net of  fig. l(b) is safe, bounded, live, proper, but  
no t  conservative. Figures 4 ( a ) - 4 ( d )  depict PNMs satisfying different sets of  these 

properties. 

( )pl 

)" 
, P2 

r- f2 

) P3 
f3 

~.(a) 

1 
~.(b) I,(c1 4(d) 

Fig. 4. (a) An MPN (marked Petri net) that is safe, 
bounded, conservative, proper and live. 0a) An MPN 
that is not safe, not bounded, not conservative, not 
proper but live. (c) An MPN that is safe, bounded, 
conservative, proper but not live. t 4 is not live. (d) An 
MPN that is safe, bounded, not conservative, not 
proper, and not live. 
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3. T w o  t h e o r e m s  o n  the  invar iants  o f  a Pet r i  ne t  

In this section, we review the important concept of  Petri net invafiants [6] and 
present our results which form a basis of  the approach, to be discussed in sect. 4, for 
the modelling and analysis of  FMSs. The main idea for the development of these re- 
sults has been taken from [2]. 

3.1. PETRI NET INVARIANTS 

We introduce in the following definition, a slight change in standard notation 
for ease of  presentation. 

Definition 3.1. Let G = (P, T, IN, OUT) be a pure Petri net with incidence 
matrix C. Let 

A (1 × n) row-vector X is said to be a place invariant or p-invariant of G iff XC = 0 and 
an (m × 1) column-vector Y is said to be a transition h~variant or t-invariant iff 
CY=O.  [] 

Theoretically, X and Y could consist of real numbers as components. However, 
we find it more than adequate to consider only integers as the components. 

3.1.1. Significance o f  invariants. Let (G, Mo) be a pure marked Petri net. I f M  is 
some reachable marking, then it may be shown that 

M = M o + C Y ,  (3.1) 

where C is the incidence matrix of  G and Y is an (m × 1) vector with non-negative integer 
entries. For j = 1, 2, 3 . . . . .  m, the f th  entry of Y gives the number of times transition 
t i is fired in a firing sequence that leads to M starting from M o. Multiplying both sides 
of eq. (3.1) by a (1 × n) row-vector X, we get X M = XM o + XCY. I f X  is a p-invariant, 
the above becomes XM = X M  o. This implies that, for all reachable markings, the 
weighted sum of  tokens is a constant, the weights being given by the p-invafiant. 

If Y in eq. (3.1) is a t-invariant, then CY = 0 and hence M = M  o. This implies 
that a t-invariant, if it exists, will give the number of times different transitions should 
be fired in order that a particular marking may be reproducible. 
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3.1.2. Use ofinvariants. A knowledge of the invariants of a Petfi net is very useful 
for establishing/disproving some important properties of Petri nets such as bounded- 
ness, conservativeness, properness, and liveness. We corroborate the above statement 
by stating below, without proof, the following theorems. 

THEOREM 3.1 

A Petri net G is bounded if there exists a p-invariant X all of  whose entries are 
strictly positive. [] 

THEOREM 3.2 

A Petri net G is conservative iff there exists a p-invariant X all of whose entries 
are equal to unity. [] 

THEOREM 3.3 

A Petri net G is not proper if its only t-invariant is the trivial invariant, that is 
with all its components equal to zero. [] 

The above theorems give a sufficient condition for boundedness, a necessary 
and sufficient condition for conservativeness, and a necessary condition for properness, 
respectively. In most cases, a knowledge of the invariants together with some addi- 
tional information about the modelled system will be sufficient to completely in- 
vestigate these above properties and also liveness. 

3.2. TWO THEOREMS ON PETRI NET INVARIANTS 

We now develop two results on Petri net invariants. Theorem 1 facilitates 
computation of  p-invariants of the union of two Petri nets when the p-invariants 
of the individual Petri nets are known. Theorem 2 is an identical result on t-invariants. 
These results form the nucleus of the FMS modelling and analysis approach subse- 
quently discussed in this paper. 

THEOREM 1 

Let G 1 = (P1 ,  Tl, IN1, OUT1) and G 2 = (P2, T2, IN2, OUT2) be two pure 
Petri nets such that their union G = (P, T, IN, OUT) is also pure. Let r, s, and n be 
positive integers such that r ~< s < n. Also, let T 1 N T z = 0 and 

PI = {Pl '  P2 . . . . .  Pr'Pr+, . . . . .  Ps} '  
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so tha t  

P = { P , ' P 2  . . . . .  Pr+l . . . . .  Ps'Ps+l . . . . .  p n } .  

T h e n  the n -vec to r  

X = (x  1, x 2 . . . . .  x r ,  Xr. 1 . . . . .  xs+ 1 . . . . .  x n )  

will be a p- invar ian t  o f  G i f f  the s -vector  

x 1 = ( x  1, x 2 . . . . .  x r, x r . l  . . . . .  ¾ )  

is a p- invar ian t  o f G  1 and the (n  - r  + 1 ) -vec to r  

X 2 = ( x , x +  1 . . . . .  ¾ ,  x . ,  . . . .  , x  n )  

is a p - invar ian t  o f  G 2. [ ]  

Proof 

Let  T 1 = / q ,  t 2 . . . . .  tk} and T 2 = ] tk÷l , tk÷2 . . . . .  t m} ,  where  k <  m.  Let  
C 1, C 2 and C represent  the inc iden t  ma t r i ces  o f  G t,  G 2 and G,  respect ively .  I f  

C1(il ,  Jl), C2(i2,/'2) and C(i , j )  represent  typ ica l  e l emen t s  o f  C1, C 2 and C, respec- 
t ively,  then  the ranges o f  the indices i I , i 2, J l ,  J2, i a n d j  are given by :  

i 1 = 1 , 2 , 3  . . . .  . s', 

/'1 = 1 , 2 , 3 , . . . , k ;  

i 2 = r , r +  1, r +  2 . . . . .  s, s +  t . . . . .  n ;  

J2 = k +  1, k + 2  . . . . .  m ;  

i = 1 , 2 , 3  . . . . .  n ;  

/ = t , 2 , 3  . . . . .  m.  
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that 
Further,  it can be seen from the definition of  union of  Petri nets (Def. 2.8) 

C(i , j )  = Cl ( i , j )  i = l , 2 , . . . , s ;  

(i /) = C 2 , i = r , r +  1 . . . . .  n ,  

= 0 otherwise.  

j = 1 , 2  . . . . .  k 

/ = k + l  . . . . .  m 

(3.2) 

We first prove the necessary part. The sufficiency part can be proved by re- 
versing the arguments. To prove the necessary part, we are given that X 1 and X 2 are 
p-invariants of  G 1 and G2, respectively. This implies that 

s 

xiC I ( i , / )  = 0 for /" = 1, 2 . . . . .  k (3.3) 
i = 1  

and 

n 

~. )~C 2( i , j )  = 0 for j = k +  1 . . . . .  m .  (3.4) 
i = r  

F o r ] "  = 1, 2 . . . . .  k, (3.2) and (3.3) give 

n s n 

x iC( i , j )  = ~ x iC( i , j )  + ~ x iC( i , j )  = O. 
i = 1 i = 1 i = S + I  

F o r ]  = k + 1 . . . . .  m, (3.2) and (3.4) give 

n r - 1  n 

~. x iC( i , j )  = ~ x .C( i , j )  + Z xiC(i ,])  = O. 
i =  1 i =  1 i = r  

Combining the above two equations, we obtain 

n 

Z xiC(i ,J)  = 0 for j = l , 2  . . . .  , m .  
i = t  

Thus, the vector X =  (x l , x  2 . . . . .  x r, Xr+ 1 . . . . .  x s . . . . .  Xn) is a p-invariant of  G. [] 
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We now state an identical result on t-invariants. We have omitted the proof 
since it runs on identical lines as the previous proof. 

THEOREM 2 

Let G l = (Pl ,  Tl, IN1, OUT1) and G 2 = (P2, 7"2, IN2, OUT2)  be two pure 
Petri nets such that their union G = (P, T, IN, OUT) is also pure. Let r, s, and m be 
integers such that 0 < r ~< s < m and let 

T 1 : { t l ,  t 2 . . . . .  t , t + l  . . . . .  t }  

and 

so that 

r = { t , , t  2 . . . . .  t , t + ,  . . . . .  t , t + ,  . . . . .  

Also, let P:  A P2 = 0. Then the m-vector Y = (Yl,Y2 . . . . .  Ym )T is a t-invariant of  
G iff the s-vector Y: = (Yl ,Y2  . . . . .  Yr,  Yr+ 1 . . . . .  y s )  T is a t-invariant of  G 1 and the 
( m - r +  1)-vector I"2 = (Yr,  Yr+ l . . . . .  Ys, Ys+ l , " " , Ym ) T isa t ' invariant°fG2" [] 

R e m a r k s  on t heorems  1 and  2 

(1) In these theorems, the Petri nets G l ,  G 2 and G have all got to be pure. 
This does not, however, restrict the use of  the theorems since any Petri net that is not 
pure can be made equivalent to a pure Petri net as shown in figs. 2(a) and 2(b). 

(2) Given a Petri net, all its p-invariants can be computed by decomposing 
it into simpler Petri nets and then applying theorem 1. Similarly, application of  
theorem 2 helps in computing all t-invariants of  a given Petri net. 

(3) The theorems can be generalized to any finite number of  Petri nets by 
repeated application. 

4. T h e  a p p r o a c h  

We now present our approach to the modelling and analysis of FMSs using 
Petri nets. 

An FMS involves numerous concurrent interactions which can be viewed as 
the sum total of  interactions on various part types in the FMS. The processing on each 
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part type is composed of  a sequence of operations on the part type. Each operation of 
the sequence will be performed on one of a f'mite set of  machines since there will be a 
choice of machines for virtually every operation. To construct a PNM for the given 
FMS, we first represent each machine operation by a PNM. We then obtain the PNM 
for each specific operation as the union of the PNMs corresponding to the processing 
on the machine belonging to the choice list of machines of that operation. Next, we 
obtain the PNM of each part type as the union of the PNMs of the operations involved 
in the processing of  that part type. Finally, the PNM of  the FMS is obtained by con- 
structing the union of  the PNMs of all part types. Thus we have a systematic bottom- 
up scheme for building a PNM of the given FMS. 

At each stage of building the PNM, we can invoke theorem 1 to compute the 
p-invariants of  the PNM obtained by coalescing the PNMs of the previous stage. Thus 
we can obtain the p-invariants of  the overall PNM of the FMS. Using the p-invafiants, 
we can investigate the qualitative behaviour of the given FMS by evaluating the proper- 
ties of the PNM. The next section presents two examples to illustrate this analysis 
procedure. 

5. E x a m p l e s  

5.t. A TRANSFER LINE CONSISTING OF THREE MACHINES AND TWO BUFFERS 

Figure 5(a) shows a transfer line that comprises three machines M1, M 2 and M 3 
and two buffers B 1 and B 2 with capacities n 1 and n2, respectively, (n t > 0, n 2 > 0). 
We make the following assumptions on the above system: 

(i) There is a perennial source of jobs and the flow control mechanism allows 
a job into the system whenever M 1 if free. 

(ii) Machines M 1 and M 2 will process a job only if each of buffers B 1 and B2, 
in that order, has at least one empty slot to accommodate the jobs processed by M 1 
and M 1 . 

(iii) Jobs waiting in B 1 and B 2 are released for processing in a random order. 

Let G1, G2, and G 3 be the PNMs depicted in figs. 5(b), 5(c) and 5(d), re- 
spectively. For i = I, 2, 3, G i represents the processing that takes place on M i. I fG is 
the union of  G1, G 2 and G3, then G represents all the activities occurring in the 
transfer line. The interpretation of the places and transitions of the above PNMs is as 
follows. The index i takes values 1, 2 and 3 and / takes values 1, 2 in the following: 

JR 

MR. 
l 

P. 
l 

- a job ready for processing by M1, 

- machine M i ready to process a job, 

- machine M i processing a job, 
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LOAD 1 ~ ~ ' - - - ~  .... ~ ~ t ' - - - - ]  UNLOAD 
M1 B1 M2 82 H3 

Fig. 5. (a) A transfer line with 3 machines and 2 buffers. 

HR 1 E 1 JR 

Ell MR 1 JR Pl 

e 1 e2 e 3 el+e2+e 3 

Pl 

Fig. 5. (b) PNM and p-inva.riants for processing on M 1' 

F1 

el 

I ~ 2 ~ f 3  FI 
HR2 E2 F1 E1 P2 F2 

% e5 e 1 e 1 e/,'t'e 5 e 5 

Fig. 5. (c) PNM and p-invariants for processing on M 2. 

F2 HR3 P3 E2 

e5 e6 e6 e5 

Fig. 5. (d) PNM and p-invariants for processing on M 3. 

E 1 MR 1 JR P1 F1 MR2 F2 E2 P2 HR3 P3 

e 1 e 2 e3 el÷e2~e 3 e 1 e4. e 5 e 5 %+e=. e 6 e 6 

Fig. 5. (e) p-invariants of the PNM of the transfer line. 

Fig. 5. Transfer line example. 
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E, 
1 

F. 
/ 

t2i-1 
t2t 

- empty slots in buffer 13/, 

- occupied slots in buffer Bj, 

- machine i commences processing a job, 

- machine i finishes processing a job. 

The table in fig. 5(e) shows the p-invariants of  G which are obtained from the 
p-invariants of  G 1, G 2 and G 3 shown in figs. 5(b), 5(c) and 5(d), respectively. It may 
be noted that theorem 1 has been used in writing down these p-invariants. In the above 
p-invariants, the quantities e I , e 2, e3, e4, e 5 and e 6 are any real numbers but, for the 
sake of convenience, we take them as integers. 

Let us assume that the above system has the following initial state: All machines 
ready to process, all buffers empty, and a solitary job waiting to be processed by M 1 . 
If M o is the initial marking of G, corresponding to the above initial state, we have 

Mo(MR1) = Mo(MR2) = Mo(MR3) = Mo(JR ) = 1 

Mo(E1) = n l ;  Mo(E 2) = n 2 

Mo(Px) = Mo(Pz) = Mo(FI)  = Mo(F=) = Mo(P3) = 0 .  

Let M be any reachable marking of the marked Petri net (G, Mo). If S (M)  denotes 
the weighted sum of tokens in marking M, taking the weights as the components of 
the p-invariant shown in fig. 5(e), we get 

S(M) = e lM(E1)  + e2M(MR1) + eaM(JR) 

+ (e 1 + e 2 + ea)M(P 1) + e l M ( F  l) + eaM(MR =) 

+ e sM(F  2) + esM(E 2) + (e 4 + es )M(P  2) 

+ e6M(MR3) + e6M(P 3) (5.1) 

and 

S(Mo) = eln 1 + esn 2 + e 2 + e 3 + e 4 + e 6 . (5.2) 
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By the property ofpqnvariants, we have 

S(M) = S(Mo) V M E R [Mo] . (5.3) 

Equations (5.1) - (5 .3)  imply the following equations: 

M(E1) + M(Px) + M(FI )  = n l ,  (5.4) 

M(MRI)  + M ~ l )  = 1, (5.5) 

M(JR) + M(PI)  = 1, (5.6) 

M(MR2) + M0~2 ) = 1 , (5.7) 

M(E2) + M(F2) + M(P 2) = n2 ,  (s.8) 

M(MR3) + M(P3) = 1. (5.9) 

We can now make the following observations about the system under con- 
sideration. 

(i) The PNM G is bounded and non-conservative. This follows as a direct 
application of theorems 3.1 and 3.2. Thus there are no overflows in the system and 
also the number of jobs being processed does not remain a constant at all times. 

(ii) In every state of the above system, at least one event is enabled. That is, 
the above system does not have a deadlocked state. This observation is proved in the 
following. 

Property 1: In every reachable marking of the MPN (G, Mo) , at least one transition is 
enabled. 

Proof 

Let us assume to the contrary. Then, there exists a reachable marking M such 
that none of the transitions t i (i = 1, 2, . . .  , 6) are enabled in M. In particular, 
t 2, t4, and t 6 are not enabled. Therefore, we get M(P1) = M(P2) = M(P3) = 0. From 
(5.4)-(5.9) ,  we have 
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M ( E l )  + M(F1)  = n l ,  (5.10) 

M(MRI) = 1, (5.11) 

M(JR)  = 1, (5.12) 

M(MR2) = 1, (5.13) 

M(E2) + M(F2)  = n 2 ,  (5.14) 

M(MR3) = 1. (5.15) 

Since t I is also not enabled, we get, using (5.11) and (5.12), that M(EI)  = 0. Hence 
(5.10) implies that M ( F I )  = n 1. This, together with (5.13) will imply thatM(E2)  = 0 
since t 3 is not enabled. Now (5.14) becomes M(F~) = n 2 and by (5.15), t s is now 
enabled. This is a contradiction to our assumption that none of  the transitions are 
enabled in M. This proves the property. [] 

(iii) The system is live since the MPN (G, Mo) is live. We prove the liveness of  
(G, Mo) in the following. 

Property 2: The marked Petri net (G, Mo) is live. 

Proof 

Let M be any reachable marking. We have to show that each of  t i (i = 1, 2, 3, 4, 
5, 6) is live. In this proof, we only show that t I and t 2 are live. Identical arguments 
can be used to prove the liveness of  t a, t 4, t s and t 6. 

Equation (5.5) implies that M(P 1) ~< 1. Hence, M(P 1) is either zero or unity. 
I fM(P1)  = 1, then t 2 is enabled. I f M ( P I )  = 0, then we will show that we can reach a 
markingM* in which t I is enabled. Thus, both t 1 and t 2 are live. 

To show that, for M(P l)  = 0, we can reach a marking M* in which t I is en- 
abled, we proceed as follows. Since M(P1) = 0, we have from (5.4), (5.5) and (5.6): 

M(E1) + M ( F t )  = n l ,  (5.16) 

M(MR1) = 1, (5.17) 

M(JR) = 1. (5.18) 
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If M(E1) > 0, then (5.17) and (5.18) imply that M = M *. I fM(EI )  = 0, we can invoke 
property 1 and argue that a marking M* is indeed reachable, for which transition t 1 
is enabled. Thus, t: and t 2 are live. [] 

(iv) Blocking and starving of  machines are possible in the above system. For 
example, if we put M(F1) = n 1 in (5.16), we get M(E1) = 0 and so transition t a is 
disabled as buffer B 1 is full and hence machine M l is blocked. Similarly, if we put 
M(EI)  = n l ,  we get M(F1) = 0 and so transition t 3 is disabled. Now machine M 2 is 
forced to starve. 

(v) Evaluating the properties of  G 1, G 2 and G 3 using their invariants provides 
some clues for designing the system. In the current example, G 1, G 2 and G 3 are all 
bounded, non-conservative, not live. Their union G is bounded, non-conservative but 
live. Thus, liveness can be introduced into the system by including additional inter- 
actions in the system. The same can not be said of  boundedness and conservativeness. 
If one of G 1, G 2, G 3 were unbounded, G would be surely unbounded. Also, if one of 
G 1 , G 2 and G 3 were non-conservative, then so would G be. 

5.2. AN FMS WITH THREE MACHINES AND TWO PART TYPES 

Figure 6(a) shows the operation sequence and choice of  machines for an 
FMS with three machines M1, M 2 and M 3 and two part types J1 and J2- We make 
the following assumptions about the system. 

(i) Machine set-up times and transportation times are negligible. 
(ii) There are n 1 pallets available for parts of type Jl and n 2 pallets for parts 

of type J2" 
(iii) A part is let into the system whenever a pallet of its type is available. 
(iv) When a part finds more than one machine free to process it, the machine 

to process it is chosen non-deterministically. 
(v) The initial state of the system is: All pallets free and all machines free. 

Let G1, G 2 and G 3, G 4 be the PNMs shown in figs. 6(b), 6(c), 6(d) and 6(e), 
respectively, and let G be their union. G: and G 2 represent the PNMs, respec- 
tively, of the first and second operations on parts of type Jl- G3 and G 4 correspond 
to the first and second operations on parts of type J2- G will then give the PNM of 
the overall FMS. The interpretation of  the places in the above PNMs is as follows 
( i=  1 , 2 , 3 , / ' =  1,2, k =  1,2): 

M .  l 

P.  / 

M ~  

- machine M i free, 

- pallets of type / available, 

- jobs of type j waiting for k th operation, 

- mach ine  M i performing the k th operation on a part of  type j. 
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op#l opt2 

Jl "I/"2 "2/"3 
J2 "~/"3 .I/.2/.3 

Fig. 6(a) Part types and operations of the FMS. 

H1 P1 H2 

PI H1 H2 Mlll H211 W12 

el e 2 e 3 el+e 2 el+'e 3 • 1 

Fig. 6(b) PNM and p-invariants of the first operation on parts of type J1- 

,t 
H2 

I 
W12 H3 

t6 

W121H2 H3 11221 H321 P1 
e I e 3 e/, el+e3= el+e 4 e 1 

Fig. 6(c) PNM and p-invariants for the second operation on parts of type J l" 
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HI P2 

j W22 

113 

1 P2 H1 H3 Hl12 ! 11312 W22 

e 5 e 2 e/~ e2+esi e&÷e 5 e 5 

Fig. 6(d) PNM and p-invariants for the first operation on parts of type J2" 

HI W22 H2 

W22 H 1 112 113 M122 11222 11322 P2 
e 5 e 2 e 3 e/, e2+ec " e3+e 5 e/,-~e 5 e 5 

Fig. 6(e) PNM and p-invariants for the second operation on parts of  type J2' 

place P1 111l 112 11111 11211 W~ 113 11221 
inv. 
comp. el e2  e3 el+e2 el+e3 el ~ el+e] 

place H321 1=2 Hl12 11312 9122 H122 1'1222 11322 
inv. romp. el.re 4 e S e2+e 5 e/,+e 5 e S e2+e e3+e S e/**~ 

Fig. 6(f) p-invariants of the overall PNM of the FMS. 

Fig. 6. An FMS with 3 machines and 2 part types. 
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The interpretation of the transitions is simple because each transition flags the com- 
mencement or conclusion of a machine operation. Figure 6(1) shows the p-invariants 
of G, while figs. 6 (b) -6 (e )  display the p-invariants of G 1 , G 2, G 3 and G4, respectively. 

We can now make the following observations about the present system. 

(i) G 1, G 2, G 3 and G 4 are bounded, non-conservative, and not live. G is 
bounded, non-conservative, and live. These can be shown using the corresponding 
p-invariants. 

(ii) It can be shown from the p-invariants of G that the place W12 is bounded 
by n 1 and the place W22 by n 2. The place W12 represents jobs of type J1 waiting for 
the second operation. So, it represents the input buffers of  M 2 and M 3 and output 
buffers of M 1 and M 2. Similarly, place W22 represents the input buffers of M 1, M 2 
and M 3 and output buffers of M l and M 3. Using this information, we can find upper 
bounds for the input and output buffers of  the machines. I f I1 ,  12 and 13 and 0 1, 
0 2 and O 3 are these upper bounds for the input and output buffers of MI, M 2 and 
M 3 respectively, it can be shown that 

[1 = n2' O1 = nl + n2'  J2 = nl + n2' 02  = rll' [3 = 7ll + 712 

mad O 3 = n 2. 

6. C o n c l u d i n g  r e m a r k s  

In this paper, we have shown how Petri net models can be systematically 
built for FMSs and how they can be analyzed to gain insights into the qualitative 
behaviour of  FMSs. The two illustrative examples presented in sect. 5 embody all 
the essential principles of our approach. The same principles can be used to model 
and analyze any given FMS. However, if the FMS is complex, the PNM will be quite 
huge and analysis will not be easy. One way to overcome this problem is to use 
coloured Petri nets instead of ordinary Petri nets. Coloured Petri nets lead to compact 
models for even complex FMSs. Kamath [5] has discussed the use of coloured Petri 
nets in the modelling and simulation of FMSs. We have recently extended theorems 
1 and 2 to coloured Petri nets [7]. 

Deadlocks are an important aspect of  FMS behaviour and a future research 
direction would be to use the Petri net approach to detect possible deadlocks in a 
given FMS. This paper discusses how Petri net invariants are useful in showing absence 
of deadlocks in a given FMS. In [8], we consider the question of FMS deadlocks in 
greater detail and establish the presence of deadlocks in typical manufacturing systems. 
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