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ABSTRACT

MOLECULAR DYNAMIC SIMULATIONS TO PROBE EFFECTS OF 
ULTRA-SHORT, VERY-HIGH VOLTAGE PULSES ON CELLS

Viswanadham Sridhara 
Old Dominion University, 2007 
Director: Dr. Ravindra P. Joshi

The use of very high electric fields (~ lOOkV/cm or higher) with pulse durations 

in the nanosecond range (Ultra-short) has been a very recent development in bio­

electrics. Traditionally, the electric field effects have mostly been confined to: (a) low 

field, long-duration pulses, and (b) focused mainly on electroporation studies. Thus, 

aspects such as possible field-induced DNA damage, calcium release, alterations in 

neuro-transmitters, or voltage-gating have generally been overlooked.

Ultra-short, high-field pulses open the way to targeted and deliberate apoptotic 

cell killing (e.g., of tumor cells). Though experimental data is very useful, it usually 

yields information on macroscopic variables that is inherently an average over time 

and/or space. Measurements often do not provide the molecular level information or 

details, as might be possible through numerical simulations. Also, the relevance and 

relative role of underlying physical mechanisms cannot be probed. With developments 

in computer technology, rapid advances in numerical algorithms for parallel computing, 

and with increasing computational resources, computer simulations of cellular dynamics 

and biological phenomena is gaining increasing popularity. A range of simulation 

methods exist that span the macroscopic continuum approaches (e.g. the Smoluchowski 

equation), to those based on the semi-classical retarded Langevin and Green’s 

functions, to microscopic-kinetic analyses based on Brownian dynamics or Molecular 

Dynamics (MD). Here we focus on the MD technique, as it provides the most 

comprehensive, time-dependent, three-dimensional nanoscale analyses with inclusion of 

the many-body aspects. This dissertation research presents simulations and analyses of
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lipid membrane poration and its dynamics, predictions of transport parameters under 

high-field, non-equilibrium conditions, electric fields effects on DNA, micelle 

disintegration, protein unfolding and intra-cellular calcium release.

The following results have been found as a result of the application of external 

electric fields on cells: (a) Poration due to the re-orientation of the lipid molecules 

within the lipid bilayer, (b) Extemalization of charged molecules such as Phosphotidyl 

Serine (PS), (c) Dramatic lowering of permittivity and diffusion coefficient with 

spatially structured layering of the membrane nanopore, (d) DNA alignment in the 

direction of electric field and eventual fragmentation, (e) Calcium release from the 

endoplasmic reticulum (ER) leading to time-dependent oscillatory waves and (f) 

Membrane fragmentation upon the application of high external fields.
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CHAPTER I

INTRODUCTION

1.1 Overview

The interaction of electric and magnetic fields with biological systems (1-3) has been of 

long standing scientific interest. This interaction might be accidental, coming from 

various electrical devices and appliances, but could also be intentional, like exposure of 

biological tissue to short electrical pulses (time periods ranging from microseconds to 

milliseconds) for electrochemotherapy and DNA electro transfer (4). The use of very 

high electric fields (~100KV/cm) with pulse durations in the nanosecond range has been 

a very recent development in the area of bio-electrics (5). This technique is new and has 

been termed as intracellular manipulation. The primary objective of this technique is to 

treat different types of cancer and assist in introducing drugs to specific sites. Recently, 

experiments on mice treated with melanoma have already confirmed the hypothesis of 

field-assisted cancer cell death (6). This could be a drug-free therapy, as the pulsed 

electric fields are shown to cause apoptosis directly without any gene transfer and 

without the injection of drugs. Some of the other observed experimental results are 

outlined in the next section. These experimental results of PEF’s on cells often do not 

provide the molecular level information or the details and insights needed to understand 

the underlying biophysical mechanisms involved in apoptosis induction (tumor 

destruction). Hence, there is an immense need to carry out simulations both at 

microscopic and macroscopic levels that would help provide an understanding and 

quantitative assessment of the apoptosis phenomena. With developments in computer 

technology, rapid advances in numerical algorithms for parallel computing, and with 

increasing computational resources, computer simulations of cellular dynamics and 

biological phenomena is gaining increasing popularity over the last few decades (7). 

These simulations can help quantify the roles of various inherent processes and also

Dissertation References Format: Proceedings of the National Academy of Sciences.
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2

gauge the importance of several on-going mechanisms involved in the application of

nsPEF’s on biological tissues.

1.2 Experimental Observations of Pulsed Electric Fields on Cells

Some of the salient features that have emerged from the studies of cellular 

responses to high-intensity, pulsed electric fields are given as follows.

(i) Apoptosis has been observed (8) for cells subjected to the short electrical pulses.

(ii) Multiple pulses have been observed to do more irreversible damage than single­

shot electric shocks (6).

(iii) Extemalization of phosphatidylserine (PS) was shown to occur in response to a 

nanosecond pulse for average electric fields above 2 MV/m (9).

(iv) A distinct polarity effect has been observed, with the extemalization 

predominantly: 'occurring at the anode end. In addition, asymmetry in transmembrane 

potentials at the anodic and cathodic poles has been demonstrated (10).

(v) Calcium is released from the intracellular endoplasmic reticulum in response to 

external voltage pulses (11). This could be a vital element in induction or possible 

suppression of cell signaling.

(vi) Molecular uptake has been shown to be delayed process as compared to 

conventional electroporation that utilize smaller electric fields and longer time durations

(5) .

(vii) DNA damage in cells due to the ultrashort pulses has been observed (12).

1.3 Scope of the. Present Dissertation Research

The application of pulsed electric fields on cells induce transmembrane potentials 

across various membranes (plasma, nuclear, inner and outer mitochondrial etc.) in cells, 

leading to permeabilization of membranes, if the membrane voltage reaches a minimum
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threshold of about IV. These membranes are generally few (-1-10) nanometers thick. 

Furthermore, the technique of intracellular manipulation requires the externally applied 

electric fields to penetrate deep into the sub-cellular organelles. Based on simple 

considerations of circuit theory and capacitive charging, one can easily show that only 

electric fields of short duration and fast rise-times could be capable of penetrating sub- 

cellular structures. Hence, the time scales of interest here are typically a few 

nanoseconds. Hence a nanoscale, molecular approach to modeling bioelectric response at 

cellular level capable of resolving events on nansoseconds or less, is necessary to 

understand the underlying biophysics of the interactions of PEF’s on cells. Here, we 

focus on Molecular Dynamics (MD) technique (7, 13, 14) as it provides the most 

comprehensive, time-dependent, three-dimensional nanoscale analyses with inclusion of 

the many body aspects. Details of the MD technique can be found in Chapter III.

Most of the work done in MD simulations is to understand structure and dynamics 

of molecular clusters, chains, and lipid bilayers (15). Recently, there has been some 

progress made in understanding proteins and micelles (16). However, there are not many 

reports on the electrical interactions on cellular response and the molecular biophysics. In 

particular, MD analyses in the context of nanosecond bio-electrics, is severely lacking. 

Yet aspects such as electroporation (3) or intracellular manipulation (5) that arise from 

the application of short duration high-amplitude pulses to cell membranes need to be 

understood. The primary objective in the dissertation work reported here is to use MD 

technique to probe effects quantitatively and analyze the response o f ultra-short, very 

high amplitude pulsed electric fields on cells.

In this dissertation report, Chapter II provides the relevant literature review on 

traditional electroporation principles along with introducing to the novel concept of 

intracellular manipulation. This chapter also provides the relevant studies done in the past 

in the area of computational structural biology. In addition, Chapter II introduces the 

lipid membrane models, water models and other protein models obtained from X-ray
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diffraction studies. These models are used to carry out simulations in this dissertation 

research reported here. In Chapter III, the details of various computational algorithms in 

MD technique along with other physics-based mathematical models used for the studies 

of nsPEF’s on cells are provided. Chapter IV of this dissertation research report presents 

simulations and analyses' of several aspects including membrane poration and its 

dynamics; predictions of transport parameters under high-field, non-equilibrium 

conditions; electric fields effects on DNA; micelle disintegration; protein unfolding; and 

intra cellular calcium release. Finally, Chapter V summarizes the work reported in this 

dissertation report along with the scope for future work.
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CHAPTER II 

LITERATURE REVIEW

2.1 Introduction

The use of very high electric fields (~ lOOkV/cm or higher) with pulse durations 

in the nanosecond range (17) has been a very recent development in bio-electrics. 

Traditionally , the electric field effects have mostly been confined to: (a) low field, long- 

duration pulses, and (b) focused mainly on membrane electroporation studies. Thus, 

aspects such as possible field-induced DNA damage, calcium release, alterations in 

neuro-transmitters, or voltage-gating have generally been overlooked. Relatively low 

external electric fields (less than a kilo-Volt per centimeter), applied over time periods 

ranging from several tens of microseconds to milliseconds have traditionally been 

studied.

Cross-Section of an Animal Ce

Centrosome

Cytoplasm

Rough ER• .Nucleus

Smooth  ER
Nuclear

Membrane

Ribosom es

Golgi Body 
EiEnchantedLeaming.comMitochondrion

Fig. 2.1. Animal cell.
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2,2 Pulsed Electric Field Effects on Cells

A basic structure of the cell is given in Fig. 2.1. Exposure of these cells to electric 

fields can lead to a variety of biochemical responses. Living biological cells contain 

many membranes, first at the outer boundary i.e., plasma membrane and then further in at 

the boundary of the nucleus, endoplasmic reticulum, mitochondria and other sub-cellular 

structures. The main function of the cell membranes is to isolate regions of different 

materials, but also to facilitate the flow of selected types of ions in and out of the cell 

(18). We can, therefore, think of the cell as a conductor surrounded by an insulating 

envelope and containing substructures with similar properties. The simplified model of 

such a cell with one substructure, the nucleus is shown in Fig. 2.2. The effect of pulsed 

electric fields can be understood qualitatively by considering cell as an electric circuit as 

shown in Fig.. 2.2., describing the various cell membranes by their capacitances and their 

content i.e., cytoplasma, by resistance. In this circuit, the value of the conductance of 

membranes and inner media, as well as the capacitances of the membranes, is 

experimentally calculated by a technique called time domain dielectric spectroscopy 

(TDDS). The background information on this technique is given in the later sections of 

this chapter.

/ -  -.'4' . .
ireinorane

. :p i
-fluriec-'-,

i lU a lu e tr

. inuTb.ane
, j,

Fig. 2.2. Simpli fied model of cell (left) and its equivalent electrical model (right)
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2.3 Intracellular Manipulation

Most pulsed electric field effects focus on the outer plasma membrane. When the 

potential difference across this membrane reaches a critical value or the threshold 

required for voltage gating effects, a non-linear effect called electroporation occurs. 

Electroporation is a term given for the pore formation on cell membranes caused by an 

external electrical field. This is also known as electropermeabilization. Although not fully 

understood, it is believed that pore formation generates large openings in cell membranes, 

allowing for transfer of large molecules across the cell membrane. The critical membrane 

voltage for electroporation is approximately IV (19). This electroporation effect is 

reversible and the cell survives if the electric field is neither too high, nor too prolonged. 

The charging time constant for the plasma membrane is a measure of the time during 

which the cell interior is exposed to the applied electric field. According to Schwan’s 

theory of oscillating electric fields, the outer membrane becomes transparent if  the 

duration of the pulse is lower than the outer membrane’s charging time constant. If the 

amplitude of this pulse is sufficiently high to porate the sub-structural membranes, then 

there can be poration of inner organneles without damage to the outer membrane. The 

analytical model supporting this hypothesis along with the equations and supporting 

literature is provided in Appendix B. The schematic of the blumlein pulse generator to 

along with the pulse produced with this principle is shown in Fig. 2.3. The ultra-short, 

very high amplitude rectangular pulses generated from this blumlein line are generally 

used for the application of Pulsed Electric Fields on cells. This technique is new and has 

been termed as intracellular manipulation or intracellular electroeffects by Dr. 

Schoenbach’s group at ODU (17). From a practical standpoint, electrical pulsed 

technology could be useful for various biological applications ranging from cellular 

electroporation, injection of xenomolecules e.g., hormones, proteins, RNA, DNA and 

chromosomes, the electrofusion of dielectrophoretically aligned cells, and the non- 

thermal destruction of micro-organisms (20).

There appear to be inherent advantages in using short electric pulses. These include:

(i) Negligible thermal heating,
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(ii) The ability to develop large electric fields and peak powers, with a lower 

energy input, and

(iii) The capacity to create large trans-membrane potentials across sub-cellular 

organelles, such as the mitochondria. This provides a method of reaching into the cell 

interior that is not possible with slower duration voltage pulses.

ri'__

________________ H¥
fWse

» n»

Fig. 2.3. Schematic of Blumlein Pulse Generatore (above) and temporal development of 
pulse with 10Q matched load and with cell suspension (^=80).

2.4 Summary of nsPEF Experimental Results and Oservations

Ultra-short, high-field pulses open the way to targeted and deliberate apoptotic 

cell killing (e.g., of tumor cells). Though the exact mechanism has not been identified, it 

appears that there could be several pathways that can help attain this desired goal of 

apoptotic cell death. These include Phosphatidyl-serine (PS) extemalization that marks a 

cell for macrophage action, cytochrome c release that triggers caspase activation, DNA 

damage, irreversible field-induced changes to ion-pumps and voltage gated channels, etc. 

As has been recently reported, voltage-variations across the mitochondrial membrane can 

induce cytochrome c release via a two-step process (21, 22). The likely channel involves
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a field-induced disruption in the electrostatic binding of cytochrome c with the inner 

mitochondrial membrane. To understand the serious effects caused by these ultra-short 

pulses, experiments have been done and are underway at various research centers. Some 

of the experimental results along with the observations have been summarized below.

2.4.1 Primary effects of nsPEF’s

Experiments of nsPEF’s on eosinophils show plasma membrane integrity. 

Eosinophils are one of the 5 different types of white blood cell and are characterized by 

large granule like structures when the cells are stained. This happens as the cells are 

loaded with calcein-AM, a dye that enters cell through plasma membrane and get trapped 

in the cytosol. When nsPEF’s are applied on these cells, they began to fluoresce brightly 

and remain intact in the cells. The stains were also found inside the nucleus/inner 

organneles, This indicates some breaching of inner organneles. This is shown in Fig. 2.4. 

The retention of this dye inside the cell is strong evidence for plasma membrane integrity. 

Pulses of duration 50ns and amplitude of 60KV/cm are applied to the cells in these 

experiments.

Fig. 2.4. HL-60 cells before (left) and after (right) pulsing (17).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10

The effect of nsPEF’s on DNA has been explored using acridine orange (AO), a 

fluorescent dye that is able to permeate the plasma membrane, nuclear membrane and 

other inner organelle membranes. AO interacts with DNA and RNA by intercalation or 

electrostatic attraction (as DNA and RNA are highly charged). Experimental results of 

short-pulses on cells loaded with AO have shown that the intensity of AO fluorescence in 

the inner organneles and nucleus decreases after pulsing. This validates the hypothesis 

that inner membranes get breached after the application of these pulses. This is clearly 

shown in Fig. 2.5. So, nosPEF’s can disrupt (or porate) the intracellular membranes 

without disturbing the plasma membrane integrity. This is regarded as the primary effect 

of these short pulses.
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Fig. 2.5. AO fluorescence results on control and pulsed cells (17).

2.4.2 Secondary Effects of nsPEF’s

The two basic cell death mechanisms known are necrosis and apoptosis. The 

difference between these two types is the biochemical mechanims that cause their death 

and the response of the surrounding cells on their occurrence. Both of these mechanims 

involve ultimate loss of plasma membrane integrity. However, for necrosis, a loss of
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membrane integrity is the primary insult followed by inflammation, pain or scaring in 

surrounding cells. For apoptosis, there are other intracellular signaling mechanisms 

followed by the final disassembly of the cell. In vivo, the apoptotic cells are removed by 

phagocytosis, leading to the ultimate loss of membrane inside the phagocyte. 

Phagocytosis begins with the neutrophil or macrophage flowing around the pathogen and 

engulfing it so that it winds up enclosed in a phagosome. In vitro, there are other 

mechanisms to report apoptosis. These include PS extemalization, caspase activation, 

intracellular calcium release and release of Cytochrome c from mitochondria seen by the 

apoptotic markers. These mechanisms are shown in Fig. 2.6 below.

Having given a brief description of the cell death mechanisms and with the 

background of primary effects of ultra-short pulses on cells, it looks clear that apoptosis 

is one of the main objectives to be achieved with these nsPEF’s. A brief explanation on 

the experimental results showing secondary effects in cells is provided in the next 

section.

normal

Apopra:ic
body
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Fig. 2.6. Apoptosis and Necrosis in Cells.
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2.4.2.1 Apoptosis Induction with nsPEF’s

Annexin-V-FITC flouroscence indicates extemalization of PS, which is a marker 

for apoptosis. It was shown that ultrashort pulses induce apoptosis at higher electric 

fields. For 10ns pulse, an electric field of 300KV/cm caused Annexin-V to fluoresce, 

while 60ns pulse required 40KV/cm for PS to externalize. This is shown in Fig. 2.7. The 

electric fields were chosen such that the energy density is approximately the same. The 

energy density (W) is given by

W = aE2x, (1)

where a  is conductivity of suspension, E is electric field and x is duration of the pulse.
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Fig. 2.7. Annexin-Y-FITC bounds cells showing apoptosis (12).

The following salient features have emerged from these studies of cellular 

responses to high-intensity, pulsed electric fields.

(viii) Apoptosis has been observed (8) for cells subjected to the short electrical pulses.
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(ix) Multiple pulses have been observed to do more irreversible damage than single­

shot electric shocks.

(x) Extemalization of phosphatidylserine (PS) was shown to occur in response to a 

nanosecond pulse for average electric fields above 2 MV/m.

(xi) A distinct polarity effect has been observed, with the extemalization 

predominantly occurring at the anode end. In addition, asymmetry in transmembrane 

potentials at the anodic and cathodic poles have been demonstrated.

(xii) Calcium is released from the intracellular endoplasmic reticulum in response to 

external voltage pulses. This could be a vital element in induction or possible suppression 

of cell signaling.

(xiii) Molecular uptake has been shown to be delayed process as compared to 

conventional electroporation that utilize smaller electric fields and longer time durations.

(xiv) DNA damage in cells due to the ultrashort pulses has been observed.

In the next few sections, some details are provided about the cell membrane, X- 

ray crystallography of bilayers, recent experiments on bilayers and some background 

information of computer simulations on cells. A detailed explanation of the molecular 

dynamics simulation technique is provided in Chapter III, while the results achieved in 

this work are reported in Chapter IV.

2.5 Cell Membranes

Cell membranes are made up of lipids as well as proteins as shown in Fig. 2.8. 

The ratio varies enormously in different cell types. In the myelin membrane of nerve 

cells, proteins make up only 18%, while the rest of it is lipids. On the other hand, the 

inner mitochondrial membrane contains 76% of proteins (23). The diversity in lipid 

composition of typical membranes is equally large. The most commonly found molecules 

in membranes are glycerophospholipids, e.g. phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylglycerol. Prefixes like “dipalmitoyl” indicate the
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length and type of the extended hydrocarbon chains attached. Large fraction of the 

plasma membrane of mammalian cells constitutes cholesterol and many membranes also 

contain carbohydrates bound to either proteins or lipids. Likely reason can be that these 

components alter the packing properties of the membrane.

carbohydrate

ehdeei-'i.

protein filaments

cytoplasm tfnsicie)

Fig. 2.8. Cell Membrane (31).

A membrane is thus a relatively complex structure. Despite this complexity, the 

lipid molecules determine all the fundamental physiochemical properties of membranes. 

So, in order to better understand membranes it has proven very useful to start by studying 

pure lipid bilayer systems. These lipid molecules also provide basic functionality and 

flexibility of the membrane. This type of “soft” material properties are much less studied 

than static ones like protein structure, since they are rather difficult to resolve 

experimentally.
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2.6 Bilayer Experiments & Simulations

Structural biology is the study of the architecture and shape of biological 

macromolecules e.g., lipid bilayer, proteins and nucleic acids. These biomolecules are too 

small to see in detail even with the most advanced light microscopes. X-ray 

crystallography, NMR spectroscopy, ultra fast laser spectroscopy, electron microscopy 

are some of the techniques, structural biologists use to determine the structures of these 

biomolecules. It has been experimentally possible to obtain high resolution X-ray 

structures of individual lipids from crystalline bilayers at low temperatures and limited 

hydration (24, 25).

Having obtained the X-ray structures, the next thing computer scientists are 

interested in is to use this structure to carry out simulations. It is not easy to perform 

accurate simulations in general, and membrane systems in particular are very sensitive to 

the choice of force field. The only way that we can assess the results and ascertain that 

we are doing reasonable simulations is to compare with available experimental 

observations. The electron densities from X-ray diffraction and also NMR order 

parameters provide excellent tests for bilayer systems, and in particular DPPC bilayers. 

The simulations done in the past (26) reproduce these properties accurately, hence we 

have fair reason to use these bilayer systems to perform other simulations. The 

availability of powerful computers has opened new ways to study lipid bilayers in atomic 

detail. Computer simulations now offer a detailed picture of a time-dependent structure 

and dynamics of membranes, or a trajectory of lipids in bilayer, which help answer a lot 

of research questions and issues.

Since most of the effects of electropulsing is on the cell membranes as well as the 

inner organelle membranes, it will be interesting to investigate the structure and function 

of the lipid membrane during and after electroporation at molecular level. Since the lipid 

membrane thickness is of the order of few nanometers and the pulse duration being in
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nanoseconds, the molecular dynamics simulation scheme is a very good tool to use. The 

molecular dynamics technique has developed over the last decades from a method to 

study the dynamics of liquids of solid spheres and Lennard-Jones particles to a versatile 

method to study many different types of systems at atomic resolution (27). In the field of 

biochemistry, a large study on MD simulations on proteins in vacuum and in solvents is 

available. The development of this particular use of MD was greatly stimulated in 1980’s, 

when a number of general-purpose force fields for water, proteins and DNA along with 

computer programs for simulations like AMBER (28), CHARMM (29) and GROMOS 

(30) are available. Chapter III provides adequate and relevant information on the 

molecular dynamics simulation technique along with a detailed description of the force- 

fields.

2.6.1 Dynamical Bilayer Properties

The structure of the lipid bilayer can be revealed from X-ray crystallography. The 

commonly occurring molecules in this dissertation report are neither integral membrane 

proteins nor the nucleic acids, but lipid molecules. One of the lipid molecule structure is 

shown in Fig. 2.9. These lipid molecules have a dipolar charged head groups and so are 

hydrophilic, or in other words, they tend to stay near water. The tails of these molecules 

are comprised of saturated fatty acids and so are hydrophobic and tend to stay away from 

water.
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Fig. 2.9. Schematic of a DPPC lipid molecule.

The rate and extent of motions of the lipid molecules in bilayer are usually very 

important to their function. The Singer & Nicolson fluid mosaic model (31), and more 

recent computer simulations, have helped us understand that membranes are essentially 

“microscopic seas” of lipids with integral proteins floating around. One of the interesting 

properties of these membrane systems is that this dynamics is not limited to the 

individual lipid molecules, but is a collective mesoscopic effect. This can be clearly 

understood in terms of bending and stretching elasticity found from experiments and 

shown at atomic level with computer simulations (32).

2.6.2 Lipid Chain Relaxation

The “soft” nature of the hydrocarbon interior is one of the most important features 

of a bilayer systems as the complex interactions between these chains are responsible for 

the expansive pressure balancing the headgroup attraction. These motions fall in a very 

wide range from picosecond vibrations to slow diffusion in microsecond scale. Nuclear 

Magnetic Resonance (NMR) spectroscopy is one of the experimental tools to study these
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diffusion processes and in turn can validate the computer simulations. These simulations 

in turn can provide additional atomic detail and can reveal the interactions responsible for 

the relaxation of lipid chains.

2.6.3 Computational Structural Biology

Structural biology would not have advanced much without high performance 

computing as stated by Michael Levitt in his nature - structural biology - article (33). In 

recent years, growing computational resources and power along with the improved 

algorithms have led to more complicated simulations and for longer times (34). 

Computer simulations to understand various properties including surface area per lipid, 

surface tension, electron density and deuterium order parameters has been ongoing in the 

last decade (35). These simulations are mostly confined to pure lipid bilayers. There were 

also computer simulations done to understand the effect of salt concentration on the 

structure of bilayer e.g., DPPC bilayer system (36). Simulations having mixture of 

different bilayer systems were also carried out e.g., mixture of DPPC and DPPS (37). 

One of the bilayer structures having mixture of PC and PS is shown in Fig. 2.10. 

Simulations to include integral membrane proteins in the bilayer systems have also been 

done by various groups (38, 39). Recently many simulations by several groups (40) are 

underway to investigate the voltage-gating mechanism of the ion channels after the 

crystallization of the KvaP channel structures (41). A molecular model of KcsA 

potassium channel is shown in Fig. 2.11. In the next few sections, the background 

information on the computer simulations that have performed during this dissertation 

work is provided.
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Fig. 2.10. PS molecules are embedded in DPPC bilayer. PS are shown in white, PC 
molecules in cyan, headgroups in yellow and green, water molecules in ice blue.

■IHJ

Fig. 2.11. Molecular Model of Voltage gated Potassium Channel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0

2.7 Bilayer Pore Formation

As earlier discussed, the application of pulsed electric fields to cells or tissues 

permeabilizes the cell membrane and is thought to produce aqueous filled pores in the 

bilayer system. This process is referred to as membrane breakdown, 

electropermeabilization or membrane breakdown. The molecular processes involved in 

this process are still not properly understood. The aim of this study is to bring about a 

very detailed molecular level picture using molecular dynamics simulations. It was 

shown in a recent study (42) that electroporation takes place in two stages. First water 

molecules organized in single file like wires pentrate the hydrophobic core of the bilayer 

and slowly defects start to form eventually completing the pore formation process. These 

observations were at constant electric field and were reported to show electric field 

effects on cells. Though these simulations showed the process of electroporation at high 

dc fields clearly, there is no evidence of support to use high electrical fields in the range 

of 0.5V/nm in these simulations.

Our group has calculated the transmembrane potentials generated across the inner 

membranes upon the application of ultra-short pulsed electric fields. The mathematical 

model used in this computation consists of a distributed circuit model with current 

continuity equations, and a coupled Smoluchoswki equation for pore development. In this 

model, the entire cell volume is broken up into finite segments, and each segment is 

represented by a parallel RC combination to account for current flow and charging 

effects. These calculations of transmembrane potentials generated across inner and outer 

membranes are given separately as a supplementary material in Appendix B. These 

transmembrane potentials generated across the inner membrane were taken as an input 

parameter for molecular dynamics simulations on DPPC bilayer. The details of this 

simulation technique are given in Chapter III, while the results of bilayer pore formation 

along with nice images are given in Chapter IV.
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2.8 High Electric Field Effects

The notion central to the electroporation process is the gradual but well- 

organized, structural re-arrangement without any molecular detachment or break-up (4). 

It has also been shown that the presence of localized membrane heterogeneities and 

defects (such as charged DPPS molecules) enhance the electroporation process (43). 

Preferential electroporation at the anodic side can then result, and this has been 

demonstrated both experimentally (44) and through molecular dynamics (MD) 

simulations on coarse-grained model of DPPC (43). The traditional electroporation model 

seems to work well for relatively low-to-moderate electric fields (200 V/cm-5 kV/cm). 

However, it appears to be inadequate in explaining several of the observed phenomena at 

high electric field strengths. The various inadequacies with regards to experimental 

reports are listed below, (i) The high-field experimental data indicates strong conductivity 

increases of the cell solution at the very beginning of a high-voltage pulse (45). Our 

current experimental data sets (discussed in results section in Chapter IV) show 

conductance increases far exceeding values that might be predicted on the basis of simple 

membrane electroporation or dissolution. Also, such increases cannot be attributed to 

field-induced Wien effects, (ii) The fast decrease in conductance, observed after the pulse 

cessation, is not compatible with pore shrinking or sealing. The re-sealing process for 

electro-pores is known to be slow and can take up to several seconds to minutes (46). An 

additional point of interest is the vesicle formation at the plasma membrane (i.e., 

blebbing) that has been observed (47). This aspect is not addressed by the electroporation 

models, (iii) Recent reports by Tekle et al. (44) show loss of the phospholipid membrane 

during high-voltage pulsing. This phenomenon was shown to occur in addition to a pore 

formation process. Their results demonstrated that up to 14 percent of the membrane 

surface could be lost upon electric field application, (iv) Finally, it has been well 

documented that the application of electric pulses facilitates the penetration of large 

molecules through the membrane. This probably implies the creation of large pores. For 

example, in multi-lamellar systems such as the stratum comeum, contributions to 

structural changes arise from electro-thermally induced vesicle formation. However, 

electroporation theory, as applied to the short-duration, high-intensity pulses, predicts
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relatively small nano-pores. Also, simple nano-pore formation alone cannot explain the 

transport of polyelectrolytes and DNA. Here, we hypothesize that not only are aqueous 

pores formed within the lipid membranes, but that nanoscale membrane fragmentation 

occurs, possibly with micelle formation. This effect would produce conductivity 

increases beyond simple electroporation and display a relatively fast turn-off with 

external voltage. Molecular dynamics simulations on high electric field effects, the 

results of which are presented in Chapter IV, qualitatively support our hypothesis. The 

scheme of setting up the simulations is explained in detail in Chapter III.
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Fig. 2.12. Simple Point Charge water model.

2.9 Transport Parameters

Water is regarded as the most important biological solvent. Almost all the bilayer 

simulations include water as the solvent. It is so important that most biomolecules would 

not maintain their structure without the surround solvent. One of the water models is
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shown in Fig. 2.12, which is known as Simple Point Charge (SPC) model. The Fig. 2.12 

shows a system of size 1.8 nanometer cube enclosing 216 water molecules. Ionic 

transport through membranes involving ion and nutrient exchanges is critical to cell 

survival. The pertinent microscopic transport analysis can rigorously be treated at several 

levels that include density functional theory (48), molecular dynamics (49), or Brownian 

motion (50). However, such microscopic calculations are too time consuming and 

computationally almost intractable for most practical applications. Simplified schemes, 

such as those based on drift-diffusion analysis or the Smoluchowski equation (51), 

remain the preferred approaches in bio-systems. Such methods are characterized by local 

parameters that include diffusion coefficients, ionic mobilities and permittivity. It, 

therefore, becomes important and relevant to accurately evaluate these local parameters 

for lipid environments. The focus and interest in this area has increasingly been shifting 

to high field conditions—a domain usually characterized by membrane poration. In 

evaluating transport through porated membranes, several aspects such as the dynamical 

many-body effects of the lipids, the surrounding water and their associated dipoles, and 

confined space effects need to be carefully considered and evaluated. The present study 

attempts to provide such an analysis for the transport parameters of the aqueous medium 

with inclusion of microscopic details. The primary application of this work would be for 

subsequent coarse-grained, macroscopic transport across porated membranes. The details 

of the simulation technique are given in Chapter III, while Chapter IV gives the 

simulation results.

2.10 Electric Field Induced DNA Damage

Most of the experimental results come from electrodelivery of plasmid DNA’s 

with traditional electroporation pulses (52). Molecular dynamics simulations were also 

done to show this electrodelivery of plasmid DNA’s and support the above hypothesis 

(53). There were no simulations done to show DNA damage upon the application of 

traditional electroporation pulses, but there are results which show possible DNA damage 

upon the application of nsPEF’s (54).
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Recently it has also been shown that DNA strands conduct electricity upon the 

application of a potential across DNA molecules (55). This motivates us to see the effect 

of nsPEF’s on DNA in atomic detail.

Here through MD simulation, we show that these nsPEF’s induce DNA damage, 

which are central part for the functioning of the cell. The molecular dynamics parameters 

used in this work is described in detail in Chapter III, while the results are presented in 

Chapter IV.

2.11 Electric Field Induced Intracellular Calcium Release

It has been shown that nsPEF (nanosecond Pulsed Electric Field) pulses can 

trigger apoptosis in Jurkat and HL-60 cells. Application of these pulses results in a rapid 

rise of intracellular calcium (56). The rise in calcium levels depend on the pulse duration, 

amplitude of the pulsed electric field, and the number of pulses applied. Pulse-induced 

intracellular calcium release can explain or give an insight into cell signaling 

mechanisms.

Monitoring calcium concentration directly inside the endoplasmic reticulum or 

other sub-structures has been difficult to achieve in cells. If this calcium inside these 

intracellular stores can be driven into cytoplasma by agonists, then they can be evaluated 

using calcium flouroscent indicators. On the other hand, application of nsPEFs on cells 

increase calcium concentrations inside the cytoplasma. This can be due to release from 

intracellular organs (after getting nano-porated) followed by calcium entry via the plasma 

membrane through a mechanism known as capacitative calcium entry. So, 

experimentalists conduct these tests in a media with and without calcium and compare 

the results to obtain intracellular calcium concentration.
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The experimental ways of depleting intracellular calcium is by the addition of 

reagents that deplete calcium as mentioned above. Thapsigargin is a reagent which 

empties ER calcium stores and at the same time, not affecting calcium in mitochondria. 

nsPEF’s are applied to cells after they are treated with thapsigargin (or UTP). The 

intracellular calcium increase found is very little compared to direct application of 

nsPEF’s on cells untreated with thapsigargin. These experiments suggests that pulse 

induced intracellular calcium release is dependent on the operation of the calcium stores 

of ER. This validates the increase in intracellular calcium caused by nsPEF’s is mostly 

from ER, although there might be a small pumping of calcium from mitochondria which 

can be neglected. The release of calcium from ER is also shown to contribute to calcium 

signaling (57). This phenomenon therefore originates within the cell and is not a 

disturbance in the plasma membrane.

A very interesting secondary effect has also been reported in the context of such 

electrically pulsed calcium release. It has been reported that a second pulse of lesser 

intensity than the initial pulse is almost totally ineffective in inducing any calcium release 

within cells (58). However, with second pulse intensities either equal to or greater than 

the first, a small to moderate calcium response could be evoked. This phenomena is not 

well understood at present, though it is suggestive of a number of plausible explanations. 

For example, the electrically induced calcium release might conceivably deplete the 

endoplasmic reticulum to a large extent after the first pulse. This would then leave very 

little calcium within the intracellular stores for possible release during the second pulse. 

Alternately, conformational changes and electrically induced charge movements (59) 

within the ER membrane might create electrostatic barriers (or other “damage”) that 

affects subsequent calcium release. The modeling part of this work is neatly described in 

Chapter III, while Chapter IV is dedicated to the corresponding results.
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2.12 Time Domain Dielectric Spectroscopy

Information on dielectric parameters of cell is very essential as they dictate the

fashion of electric field through it. The two electrical properties that determine the

electrical characteristics of any material are the dielectric constant relative to free space 

(s) and the conductivity (a). The complex relative permittivity is defined as:

e* = e’-je” , (2)

s*(©) = s(co)-ja(co) / c g s 0 , (3)

where s ’ and e” are the real and imaginary parts, respectively, s is the relative

permittivity, s0 is the permittivity of vacuum, c  is the conductivity, © is the angular 

frequency, and j = sqrt(-l). The relative permittivity and conductivity of materials 

decrease and increase, respectively, with increasing frequency. Sometimes, instead of 

conductivity a, the loss factor s ” is plotted against the frequency, giving rise to a peak at 

characteristic frequency. If the dc conductivity (a dc) is not negligible, the loss factor is 

calculated from s” = (a - crdc)/ {©So}-

When dielectric spectra are measured for biological tissues and cell suspensions 

over a wide frequency range of 1Hz to 10GHz, three distinct dispersions termed a-, (3-, 

and y- along with a smaller dispersion 5- are generally found (60). Dielectric dispersion 

refers to regions of operating frequencies within which strong absorption or dissipative 

energy losses are typically encountered due to collective interactions with the medium. 

These major dispersion characterizations and their frequency ranges, along with the type 

of biopolymers that fall in these categories, are shown in Fig. 2.13. The “alpha” 

dispersion appears at frequencies less than few KHz and cannot be easily measured
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because of the interference from electrode polarization effects. There is not much 

evidence of a relaxation process. This dispersion could originate from the displacement 

of counter ions surrounding charged membranes. The “beta” dispersion (lOOKHz -  few 

MHz) is due to interfacial polarization, being mainly attributed to the existence of plasma 

membrane of cells. The “gamma” dispersion is due to the Debye-type relaxation of water 

molecules above few GHz. The “delta” dispersion found between “beta” and “gamma” is 

due to bound water and other biomolecules solvated in extracellular and intracellular 

media of the tissue.
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Fig. 2.13. Frequency Dependent Dispersion Characterizations (62).

The traditional methods of determining permittivity rely on measurements in the 

frequency domain. The common feature of all such methods is that the solution is 

contained in a sample holder and its complex permittivity measured at various discrete 

frequency points. It is not, however, possible to devise one piece of apparatus or a single 

technique to cover the entire frequency range. This is so because of problems in 

measuring both the very low frequency spectra and very high frequency spectra.

At the low-frequency end of the spectrum, generally bridge techniques are used. 

Although, these can, in theory, be extended down to d.c. levels, practical measurements 

on conductive biological solutions are difficult below a few KHz because of electrode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 8

effects. The electrode polarization effect and the possibility for overcoming this problem 

in described later. At higher frequencies, transmission lines are employed. They are sub­

divided into coaxial lines and waveguides. The frequency of a coaxial line in practice is 

from few tens of MHz to around 12 GHz. Above 12GHz and below 100GHz, waveguides 

are employed. Above 100GHz free space methods are used, but these are relatively 

unimportant for biological solutions.

Alternative methods can be classified as time domain techniques, generally 

known as time domain reflectometry (TDR) or time domain spectroscopy (TDS). These 

are advantageous over frequency domain dielectric spectroscopy (61) because it requires 

only one pulse to determine all frequencies of interest rather than conducting 

measurements at individual frequencies (62). This is particularly important during 

biological measurements, when the cells have a limited lifespan and the events being 

considered may occur quickly.

Recently, single-particle analysis has been developed and becomes increasingly 

important especially in medical and biotechnological researches. For the single-particle 

analysis electromechanical techniques, such as electrorotation and dielectrophoresis, are 

used instead of conventional dielectric spectroscopy. Alternatively, imaging techniques 

with a scanning fine probe are also available in the single-particle analysis. This is out of 

context in the present work, as the pulsing is generally done on cell suspension, instead of 

a single cell. So, it is more relevant to use multi-particle analysis like TDDS than 

electrophoresis.

Dielectric spectroscopy had its origin in the late 1800’s and early 1900s and 

played a major role in the emergence of electrophysiology (63). Hoeber’s observations 

that red blood cells conducted electricity differently at low and high frequencies led to his
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speculation that a membrane must be present to separate the intracellular components 

from the extracellular ones. The initial application of dielectric spectroscopy is often 

traced back to the pioneering work of Fricke (64). Improvements in presentation and 

analysis can be traced back to the work of the Cole brothers, who developed a 

relationship between the real and imaginary components of permittivity for polar liquids 

that is now referred to as a “Cole-Cole plot”. However, the early methods of dielectric 

spectroscopy generally involved placing the substance between the two plates of a 

capacitor and measuring the change in complex impedance as the frequency changed. 

Fellner-Feldegg developed a procedure previously used for cable testing that involved 

using a pulse simultaneously containing all frequencies of interest. It was this work in 

time domain reflectometry (TDR) that has been developed into TDDS. Over the years, 

TDDS has been a versatile tool, providing measurement and insight in the dielectric 

behavior of erythrocytes, lymphocytes, proteins, erythrocytes under different glucose 

conditions, micro-emulsions, and tobacco mosaic virus (65). Recently, it has also been 

shown that dielectric properties do vary upon membrane disruption (66). The main 

objective of this work is to find the dielectric properties of the cell before and after 

electroporation and use this information in mathematical models based on 

electroporation. The principle of TDDS on biological suspensions along with the results 

(not published) is provided in Appendix A.

This completes the literature review on electropulsing effects on cells along with 

the computer simulation on bilayers. This chapter was also dedicated towards going 

through the background information and motivation towards this dissertation work.
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CHAPTER IH 

COMPUTER SIMULATIONS

3.1 Introduction

Computer simulations allow us to study system properties at a microscopic level 

and to investigate phenomena on ultra-short time scales that may not be accessible to 

experimental detection. In addition, the influence of several individual interactions (e.g., 

the Coulomb or the hydro-phobic interaction) can be gauged, and collective many- 

particle influences can be assessed. In the context of cellular effects, such computer 

simulations are all the more important since it is not possible to probe the electrical 

responses at the cellular level. Use of simulations is very helpful in providing a 

fundamental understanding of the underlying phenomena and in a quantitative assessment 

of the relative magnitudes of various processes. Finally, simulations allow a convenient 

and quick mechanism to span, probe and evaluate a large parameter space. A range of 

simulation methods exist that span the macroscopic continuum approaches (e.g. the 

Smoluchowski equation (67)), to those based on the semi-classical retarded Langevin and 

Green’s functions, to microscopic-kinetic analyses based on Brownian dynamics (68), 

Monte Carlo (69) or Molecular Dynamics (MD) (13,39).

Here we focus on the MD technique, as it provides the most comprehensive, time- 

dependent, three-dimensional nanoscale analyses with inclusion of the many-body 

aspects. The MD simulations are based on the assumption that classical Newtonian 

mechanics can be used to describe the motions of atoms, pseudo atoms, interaction sites 

or molecules, regardless of all-atom implementations or use of coarse grained models. 

However, no quantum calculations as may be needed to predict electron energies, 

wavefunctions, probabilistic occupancies etc. are performed. Hence, molecular dis­

integration or chemical reactions are not addressed. In an MD scheme, the use of an all
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atom model has the advantage of calculating properties of the system precisely, while the 

coarse-grained model has the advantage of speed-up that can be useful in the context of 

big systems responding on sub-microsecond scales.

3.2 Molecular Dynamics

MD simulation is a technique to calculate the equilibrium, non-equilibrium, and 

time-dependent properties of a classical many-body system. Molecular/ionic transport 

and dynamical changes in position or configuration, is usually the aspect of primary 

interest. Every observable quantity to be evaluated by this technique is based on a 

determination of the exact position and momenta of the particles in the many-body 

system at every time instant.

The concept of molecular dynamics was originally developed by Alder and 

Wainwright in the early 1950’s as a technique to simulate a system of colliding hard core 

particles (70). It was later extended to continuous potentials and uniform time steps by 

Rahman (7). The underlying idea is actually rather simple, but it requires a lot of 

computing power even by today’s standards. A short tabular listing of the various 

advances and milestones in MD work is given in Table 3.1.
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Table 3.1. Few examples showing the rapid devolopment of MD simulations.

System Year Authors Atoms Time

Hard Spheres 1953 Alder et. al. (70) 108 -

Water 1971 Rahman et. al. (7) 648 2.2 ps

Protein in Vacuo 1977 McCammon et. al. (71) 580 8 ps

Lipid Bilayers 1988 Egberts et. al. (72) 5408 200 ps

Bacteriorhodopsin 1995 Edholm et. al. (73) 18384 300 ps

Porine 1998 Tieleman et. al. 65898 1 ns

Peptide folding 1998 Duan et. al. (74) 9500 1 us
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THE GLOBAL .MD ALGORITHM

1. Input initial conditions

Potential interaction 3r as a Emotion of atom pc it ons
Positions r  of all atoms in the system 
Velo cities i? of all atoms m  the system

4

repeat 2,3,4 for the required number of tops

2. Compute forces

The force on any atom
p ,  _  e v

*  i  -

is computed by calculating the fore e between non-boeded atom
pairs:

plus the forces due to bonded interactions (which may depend o s  1, 
.2, 3,. or 4 atoms)., plus 'restraining an d er external forces.

The potential and kinetic energies and the pressure tensor are
computed

JJ-
3. Update configuration

The fflowment f  the atoms is simulated by numeric i l l  \ ol mg 
Newton's equations o f  m e  ti on

d%_rt_ _  Ft_
d? •* m,4

or
d c i Fg

d# l *' d f wh

#
4. if  required: O u tp u t step 

write pc ltion , velocities. energies, temperature,pressure, etc.

Fig. 3.1. Global Molecular Dynamics Algorithm (75).
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3.3 The MD Algorithm

The aim of MD is to reproduce the time development of a system of N  interacting 

particles (e.g. atoms) with masses nti by directly solving Newton’s equations of motion,

m; d2p/dt2 = Fi i=l,2....N  , (4)

where r,{t) is the position of particle i. The momentary force F(- on each atom should be

calculated from the interactions in the system. It is defined as the derivative (i.e., slope) 

of a potential energy function V that is determined by the positions of all the atoms,

Fi=-VrjV (ri,r2,..rN) . (5)

The calculation of this potential function is a central part of the algorithm. There 

are many possible choices for the implementation of this function, and it is always an 

approximate compromise between a description as detailed as possible and one that can 

be evaluated fast on a computer. Its final appearance, together with the actual interaction

parameters used in the simulation, is called the force field. Though various research

groups have developed different force fields, most of them are closely related. A rough 

outline of the MD algorithm is shown in Fig. 3.1 above.

Basically, a force-field is built up from two distinct components:

• The set of equations (called the potential functions) used to generate the potential

energies and their derivatives, the forces.

• The parameters used in this set of equations.

3.4 Potential Function & Parameters

The potential function described above can be divided into 3 parts.
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1. Non-bonded: Lennard-Jones or Buckingham, and Coloumb or modified Coloumb. 

These interactions are computed on the basis of a neighbour list i.e., a list of non-bonded 

atoms within a certain radius.

2. Bonded: Covalent bond-stretching, angle-bending, proper and improper dihedrals. 

These interactions are computed on the basis of fixed lists.

3. Special functions: Position restraints and distance restraints. These interactions 

are also calculated based on the fixed lists.

3.4.1 Non-bonded Interactions

The non-bonded interactions contain a repulsion term, a dispersion term and a 

coulomb term. The repulsion and dispersion terms are combined in either the Lennard- 

Jones or the Buckingham potential. There can also be a Coulombic term because of the 

partially charged atoms. For all the simulations reported in this work, Lennard-Jones 

interactions and Coulomb interactions are considered.

3.4.1.1 Lennard-Jones Interactions

The Lennard-Jones potential V u between two atoms equals

V u  -  C (12)ij /  r12jj -  C (6)ij/ r6y , (6 )

where the parameters C (12)jj and C (6\j depend on pairs of atom types, ry is the distance

vector.

Hence the force Fj (ry) derived from this potential is:

Fj (ry) = (  12 C (12)y /  r12y -  6 C (6)y/ r6y ) ry/ry , (7 )
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Fig. 3.2. Lennard-Jones potential (75).

Fig. 3.2 shows the Lennard-Jones potential of two particles. Initially when the 

distance between the two particles is very close, the repulsion is very high and vice versa 

if the distance between two particles increases, there is attraction between them till a cut­

off point.

3.4.1.2 Coulomb interactions

The Coulomb interaction Vc(rij) between two charged particles is given by:

Vc(rij) =  qiqj/(4nSoSrrij), (8 )

Where qi, qj are the charges of particles i,j, sQ is the permittivity of vacuum, sr is relative 

the permittivity of the medium and ry is the distance vector.

The force Fi(r;j) obtained from this potential is then given by:

Fi(rij) =  qiqj/(4nSoSrr2ij) ry /ry , (9 )
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Fig. 3.3 below shows the Coloumb interaction between two particles of like 

charge. Initially when the distance between the two particles is less, there is high 

repulsion, which decreases as the distance between them increases. The plot shows a 

legend of pure coloumb potential, couloumb potential with and without reaction field. In 

calculations pertaining to some physical quantities like permittivity, it becomes necessary 

to consider all the charges in the simulation box without cut-off. This will be 

computationally expensive and hence a term known as reaction field is later on developed 

with these kind of simulations. The details of these various terms and physical 

significance are discussed in the results section of this dissertation report.

1S D O

10DD

•8ts
it
>

S O D

O
0.0 0.2 0.4 0.0 0.8 1X1

r (nm)

Fig. 3.3. Coulomb potential (75).

3.4.2 Bonded Potentials

The bonded interactions are based on a fixed list of atoms. These involve 3-body 

and 4-body interactions along with 2-body interactions as well. So, there are bond- 

stretching (2-body), bond-angle (3-body) and dihedral angle (4-body) interactions. There

j ________ i________ i________ ■________________________  .i
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is also a special type of dihedral interaction called improper dihedrals, which force atoms 

to remain in a plane or to prevent transition to a configuration of opposite chirality.

3.4.2.1 Bond-Stretching Potential

The bond stretching between two covalently bonded atoms is represented by a harmonic 

potential Vb (ry)

V b (ry) =  0 .5k by ( r y - b y ) 2 , (1 0 )

where kby is the harmonic force constant, ry is the distance vector and by is the 

equilibrium bond length.

Hence the force Fj(ry) derived from this potential is

F i ( r i j )  =  k  i j  (ry - by) Ty/ry , (1 1 )

Fig. 3.4 below shows the bonded interactions between two particles. If the bond 

length is the natural bond-length, then the energy of the system will be zero. But if the 

bond length deviates from the initial equilibrium bond-length, then energy starts to build

in the system. The equations for these interactions are similar to the energy related

equations in two particles connected by a spring.
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Fig. 3.4. Bond-stretching principle (left) and bond-stretching potential (right) (75).

3.4.2.2 Bond Angle Potential

The bond angle vibration between a triplet of atoms i-j-k is also represented by a 

harmonic potential Va(0ijk) on the angle 0yk

Va(0ljk) = O.5k0;jk (0ijk - 0°ijk)2, (12)

where k9ijk is the bond-angle force constant, 0 p  is the bond angle between i-j-k and 0°ijkis 

the equilibrium bond angle.

Fig. 3.5 below shows the bond-angle potential generated in the system if  there is any 

change in the angle between two adjancently connected bonds in the molecule.
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Fig. 3.5. Angle-vibration principle and bond-angle potential (75).

3.4.2.3 Improper Dihedrals

Improper dihedrals are meant to keep planar groups planar (e.g., aromatic rings) 

or to prevent molecules from flipping over to their mirror images. This is also one kind of 

harmonic potential.

Vidfejkl) = k ^ ijkl-^0)2, (13)

where Vid( îjki) is the improper dihedral potential, k  ̂is the dihedral force constant, ^pi is 

the bond angle between i-j-k-1 and is the equilibirium bond angle between i-j-k-1.

Fig. 3.6 below shows the potential generated if there is a torsion built up in the 

system at equilibirium. All the interactions which are 4 bonds away are generally 

neglected in molecular dynamics simulations. This completes the basic introduction to 

the potentials generated by the non-bonded interactions and the bonded interactions.
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Fig. 3.6. Improper dihedral potential (75).

3.4.3 Special Interactions

Special potentials are used to impose restraints on the motion of the system to 

avoid disastrous deviations or to include knowledge from experimental data. In either 

case they are not really part of the force field and the reliability of the parameters is not 

important. Position restraints is one such kind which is very important in this class of 

potentials.

3.4.3.1 Position Restraints

These are used to restrain particles to fixed reference positions. They can be used 

during equilibration in order to avoid too drastic rearrangements of critical parts (i.e., to 

restrain motion in a protein that is subjected to large solvent forces when the solvent is 

not yet equilibrated).
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The following potential function is used for this kind of interactions:

Vpr(ri) = 0.5kpr|ri -R i|2, (14)

Where Vpr (q) is the potential generated by position restraints, kpr is the position restraint 

force constant, r, is the position of atom i, distance and Rj is the reference or equilibirium 

position of atom i.

This potential can be re-written as

Vpr (r;) = 0.5  [ kxpr|xj - Xi|2 x + kypr|yi - Yi|2 y + kzpr|zi - Z j |2 z ] , (1 5 )

Where xu y,, Zj, X u Yjj and Zj are the x-, y- and z- coordinates of r, and Ri respectively.

Hence the forces (F x R y FiZ) derived are :

Fix= -kxpr(x i -X i), (1 6 )

F i ^ - k V f y . - Y , )  (17)

FjZ =  -kzpr ( Zi - Z i) (18)

Three different force constants can be used to restrain the spatial positions of the atoms in 

a plane or in a line. The restraints are applied using a special fixed list of atoms.

Most of the important concepts dealt in molecular dynamics simulations have 

been explained in the above sections. Before doing simulations, a list of all atoms or 

combinations of atoms on which various contributions of potential functions will act 

should also be known. These are generally described in topology file.
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3.4.4 Periodic Boundary Conditions

The classical way to minimize edge effects in any finite system is the application 

of periodic boundary conditions. In other words, the system to be simulated is surrounded 

with translated copies of itself. Hence there are no boundaries of the system, the artifact 

caused by unwanted boundaries is now replaced by artifact of periodic conditions.

3.4.5 Group Concept

One can use groups of atoms to perform certain actions. There can be different 

groups i.e., Temperature-coupling group, freeze group, accelerate group, energy monitor 

group, center of mass group. For example, in a solvated macromolecule the solvent can 

be coupled with a shorter time constant to a bath than is a macromolecule, or a surface 

can be kept cooler than an adsorbing molecule. This can be done using temperature 

coupling group.

3.5 Simulation details

Before a simulation is started, the co-ordinates of all the atoms in the system 

should be assigned. This in general can be obtained from protein data bank or from 

experimental data. The velocities can either be set to zero at the start of the simulation or 

assigned random numbers generated from the maxwellian distribution at a particular 

temperature as shown below

p(vi) = sqrt ( mj / 2nkT ) exp ( -mjVi2/2AT ), (19)

where k is Boltzmann’s constant, mi mass of ith atom, Vi velocity of ith atom, T 

temperature of the simulation and Vj velocity of atom i.
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3.6 Canonical Ensembles

There are different ways in a simulation to treat macroscopic boundary 

conditions. The temperature T and number of particles N are most of the times a constant. 

But there are several options for the volume or pressure, the pressure again have options 

to describe in lateral and perpendicular directions. In the simulations considered in this 

dissertation report, the ensemble type used is NPT (Constant N, Constant P and Constant 

T), which is generally regarded as the best approach.

3.7 Electrostatic interactions and cutoffs

According to eqn. (2), it is assumed that the interactions of all the atoms is 

considered, but this is not true, as it is computationally very expensive. Since the 

interactions become weaker at longer distances, it is reasonable to apply cut-off at some 

point i.e., no longer calculate the interactions between atoms which are more than a 

certain value. If cut-offs are applied, it means some of the interactions are neglected and 

how serious this can be depends on the type of interactions and the magnitude of the 

cutoff radius used. By performing test simulations and using the data from literature, 

reasonable values of cut-off can be considered. Van der waals interactions rapidly 

decrease with increasing distance. On the other hand, coulomb interactions between 

dipoles are quiet long-ranged. A popular method is to use a spherical double-cutoff, 

which means that all the interactions within a cut-off is calculated every step while all the 

interactions of the system is calculated once every N steps. Generally N is taken to be 

between 10 and 20.

3.8 Temperature and Pressure coupling

There can be drift during equilibration, drift as a result of force truncation (to 

speed up computations) or heating due to external or frictional forces. So, it is a necessity 

to control the temperature of the system in the simulations. There are two types of
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temperature coupling schemes. One is weak coupling scheme of Berendsen and the other 

is Nose-Hoover scheme. In all the simulations reported in this work, a weak coupling 

scheme of Berendsen is used which is discussed next.

3.8.1 Berendsen Temperature Coupling

The Berendsen algorithm (76) is weak coupling with first-order kinetics to an 

external heat bath with given temperature T0. If there is any deviation of the system 

temperature from the reference temperature, the algorithm brings back the system 

temperature T to the reference temperature T0 according to eqn. (20)

dT / dt = ( To - T ) / t  , (20)

where x is the berendsen temperature coupling time constant.

In other words the temperature of the system decays exponentially with a time 

constant x. This method seems to have an advantage to vary the strength of the coupling 

to suit the requirements. For equilibration purposes, the coupling time is generally short 

(lOfs), while for equilibrium runs it is a bit longer (500fs).

Just like temperature coupling, there is pressure coupling scheme to mimic 

experiments. This is explained in detail in the next section.

3.8.2 Berendsen Pressure Coupling

The Berendsen algorithm rescales the coordinates and box vectors every step with 

a matrix p. This has the effect of first-order kinetic relaxation of the pressure P towards a 

given reference pressure P0.

dP / dt = ( P0 - P ) / xp , (21)
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where xp is the berendsen pressure coupling time constant.

The scaling matrix p is given by

Pij = 8;j -  (delta t / 3 tp ) Py { P0ij -  Py(t)}, (22)

where p is the isothermal compressibility of the system. P is 4.6 e-5 bar 1 for water at 1 

atm and 300K. Generally most solvents have similar values. Next, we look at the two 

most commonly used constraint algorithms SHAKE and LINear Constraint Solver 

(LINCS).

3.9 Bond Constraints Algorithms

In classical molecular simulation techniques like molecular dynamics, the time 

step in the simulation is limited by bond oscillations, which have very high frequency and 

low amplitude. By replacing these bond oscillations with constraints, the time step can be 

increased by a factor of 4 and hence can speed up the simulations. LINCS and SHAKE 

are two algorithms which that solves this non-linear problem of resetting coupled 

constraints after an unconstrained update.

3.9.1 SHAKE and LINCS

The SHAKE algorithm (77) changes a set of unconstrained coordinates r ’ to a set 

of coordinates r” that fulfill a list of distance constraints, using a set r as reference:

SHAKE(r’->r”;r) , (23)

This is consistent in solving a set of Lagrange multipliers in the constrained equations of 

motion. Detailed explanation of this scheme can be found elsewhere (77). This is an 

iterative procedure and continues until all constraints are satisfied within a relative
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tolerance. It is also the first algorithm developed to satisfy bond geometry constraints 

during molecular dynamics simulations. Later on, a noniterative form of SHAKE was 

developed by (78).

LINCS (79), on the other hand is non-iterative and always uses two steps. This 

method is more stable and faster than SHAKE, but it can only be used with bond 

constraints and isolated angle constraints, such as the proton angle in hydroxyl bond. In 

the work reported here, Lines algorithm was used to contrain bond lengths. The detailed 

explanation of this scheme can be found elsewhere (79). From eqn. (2), it is clear that F is 

3N force vector and m is a 3N X 3N diagonal matrix, containing the masses of N 

particles. This system is constrained by K time-dependent constraing equations as shown:

where rji-rj2 is the bond-length and dj is the constraining distance.

This algorithm works in two steps as shown in Fig. 3.7. In the first step the 

projections of the new bonds on the old bonds are set to zero. In the second step a 

correction is applied for the lengthening of the bonds due to rotation.

gi(r) = |rii-ri2| -dj =0; i = 1,2,......,K, (24)

4
i.

d P

A
k** O

unconstrained
update

projecting out correction for
— forces working — rotational 

along the bonds lengthening

Fig. 3.7. Principle behind LINCS algorithm.
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3.10 Set-up of Simulations

The above sections outline some of the important techniques/parameters used in 

molecular dynamics simulations. For a detailed explanation on these parameters in 

molecular dynamics simulations, the reader is directed to read van der Spoel et. al. (75, 

80).

The general procedure before starting any simulation is to check whether the 

system is having minimum energy (local minima). Otherwise large norms of forces will 

be built eventually halting the simulation. Once the system attains the local minima, then 

molecular dynamics simulation can be started. The next few section covers the topics of 

energy minimization, setting up the system for molecular dynamics simulation and finally 

the data analysis done on the trajectories obtained from molecular dynamics simulation. 

Details on the molecular dynamics simulation package used in this dissertation work is 

also provided.

3.10.1 Energy Minimization

Function optimization is regarded as one of the important concepts in much of the 

numerical analysis. In the context of macromolecules, the function to be optimized or 

minimized is the energy. The energy landscape of a biomolecule possesses an enormous 

number of minima or conformations. The goal of the energy minimization is to find the 

local minima (not necessarily the global minima).

Energy minimization is generally done using steepest descent, conjugate gradients 

or L-BFGS algorithms. In most of the simulations reported here in this work, steepest 

descent and conjugate gradient algorithms are used. Each one has its own advantages 

and disadvantages. While steepest descent is not the most efficient algorithm for
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searching, it is robust and easy to implement. On the other hand, Conjugate gradient is 

slower than steepest descent in the early stages of minimization, but becomes much more 

efficient closer to the energy minimum. Most of the parameters used for the steepest 

descent and the conjugate gradient algorithm are similar.

3.10.2 Molecular Dynamics

As earlier described, the main of MD is to update the position and velocity at each 

and every time step, given the initial coordinates of all the atoms in the system along with 

the velocity (or temperature). To update the coordinates and velocities, the leap-frog (81) 

algorithm is used. This algorithm uses positions r at time t and velocities v at time (t-

8t/2); it updates positions and velocities using the forces F(t) determined by the positions

at time t:

v(t+5t/2) = v(t-8t/2) + F(t) St /m, (25)

r(t+8t) = v(t+8t/2) 8t + r(t), (26)

This method is superior to continuum approaches, and the advantages include:

1. Inclusion of the collective, many-body interaction potentials at the nanoscale 

level,

2. Dynamical screening,

3. Avoidance of the “mean-field” approximations,

4. A natural inclusion of noise and statistical fluctuations,

5. Self-consistent and dynamical transport calculations without arbitrary fitting 

parameters, and

6. Easy incorporation of arbitrary defects and non-uniformities.
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3.11 Limitations of the MD Scheme

The Molecular Dynamics simulation approach has a number of important 

limitations. The potential function described earlier requires a large number of parameters 

for partial charges, van der Waals interactions, equilibrium values for bonds, angles and 

dihedrals, and force constants. Most of these can be obtained from experiments or 

quantum mechanics, but there is no guarantee that these parameters give good results. 

One of the other limitations is the maximum time step that can be used in MD 

simulations. A typical value used is 2 femto seconds, even with the bond constraints 

algorithms like LINCS or SHAKE. This limits the length of the current simulations to 

few nanoseconds and utmost a microsecond with good computational resources. Of 

course, this also depends on the size of the system. Thus, computational complexity and 

the requirement of large memory and an array of fast computers can become a impeding 

requirement. One of the other limitations of standard molecular dynamics is the classical 

treatment of the system, which is of no consequence in this dissertation report as the 

simulations are primarily based on lipid systems.

3.12 GROMACS -  Groningen Machine for Chemical Simulations

The molecular dynamics simulation package used for the work reported in this 

dissertation report is GROMACS. GROMACS stands for Groningen Machine for 

Chemical Simulations. It was originally developed in the university of Groningen, but 

now it is maintained at several places. This package is used to simulate the Newtonian 

equations of motion for systems with hundreds to millions of particles. Recently, they 

implemented Quantum Mechanics version along with the more general classical 

mechanics.

One of the important applications when building this package is to look into 

biochemical reactions of macromolecules like proteins and lipids. The central goal for
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any molecular dynamics simulation package is the calculation of non-bonded 

interactions, as it is computationally expensive. But GROMACS is regarded as extremely 

fast in calculating non-bonded interactions and hence many groups across the world use it 

for bio-molecules as well as non-biological molecules like polymers etc.

3.12.1 Advantages of GROMACS

1. GROMACS has a nice option to keep posted on when the simulation is expected 

to finish and how far has it come.

2. It can write coordinates using lossy compression, which provides a very compact 

way of storing trajectory data. For the longer simulation runs, sometimes more 

than 10GB is required just to store the coordinates. If it were not for this lossy 

compression technique, much of the space will be used unnecessarily to store the 

data.

3. One of the important features of GROMACS is that it can be run in parallel, using 

standard MPI communication. This will definitely boost up the time required for 

the simulations, since the computational power is increasing day-by-day.

4. Last but not least, GROMACS is Free Software available under GNU General 

Public License.

3.12.2 GROMACS Preprocessor

To give an idea about the GROMACS preprocessor, a brief explanation on the 

input files needed for the simulation and the output files extracted from this molecular 

dynamics simulation is given below as shown in Fig. 3.8.

xxx.gro -> Input file with atomic co-ordinates (and/or velocities) of all particles in the 

system
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xxx.mdp molecular dynamics parameter file, which essentially contains all the 

simulation conditions and external forces, if any.

xxx.ndx -> basically an index file, which in most of the cases is used after the simulation 

is finished to do data analysis.

xxx.top -> most essential file of all the files. It has all the parameters regarding the 

structure of the system i.e., bond lengths, bond angles, charges, lennard-jones parameters 

etc.

grompp shown in Fig. 3.8 basically reads a molecular topology file, checks the validity of 

the file and expands the topology from a molecular description to an atomic description.

mdrun is the subroutine used in Gromacs package to start the simulation, xxx.mdp file 

has the option to identify whether the simulation is for energy minimization or the normal 

molecular dynamics simulation.

xxx,gro xxx.mdp xxx.ndx xxx.top

grompp

xxx.tpb

mdrun

yyy.Iog yyy.trj yyy.gro 

Fig. 3.8. GROMACS preprocessor: Flow Chart (75).

All the coordinates, velocities and energies are stored in the files yyy.Iog, yyy.tij and 

yyy.gro, which can be used with other Gromacs sub-routines to determine variables of 

interest.
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3.13 Data Analysis

This section is devoted to explain some of the data analysis techniques used in the 

present dissertation work. Most of the data analysis is done on the trajectory of the 

simulation obtained. Gromacs has many subroutines of interest for biochemists. Since 

most of the dissertation work reported here needs other variables of interest as well, few 

subroutines were written using VMD’s Tel scripting language and MATLAB.

Some of the important variables of interest for structural biologists are the radial 

distribution function, root mean square deviation and radius of gyration. These are 

generally used to confirm the structure’s stability and is explained in detail in next 

section. Apart from these, a brief review of autocorrelation functions and Green-kubo 

relations are provided. There in general are used to calculate transport coefficients like 

diffusion and mobility.

3.13.1 Radial Distribution Function

The radial distribution function describes how the atoms in a system are radially 

packed around each other. This is very effective in describing the average structure of 

disordered molecular systems like liquids. Since the motion in liquids is always 

disordered, the idea about the average structure is very important and radial distribution 

function gives an idea about this.

One of the ways, people involved in computer simulation of biomolecular systems 

confirm their atomic structure is by comparing the experimental results with their 

simulations. The radial distribution function gAB(r) can be calculated experimentally by 

X-ray or neutron diffraction studies and can also be calculated with simulations using the 

formula:
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g A B ( r ) = < p B( r ) > /  < p B>  local = 1 /  < p B >  local 1 / N A ZZ8(rIJ -  r) /  4nr2 , (27)

where <pe(r)> is the particle density of type B at a distance r around particles A, and 

< P b >  l o c a l  is the particle density of type B averaged over all spheres around particles A. 

Fig. 3.9. shows the radial distribution function between two oxygen atoms of different 

water molecules.

3.0

2.0

1.0

□.0
0 .S 1.0 1.5 20

r(nm)

Fig. 3.9. Radial distribution function of ow -  ow.

3.13.2 Radius of Gyration

The radius of gyration describes the distribution of particles (or infinitesimal 

elements) in a D-dimensional space by relating it to an equivalent distribution in a D- 

dimensional sphere, usually a circular (D=2) or spherical (D=3) distribution. The radius 

of gyration is a useful estimate of the size of a molecule or is used in biomolecular
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simulations to have an idea about the compactness of the structure of the macromolecule 

considered.

The radius of gyration Rg is generally calculated by the formula:

R g  =  ( I i | | r il|2m i/ I i m i) 1/2, (2 8 )

Where ni; is the mass of atom i and p the position of atom i with respect to the center of 

mass of the molecule. It is especially useful to characterize polymer solutions and 

proteins.

3.13.3 Root Mean Square Deviation

As the name suggests, root mean square deviation (RMSD) is the deviation calculated 

from the reference structure. RMSD is given by the formula:

RMSD(tbt2) = [1/M I  mi ||rj(t,)- ri(t2)||2]1/2, (29)

where mi is the mass of the particle I, M is the total mass of the system, p(t) is the 

position of the atom i at time t.

3.13.4 Green-Kubo Relations

One of the interesting things in this dissertation report is the calculation of 

diffusion coefficient as a function of space and electric field. This can be done either by 

using autocorrelation functions or by using mean square displacement.

Transport coefficients like the diffusion coefficient D, the viscosity coefficient r\ 

can be expressed as time integrals of appropriate time correlation functions. This
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formulation is known as Green-Kubo formulae, which is the direct result of linear

response theory in statistical mechanics. The theory of correlations is well established

(82).

To give a brief idea about this, we describe the implementation of the correlation 

functions. The autocorrelation function is basically the cross-correlation of the function. 

Hence it is given by the formula:

Cf(t) = <f(t+dt)f(t)>dt, (30)

where Cf(t) is the auto-correlation function of the parameter f(t).

If the parameter considered is the velocity of the particle, the diffusion coefficient 

(D) is calculated by the formula:

D =K |Cv(t)dt, (31)

where K is the appropriate scaling factor, Cv is the autocorrelation function of velocity.

3.13.5 Mean Square Displacement

As the name implies, mean square displacement is the deviation of the particle 

from time t=0. Diffusion coefficient (D) of the solvent / macromolecule in biomolecular 

simulations can be calculated using the Einstein relation

D = l/(2Nt) It t->co <||ri(t) - r,(0)||2>, (32)

where N is the number of degrees of freedom, t is the time considered for calculating the 

diffusion coefficient, and q(t) is the coordinates of the particle i at time t. If the particle of 

interest is inside a nanopore, then N can be considered as 1 and only the diffusion along 

the axis of the pore is considered. Similarly if the particle is near the interface of 2
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different macromolecules e.g., water-bilayer interface, then N is considered as 2 and the 

diffusion along that plane can be calculated. If the diffusion is in bulk, then N has to be 

considered as being equal to 3.

3.14 VMD -  Visual Molecular Dynamics

Visual MolecularDynamics (VMD) is a molecular graphics program (83) 

designed for the interactive visualization and analysis of biopolymers such as 

membranes, lipids, nucleic acids and proteins. This can also be used along with Tel 

scripting to get the required data analysis done with the trajectories obtained from the 

molecular dynamics simulations. All the figures provided on the structures of the 

biopolymers is from VMD render image. GROMACS together with VMD provides a 

very good tool for data analysis with the trajectory.

3.15 Mathematical Model for Electric Field Induced Calcium Release

Even though the major portion of the work covered in this dissertation report 

includes molecular dynamics simulations, other continuum approaches like reaction- 

diffusion mechanisms are also used to simulate the effects of nsPEF’s on cell. An 

important goal of this contribution is to obtain a quantitative dynamical analysis of the 

electrically stimulated calcium release from the endoplasmic reticulum (ER) stores by an 

externally applied nanosecond voltage pulse. Such calcium release plays an important 

role in several cellular events (84) and initiate factors in the apoptotic pathway (85). The 

primary mechanism and its quantification for electrically driven calcium release has not 

been probed, though electroporation of the ER membrane is conjectured to be a likely 

pathway.
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3.15.1 Modeling Details

Before discussing our Calcium model for dynamical concentration changes in 

both the cytosol and the ER, it is perhaps useful to briefly review the calcium signaling 

and release mechanisms. Intracellular Ca2+ dynamics has the unique feature of 

facilitating the generation of global events (often of a periodic nature) from local, 

thermally-activated stochastic opening/closing of channels on the ER membrane (84-85). 

Such channels are typically closely packed into clusters, called focal sites (86, 87) with a 

random spatial distribution and an average spacing in the 2-6 pm range. A typical 

channel present in the ER of many cells that facilitates calcium movement, is the inositol 

1,4,5-triphosphate receptor (IP3R) channel. Ryanodine receptors (RyR) though present, 

are more important in muscle cells (88). The IP3R channel has an activating binding site 

for the messenger molecule IP3 (m-gate), an activating site for Ca2+ (n-gate), and an 

inhibiting Ca2+ binding site (h-gate). Experimental findings suggest that the channel is 

open if both Ca2+ and IP3 are bound to the activating sites, and at the same time Ca2+ is 

not bound to the inhibiting site. Binding of Ca2+ to the inhibiting site of one of these 

subunits, closes the channel.

This “open channel” probability increases nonlinearly with the IP3 and calcium
* 2d-concentrations. Hence, any Ca released by one channel increases the open probability 

of neighboring channels. This provides a self-amplifying, positive-feedback non-linear 

mechanism (89) referred to as “calcium-induced calcium release (CICR)”. Very high 

Ca2+ concentrations inhibit the channels. The Ca2+ SERCA pumps remove Ca2+ from the 

intracellular space. This is necessary since elevated concentrations of Ca2+ are toxic for 

the cell.

9-1-Initial simulation efforts to quantify the intracellular Ca dynamics primarily 

focused on deterministic continuum models (90). These reaction-diffusion models were 

able to explain the observed wave patterns, oscillatory, or bistable phenomena.
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9+Extensions to these models that allowed the channels to act as discrete Ca sources 

facilitated the transition from localized to traveling structures (91). The stochastic 

behavior seen in spark and puff formation and the rather small number of channels 

creating a localized event, motivated the introduction of stochastic models (92). 

Mesoscopic aspects of the calcium-release phenomena were probed by Shaui and Jung

(93). They found that site clustering could effectively allow for collectively enhanced, 

coherent calcium responses to signals. Homogeneously distributed channels, on the other 

hand, would not be capable of producing the same large response.

Discrete models have successfully predicted oscillatory dynamical regimes and 

random, collective calcium enhancements. However, such localized, discrete stochastic 

models are perhaps not necessary in the present context o f field-assisted calcium release 

fo r a variety o f reasons. First, it has become apparent based on improved spatial imaging

(94) that the overall calcium release varies in a continuous fashion despite the stochastic 

variations in the numbers of individual channels recruited for release and the durations of 

their openings. Thus, macroscopically, a continuum model remains relevant. 

Furthermore, the present focus is on very high (>15 kV/cm) electric fields. This external 

stimulus produces very strong electrostatic driving forces and gives rise to highly non­

equilibrium conditions. Hence, it can safely be assumed that all of the channels are 

effectively driven into the calcium release (or “open”) state by the strong external electric 

signal. Statistical variability can be expected to be minimal, and that all of the discrete 

sites would be collectively forced past the calcium-release threshold.

3.15.2 Analysis of Calcium Model

Calcium release from the ER predominantly occurs through IP3R sites (95). The 

model used here utilizes the Li-Rinzel two-variable simplification (96) of the De Young- 

Keizer model (97) with appropriate modifications to account for electric field effects. 

The basic model has been used in the past (but without any external electric stimulation)
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for various analyses (98). According to this model, calcium flux between the ER and the 

intracellular space is driven by the three following processes: (i) Ca2+ outflow mediated 

by the EP3 channel, (ii) a small diffusion-driven Ca2+ leakage from the ER into the 

cytosol, and (iii) the SERCA ATPase pumps that drive Ca2+ back into the ER to maintain 

the resting (basal) calcium levels.

Here we include the additional mechanism of electric field driven Ca2+ outflow 

from the ER to the cytosol. Electroporation of the ER membrane, coupled with the 

electrical driving force on the calcium cations contributes to this outflow. In a sense, the 

ER becomes more “leaky.” This effect has been included in our one-dimensional, time- 

dependent reaction diffusion model through a time-dependent leak-flux term. The 

equations for Ca2+(z,t) density changes in the cytosol and ER are expressed, in general, 

by the continuity equation as:

3[Ca2+]/3t = - 3F(z,t)/dz + G(z,t) -  R(z,t), (33)

where F(z,t) is the passive calcium flux at any location “z” and time “t,” while G(z,t) and 

R(z,t) are possible [Ca2+] generation and recombination/attachment rates that could 

include pumps, channels and pores. In our treatment, generation, 

recombination/attachment of Ca ions, action of pumps, channels, pores etc.. has been 

ignored except at the ER-cytosol boundary. The passive flow of [Ca2+] ions can be 

expressed in terms of drift and diffusive processes. Assuming that the drift velocity of 

the [Ca2+] ions in response to the highest local electric fields is much smaller than their 

thermal velocities, and that the role of scattering can be approximated by a relaxation 

time "t", the flux F(z,t) can be cast into the following "drift-diffusion" form:

F(z,t) = [Ca2+] ii E(z,t) - D(z,t) (3[Ca2+]/3z) , (34)

where fi is the ion mobility, and D the diffusion coefficient. These parameters are simply 

related to the relaxation time "x" as : [i = q <v2 x >/(3 kB T) , and D -  (kB T/q) /r ,
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where q is the elementary charge, T the temperature, kB the Boltzmann constant, v is the 

individual ionic velocity, while <> denotes an ensemble average over Ca2+ ions.

For completeness, it may be pointed out that there are some approximations 

inherent in our use of the above drift-diffusion scheme. For example, the diffusion 

coefficient and mobility are taken as fixed, invariant parameters. Strictly, this can only 

be done if the system is stationary, not far from equilibrium, and strong local 

inhomogeneities do not exist. For non-stationary, non-Markovian processes, the 

diffusion coefficient needs to be evaluated as an integral over a two-time velocity 

autocorrelation function (82). Due to the ultra-short electric pulse, we assumed near 

stationarity. Treatments of time-variations of transport parameters in an aqueous medium 

over time scales of nanoseconds or shorter, and in the presence of external electric fields, 

have been reported by our group elsewhere . Also, since the [Ca2+] release and other bio­

chemical changes are relatively perturbative in nature with almost no impact or 

deviations in internal scattering rates, the (i and D transport parameters can essentially be 

assumed homogeneous. Thus, using eqn. (34) in eqn. (33) yields:

d[Ca2+]/3t = D(z,t) (32[Ca2+]/dz2 ) - /x3{[Ca2+] E(z,t)}/3z + G(z,t) -  R(z,t). (35)

Since an analytical solution cannot be obtained for the above equation, a numerical 

approach was used based on a uniform discretization in space (spacing "dz") and time 

(interval "dt"). The details of the simulation along with the results obtained are given in 

detail in Chapter IV.
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CHAPTER IV 

SIMULATION RESULTS AND DISCUSSION

4.1 Introduction

This chapter is devoted to the results of simulations on lipid membranes, micelles, 

proteins, DNA, water and intracellular calcium release. A general molecular dynamics 

parameter list, which is common to all the molecular dynamics simulations, is given in 

Section 4.2. Section 4.3 is devoted to MD simulations to show the electroporation of an 

“all-atom” pure DPPC bilayer. In Section 4.4, simulations showing phosphatidyl-serine 

(PS) extemalization through the MD technique are presented. Evaluations of transport 

parameters such as the non-equilibrium diffusion coefficients, field dependent 

permittivity etc.. for cells subjected to intense electroporative voltages using MD 

simulations are carried out in Section 4.5. Next, simulations showing membrane 

fragmentation during the application of pulsed electric fields are given in Section 4.6. 

The next section 4.7 shows the possible cytochrome C release upon the application of 

nsPEF’s, while simulations showing electric field induced DNA damage are given in 

Section 4.8. All the above simulations are based on MD technique. Finally, Section 4.9 is 

devoted to some numerical modeling results of calcium dynamics through the 

endoplasmic reticulum (ER). This simulation of intracellular calcium release is based on 

continuum approaches, primarily, the reaction-diffusion mechanism.

4.2 Molecular Dynamics Simulation Parameters

Except simulations on the intracellular calcium release, all the other simulations 

in this dissertation report utilize MD scheme. So, a brief overview of the molecular 

dynamics parameters used in the MD simulations is briefly presented at the very 

beginning. In early work on lipid bilayers, Venable et al. (15) and Egberts et al. (14)
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applied MD technique to dipalmitoyl-phosphatidylcholine (DPPC) bi layers. Various 

other studies of lipid bilayer systems have since been reported (99, 100). As earlier 

mentioned, MD simulations rely on the application of classical Newtonian mechanics for 

the dynamical movement of ions and neutral atoms, taking account of the many-body 

interactions within a realistic molecular representation of the bio-system. Thus, for 

example, a segment of the lipid bilayer membrane or a channel protein is first constructed 

taking account of the initial geometric arrangement of all the atoms and their bonding 

angles. Regions of water containing user-specified ion densities are then defined on either 

side of the membrane to form the total simulation space. In water-lipid system, simple 

point charge (SPC) is preferred as the water model because it has a better chemical 

potential in mixed systems.

For any simulation set-up, initial velocities, temperature and pressure are set for 

all particles. In order to prevent the system energies from increasing with time due to the 

dynamic acceleration, velocities are typically rescaled periodically by coupling the 

system to a constant temperature bath (76). In our study, the GROMACS (Groningen 

Machine for Chemical Simulations) package in NpT ensemble was used for the MD 

simulations of field-induced membrane effects. Visualization of the results was achieved 

through the Visual Molecular Dynamics (VMD) tool (83). For uniform bilayer systems, 

dipalmitoyl-phosphatidyl-choline (DPPC) membrane was chosen. Similarly to study 

heterogeneous membranes, PS molecules are embedded in the dipalmitoyl-phosphatidyl- 

choline (DPPC) membrane. The force fields for membrane molecular motion are taken 

from the literature (76, 77, 79). The system was coupled using a semi-isotropic 

Berendsen pressure coupling of 1 atmosphere with compressibility of 4x10 5 along the z 

direction, and zero along the x  and y  directions. A 323 K heat bath is chosen to retain the 

liquid phase of the membrane (101). The algorithms for pressure and temperature control 

were those discussed by Allen and Tildesly (102). The requisite time constants for 

pressure and temperature coupling were set to 1 ps and 0.1 ps, respectively. A 4 fs time 

step has typically been used with the Linear Constraint Solver (LINCS) algorithm 

outlined by Berendsen et al. (79) to constrain all the bond lengths within the lipids and
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on the water geometry. A group based twin cutoff scheme was employed for the non- 

bonded interactions, with cutoff radii of 1.0/1.4 nm for Lennard- Jones interactions. The 

particle-mesh Ewald (PME) scheme was applied in our MD simulations taking account of 

the long-range electrostatic interactions. Periodic boundaries were applied, and the 

simulations carried out under constant pressure conditions. This method allows the 

simulation box size to change so that the internal virial value matches the external 

pressure. These are the general reference parameters for all the molecular dynamics 

simulations in the dissertation work presented here. If the molecular dynamics parameters 

change from the reference values, they are explicitly mentioned, otherwise the parameters 

used are same as above.

Fig. 4.1. DPPC bilayer structure (left) with SPC water above and below, 2-D cross- 
section (right) showing the thickness of head-groups and fatty acids.

All MD simulations (pure DPPC, DPPC-DPPS combination, DNA, proteins etc.) were 

carried out in two stages. In the first phase, the MD calculations were carried out for an 

initial membrane (or DNA/protein) patch surrounded by the water molecules in the 

absence of any external electric field or surface tension. In this process, the system was
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allowed to stabilize and reach a dynamic equilibrium. This process implicitly allows for 

internal energy minimization and the attainment of a stable initial configuration.

4.3 Lipid Membrane Poration

A stable system containing 128-DPPC (dipalmitoyl phosphatidylcholine) lipids 

and 5476 water molecules is directly taken from previous work of Tieleman et.al. (101). 

This membrane along with the solvent SPC water model is shown in Fig. 4.2.
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Fig. 4.2. Pore formation in DPPC bilayer.
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For clarity purposes, tails are not shown in Fig. 4.2(a). A constant electric field of 

0.5 V/nm was assumed. Initially, the surface tension in the membrane was 2 * 10-2 J . 

The application of the electric field causes some structural rearrangements (i.e., defect 

formation) that begin to form at the anode side (i.e., the membrane bottom) as shown in 

Fig. 4.2 (b).

A pore is then seen to form fairly quickly after the creation of the initial defect. 

Complete nanopore formation is predicted within about a nanosecond after the initial 

structural change. Thus, as seen from the present simulations, most of the time for the 

electroporation process is taken up by the initial defect formation. A pore with 

headgroups slowly entering in the pore region is shown in Fig. 4.2(c), and the complete 

pore formation at 4ns is shown in Fig. 4.2(d). This result demonstrates a good match 

between the MD result of Fig. 4.2, the predictions of a continuum model (43), and the 

actual experimental data (10). A nanopore is predicted to form within about 5-6 ns at 

these high field intensities. Since the pulse duration is typically longer than this time, the 

ion transport (especially for ions with smaller radii) would be very likely. Second, the 

initial structural rearrangement and dipole reorientation are a critical step in the 

electroporation process. Once an initial breakthrough is achieved, the poration process 

proceeds relatively quickly. The surface tension used in the simulation is far less than 

reported to cause stress-induced rupture of membranes (103). Hence, the pore formed is a 

direct result of an external electrical pulse.

Finally, the poration process has a polarity dependence, and begins on the anodic 

side of a membrane. The related physics can easily be understood by considering the 

dipolar configuration within the DPPC membrane. Fig. 4.3 shows a simple schematic of 

the membrane lipids with their dipoles located at the head groups. For each DPPC chain, 

the head group contains a dipole with a positive charge on choline, and the negative 

charge centered on the phosphate group. Initially, with no electric field present, the
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dipoles are in random thermal motion with the positive charges residing on the outermost 

portions of the lipid. Electrical-fieldinduced defects are initiated by the movement of the 

dipoles on the surface of the membrane. The defects start to form on the anode side of the

M \ i M N

Fig. 4.3. Schematic diagram of the pore initiation process at the DPPC membrane.

membrane, because the positively charged molecules (e.g., choline) on this side are 

forced to swing around (i.e., reorient in the presence of a strong external electric field) 

and enter the membrane. However, the same applied electrical field, when acting on the 

dipoles located at the cathodic membrane surface, merely works to stretch the dipoles 

without any molecular movement into the membrane volume. Thus, Fig. 4.3(a) shows the 

randomly distributed dipoles at the head groups on either side of the membrane as the 

initial configuration. Fig. 4.3(b) shows the alignment of the dipolar head groups on the 

anodic side gradually deviating from the normal (equilibrium) orientation, and a defect 

starting to form. Thus, in accordance with the experimental observations, the pore 

formation is predicted to initiate at the membrane pole facing the anode.
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4.4 PS Externalization

PS molecules are replaced with DPPC molecules on one side of the pure DPPC 

system to create a DPPC-DPPS mixture. If the PS externalization in the membranes is 

pore-driven event, then this process too, should start at the anode side. Currently, there 

are two competing theories regarding the PS externalization. Diffusion of the PS 

molecules through the membrane pores upon their formation is a one possible pathway. A 

second mechanism proposed in the literature, involves a PS translocation from the inner 

to the outer leaflet across an internal potential barrier. Here, through MD simulations, it 

has been shown that the energy barrier is too strong for the direct PS movement. Instead, 

the externalization is facilitated by the formation of the internal pores within the 

membranes. The

(b)

4

Fig. 4.4. Schematic diagram of the pore initiation process within a DPPC-DPPS 
membrane.
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PS molecules, which are always in constant thermal motion, are then able to diffuse out 

through the membrane pores. Since the pore formation initiates at the anode end, the 

electric-field driven PS externalization also has a polarity dependence. It is dominant at 

the anode. Experimental observations do indicate just an anode-side preference. The 

electrostatics provides an additional rationale for an anode-side event. Since the PS 

molecules residing on the inner leaflet are negatively charged, the externally applied 

electric field will tend to push out the PS at the anode side, while pulling them inwards on 

the cathodic side. Coupling this with an anode-side pore formation event, leads to the 

collective effect of the preferential PS externalization at the anode end.

Fig. 4.5. PS externalization, a pore driven event.
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Fig. 4.4 is a simple schematic diagram demonstrating the dynamics. Initially in Fig. 

4.4(a), the dipoles at the DPPC lipids (shown as arrows) are randomly located, with a 

negative PS on the inner leaflet. With application of the electric field, the dipoles on the 

outer layer (anode side) reorient, leading to a defect initiation at the outer membrane 

surface. Eventually, a pore forms [Fig. 4.4(c)], and the negatively charged PS begins to 

drift and diffuses towards the exterior surface. Results of the MD simulations, shown in 

Fig. 4.5, demonstrate the above more clearly.

An initial snapshot of the membrane system is shown in Fig. 4.5(a), with the PS 

molecule located on one side of the membrane, opposite from the anode. Fig. 4.5(b) 

shows a pore starting to form with some translocation of the PS chain at 3.2 ns. Due to a 

large electrostatic force on the PS head group (in the range of 1CT10 N), the chain is 

dragged half way to the anode side of the membrane along the wall of the nanopore at 

about □ 3.34 ns, as shown in Fig. 4.5(c). Finally, in Fig. 4.5(d), the DPPS chain is on the 

other leaflet of the membrane at 3.61 ns. The MD simulation thus validates the pore- 

facilitated, field-assisted mechanism of the PS externalization. An important difference 

between the DPPC-DPPS simulations of Fig. 4.5 and results for a pure DPPC membrane 

(Fig. 4.2) is the shorter time duration for the pore formation. Inclusion of a membrane 

defect in the form of a substitutional DPPS molecule, and the additional membrane force 

associated with the negative DPPS charge, collectively contribute to the quicker poration. 

Based on this result, one could logically extrapolate to predict that a membrane 

inhomogeneity (particular embedded proteins and charged ions) would further aid the 

electroporation and ion transport.

4.5 Transport Parameters

One of the important results achieved in this dissertation report is to find the 

frequency, space and field dependence of dielectric permittivity and diffusion coefficient 

in the presence of high electric fields. These would be the values under strong non­

equilibrium conditions. For this, the all-atom DPPC structure that was used to show pore 

formation was used. The overall simulated system for MD analyses had a total of 26,893
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atoms. The total simulation volume was taken to be a 6.5 nm • 6.5 nm • 8.5 nm cubic box. 

Fig. 4.6 shows the initial configuration of a lipid bilayer structure with a nanopore at the 

start of MD simulations. Details on this configuration, the pore formation process, and all 

preceding calculations have been reported elsewhere (43). The z-direction (perpendicular 

to the DPPC membrane) was divided into seven layers for spatial resolution. In the 

notation of Fig. 4.6, the top and the bottom-most layers (comprising mostly of water 

molecules) correspond to the “ above-interface” and “ below-interface,”  respectively. 

The layers immediately adjacent to these are labeled as the interfacial region. Since the 

boundary conditions employed were periodic in nature, the top and bottom shells of water 

of thickness equal to the cut-off employed were ignored. In other words, the interactions 

between water above “above-interface” and below “below-interface” were ignored.

: Abo ve i n t e r f a c e$■
#  0k.* #  *  '  ° T i_ c .

9 **; * <Z' ,*< * \  * *-« I n t e r f a c e*** * 4. '" >*y'■+ -■> k n * 1
t V  Top p o r t i o n  of

r  i,* por p
I n s i d e  pore

Fig. 4.6. The initial molecular configuration of a DPPC membrane segment with a central 
nano-pore at the start of MD simulations.
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The nanopore itself is divided into three layers—a top and bottom layers that are 

symmetrical, and a middle layer corresponding to the central pore region. Results for the 

diffusion coefficient calculated from velocity auto-correlation are first presented. The 

velocity autocorrelation function necessary for these computations is shown in Fig. 4.7, 

for bulk water as an example. The relaxation times for water (and other lipid bilayer) 

molecules are relatively fast, and occur on timescales of 10 ps or less, as discussed in the 

literature (104). These timescales are consistent with our numerical observations, though 

our simulations were run for much longer times. Different electric field values ranging 

from 0 to 1 V/m were used. The field-dependence was seen to be negligible, and so only 

the zero-field plot is shown in Fig. 4.7. The heavy molecular mass, coupled with the 

isothermal relaxation used in our MD simulations, precluded any field-driven, energy- 

dependent effects. In Fig. 4.7, the velocity auto-correlation function C(t) starts from 

unity, and rapidly begins to decrease as the water molecules undergo collisions and 

change the direction of their velocities. For a purely Brownian motion with weak 

scattering, one might expect C(t) to display an exponentially decaying behavior. 

However, memory effect and the strong inter-atomic interactions change the temporal 

response. The strong molecular interactions keep individual atoms rattling around in 

localized regions. The high density environment surrounding each molecule effectively 

establishes fluctuating potential “ cages” with localized trapping on short timescales. 

Eventually the molecules randomly break away. Hence, as seen in Fig. 4.7, C(t) exhibits 

a slight plateau and even a minor “ bump” following the rapid decrease. Eventually C(t) 

goes to slight negative values as the direct result of velocity reversals within some water 

molecules due to strong mutual scattering. Repulsive potentials that become dominant at 

very small inter-molecular separations also contribute. Physically this corresponds to a 

“ rebound” of the water molecules from the shell of its neighbors. The overall simulation 

result for bulk water obtained here is in good agreement with other reports published in 

the literature (104).
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Fig. 4.7. Calculated velocity auto-correlation function for bulk water.
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Fig. 4.8. MD results for the velocity auto-correlation function for water within different 
membrane regions.
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Having obtained reasonable results for bulk water, MD simulations were carried 

out for the velocity auto-correlation within the different membrane regions. The results 

appear in Fig. 4.8, and the general trend is similar to the previous case for bulk water. 

The velocity auto-correlation within the central pore is the smallest. This is to be 

expected since diffusion in lower-dimensional confining geometries is always smaller 

than in three-dimensional bulk. Scattering primarily occurs perpendicular to the 

membrane, i.e., along the z-axis. Velocity randomization is faster because of a higher 

possibility for large-angle back-scattering in a quasi-one-dimensional geometry. The 

corresponding frequency-dependent diffusion coefficients D(x), in the various membrane 

regions as well as for bulk water, are shown in Fig. 4.9 and Fig. 4.10. These D(x) plots 

show the static diffusion coefficient to be the highest for bulk water and the smallest 

inside the pore. Values range from about 0.5 x 10'9 to 6 x 10'9 m2 s'1. The peak is 

predicted to occur roughly around 1.4 x 1012 s'1.

tO c
E °
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CD

M 3
CDOO
I 2
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~  1 □  1

■ Above interface 
Interface
Top portion of pore 

• Inside pore

0 5 10 15
Frequency (THz)

Fig. 4.9. Calculated frequency-dependent diffusion coefficient for various regions around 
the membrane.
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Fig. 4.10. Calculated frequency-dependent diffusion coefficient for bulk water.
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Fig. 4.11. Results of the field-dependent relative permittivity across different membrane 
regions. Bulk values match previous reports (105).
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The 4.5 • 10'9 m2 s'1 value for the static diffusion coefficient for bulk water is 

close to other reports (106), but slightly larger than the experimental value of 3.5 • 10'9 

m2 s'1 at 323 K. Though the precise quantitative value will depend on the specific model 

chosen for water, the general overall trends are all reasonably in line with known data.

Simulation results for the relative permittivity across various regions in the 

membrane vicinity are given in Fig. 4.11. As may be expected, the highest value was 

obtained for bulk water. The current results for bulk water match an earlier report by Yeh 

and Berkowitz (105) very well. As is well known, dielectric constants evaluated from 

molecular simulations do not yield the experimental value of 80. The magnitudes are 

generally lower and depend on the model interactions used in the computations. Here, our 

primary interest is to quantify the relative changes and their spatial inhomogeneities over 

atomic distances near cell membranes. Towards this end then, the simulation values were 

scaled up slightly to coincide with the experimentally accepted, zero-field value of 80. 

These are the resulting plots of Fig. 4.11. The low field value inside the pore region is 

predicted to be slightly below 8. This low value arises from a finite size effect due to the 

inability of water molecules to move along the transverse dimensions. Qualitatively, this 

reduces the ability of this fluid to adjust dynamically and screen charges. The plots also 

predict virtually no field dependence below 100 kV/cm. A plot of the MD results for the 

dipole moment variations at 0.1 V/nm within different regions is shown in Fig. 4.12.

Cellular electroporation is generally accepted to begin at a transmembrane 

potential threshold of about 1 V. Roughly, for a 5 nm thickness, this corresponds to an 

electric field of 2000 kV/cm. This is clearly a regime in which the permittivities can be 

expected to be much lower than the static, low-field values generally assumed. At these 

fields, the region adjacent to a cell membrane is predicted to have a relative permittivity 

of only 35. It is, therefore, important to include such field-dependent effects into macro­

models and other transport calculations. Besides, such field-dependent decreases in
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dielectric constant can be expected to give rise to a localized positive feedback 

mechanism in the
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Fig. 4.12. Dipole moment variations across different membrane regions.

following manner. Increases in local electric fields (due to externally applied voltages, for 

example) would reduce the permittivity. Effectively then, the capacitance of a local 

elemental volume would decrease. In the absence of conduction current flows across the 

membranes at the early times (pre-electroporation regime), displacement currents 

dominate. Requirement of total current continuity, would naturally lead to an 

enhancement in the rate of voltage increase, to offset the permittivity decreases. Hence, 

the transmembrane voltage would rise faster, further reducing the permittivity and setting 

up a positive feedback mechanism.
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4.6 Membrane Fragmentation

The traditional electroporation model seems to work well for relatively low-to 

moderate electric fields (200 V/cm - 5 kV/cm). However, it appears to be inadequate in 

explaining several of the observed phenomena at high electric field strengths.

The various inadequacies with regards to experimental reports are listed below.

(i) The high-field experimental data indicates strong conductivity increases of the 

cell solution at the very beginning of a high voltage pulse (45). Our current 

experimental data sets (discussed in the next section) show conductance 

increases far exceeding values that might be predicted on the basis of simple 

membrane electroporation or dissolution. Also, such increases cannot be 

attributed to field-induced Wien effects.

(ii) The fast decrease in conductance (45) after the pulse cessation is observed 

that is not compatible with pore shrinking or sealing. The re-sealing process 

for electro-pores is known to be slow and can take up to several seconds to 

minutes (46). An additional point of interest is the vesicle formation at the 

plasma membrane (i.e., blebbing) that has been observed (47). This aspect is 

not addressed by the electroporation models.

(iii) Recent reports by Tekle et al. (44) show loss o f the phospholipid membrane 

during high voltage pulsing. This phenomenon was shown to occur in addition 

to a pore formation process. Their results demonstrated that up to 14 percent 

of the membrane surface could be lost upon electric field application.

The following hypothesis can then be evoked, (i) The high externally applied electric 

fields causes electroporation and forces water inside the bilayer structure; (ii) Spatial 

confinement of water molecules within the nano-pores effectively reduces the liquid 

permittivity. Such reductions in dielectric constant due to finite-size effects are well 

known (107), and arise from the inability of dipoles to effectively screen potential, as 

their free movement is curtailed; (iii) The high electric field near lipid membrane surfaces
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also facilitates the movement of charged molecules [e.g., phosphatidyl-serine (PS)] 

causing further structural re-arrangement; (iv) Since the permittivity (e) decreases with 

electric field, a positive feedback mechanism would arise. Any field-induced reduction in 

permittivity (e) would lead to further increases the local electric field since the 

displacement vector D = eE is roughly constant. This local increase, in turn, would 

produce further reductions in permittivity; (v) The presence of a high electric field could 

also alter the electronic states and cause energy-level mixing through the Stark effect. It 

could become possible for the hybrid bonding states of one site to align with the anti­

bonding energies at adjacent sites. Field induced electronic transfer (e.g., hopping), 

leading to the weakening of molecular bonds could then follow as a naturally 

consequence. Hence, field-assisted fragmentation and micelle formation might be 

facilitated in the presence of high fields.

4.6.1 Atomistic Simulations

To prove the above hypothesis, MD simulations were performed to show possible 

membrane loss upon the application of high electric fields. The dipalmitoyl-phosphatidyl- 

choline (DPPC) membrane was chosen with some embedded PS molecules, and the force 

fields for membrane molecular motion taken from the literature. This structure is similar 

to the one used for PS externalization simulations. In all a total of 169,891 atoms were 

used comprising of 54,485 water molecules, 119 DPPC chains, 9 phosphatidylserine and 

9 Na+ ions for overall charge neutrality. Fig. 4.13 shows the initial configuration of a 

lipid bilayer structure at the start of MD simulations. The membrane was comprised of a 

8 x 8  square grid at the top and bottom surfaces. A constant, large electric field of 0.6 

V/nm was imposed perpendicular to the membrane. The electric field value used here is 

large and this choice perhaps needs some explanation. The corresponding transmembrane 

voltage at this field is roughly 3 Volts. For traditional electroporation, the accepted 

potential values are on the order of 1 Volt. However, for short-duration pulses highly 

non-equilibrium conditions exist, giving rise to transient overshoots in transmembrane
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voltage (10). Hence, the use of membrane voltages larger than 1 Volt under transient 

conditions is not unphysical.

Fig. 4.13. The initial configuration of a DPPC lipid bilayer used for the MD simulations. 
Water is shown in brown, lipid headgroups in yellow and lipid chains in cyan.

Also, MD simulations are very computationally intensive and require small time 

steps in the femto-second range. Calculations of the dynamic response can only be 

carried out to tens of nano-seconds. In actual practice, membrane effects under a high 

external field could take as long as milliseconds to manifest. So here, a very high electric 

field was deliberately chosen to increase the driving force, and hence, produce a tangible 

outcome within tractable time scales. Since the underlying physics produced by the 

external field would be the same, the high value used here simply allows for the 

attainment of the final state at much shorter times -  thus a “steered” result. Since the 

present focus is on the “proof-of-concept,” and it is adequate to quantitatively 

demonstrate the final outcome via such “numerically accelerated testing.”
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Fig. 4.14. Snapshot of the DPPC lipid bilayer patch at 1.85 ns. Slow membrane 
fragmentation is predicted during the electric pulse.

A snapshot of the membrane patch shown in Fig. 4.14 at 1.85 ns reveals the 

membrane disruption and the on-set of fragmentation. The head-groups are beginning to 

separate and move into the aqueous medium. Our results strongly suggest an intermediate 

state of a closed hydrophilic pore (HI), representing a non-conductive pre-pore on the 

pathway to a final HI pore. The fragmentation is more obvious in Fig. 4.15, which is a 

2.05 ns snapshot from the MD simulations. The 0.6 V/nm field acting on a charged PS 

lipid molecule roughly corresponds to a 96 pN force that facilitates lipid extraction from 

the DPPC membrane. This force is slightly lower than previous estimates for bio­

membrane rupture (108) based on pure mechanical stress. A slight lowering on the force 

requirement in this electric field context is perhaps to be expected based on the following 

qualitative aspects. Lipid bilayer membranes derive their resilience to structural 

dissolution, in part, by the hydrophobic interactions between lipid tails and the 

surrounding water. This interaction helps keep the lipid tails sequestered away from the 

water, maintains the structure and prevents membrane break-up. However, unlike pure 

mechanical stresses, the application of external electric fields creates nano-pores and 

lowers the local permittivity. Forced entry of water into the lipid bilayer system weakens
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the drive towards an organized structure. Collectively, electrostatic forces tugging on 

charged ions, the short-range dipole interactions, reductions in localized aqueous 

permittivity, and the possibility for increased entropy, all serve to facilitate lipid 

membrane fragmentation under strong external electric fields.

Fig. 4.15. A 2.05 ns simulation snapshot of the DPPC lipid bilayer patch with the voltage 
pulse applied. One lipid at the anode side (top) is seen to break loose.

The above MD simulations clearly demonstrate the following aspects: (i) It is 

possible to get membrane rupture and fragmentation in response to a large externally 

applied electric field. In practice, such effects are expected to occur at the poles due to the 

highest electric fields in those regions; (ii) The effects are predicted to be stronger at the 

anodic side due to the existence of negatively charged molecular species within 

membranes; (iii) The ejection of lipid molecules from parts of the membrane has been 

shown to occur. Furthermore, such fragments are likely to cluster together and form
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micelles in the immediate vicinity of the parent membrane; (iv) Finally, though not 

shown here explicitly, it is conceivable that the uncharged micelles would tend to diffuse 

back and self-organize into the parent membrane. However, micelles containing charged 

entities would drift away due to the applied electric field, and also due to the mutual 

electrostatic repulsion between different micelles. Upon termination of the electric field, 

not all of such charged micelles would coalesce back due to the mutual electrostatic 

repulsion. Hence, a certain fraction of the membrane segment might be lost, in keeping 

with the reports of Tekle et al. (44).

4.7 Possible Field Induced Cytochrome C Release

Mitochondria, often termed as the energy power house of cells, plays a major role 

during the initiation of apoptosis. The release of different membrane and globular 

proteins inside the mitochondria is regarded as one of the causes and triggers of 

programmed cell death. One of this membrane proteins which plays a very important role 

is Cytochrome C. The exact mechanism by which Cytochrome C release is not well 

understood, but there are studies (109) which showed that cytochrome C release 

generally occurs in two steps. In the first step, Cytochrome C, which is bound to inner 

membrane of mitochondria through cardiolipin (110), gets detached. In the second step, 

this Cytochrome C diffuses into the cytoplasma. The experimental results on isolated rat 

liver mitochondria also showed this 2-step release of Cytochrome C release (109). This 

mechanism appears to be reasonable based on electrostatic considerations. A brief 

supporting, qualitative explanation is provided here. Cytochrome C has positively- 

charged lysine residues which bind to negatively-charged phosphate groups of 

cardiolipin. During the application of electric field, a membrane rupture in the inner 

mitochondrial membrane (the inherent electroporation process) could aid in creating the 

“exit doorway” for Cytochrome C release from the inner mitochondria. The external 

electric field could also help separate Cytochrome C from cardiolipin based on the 

electrical driving force. Once this happens, the positive charge of Cytochrome C would 

conceivably help it drift further away from the cardiolipin (or inner mitochondrial
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membrane). This membrane rupture/poration coupled with Cytochrome C separation 

from cardiolipin leasing to an overall cytochrome C release thus looks plausible. Here, 

simulations showing poration of twin-bilayer system, as present in the mitochondrial 

machinery, is given next. The reason for performing simulations on twin-bilayers is 

explained in detail in next section.

® low

E  +  +  +

OMM

IMM

▼

® high
MATRIX

+  +  +  +  +  +  4 First
IMM Rupture

OMM

Fig. 4.16. Schematic of the double layer mitochondrial system. Outer Mitochondrial 
Membrane (OMM) / Inner Mitochondrial Membrane (IMM) model.

Unlike the cell or nucleus, mitochondria have inner and outer membranes 

separated by few nanometers. There are some contact sites between these inner and outer 

mitochondrial membranes, where the distance between them is supposedly very small, on
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the order of ~l-10nm. These contact sites (also known as complexes), and the inner 

membrane generally have the phospholipid cardiolipin. It is also known that the inner 

mitochondrial content is more conductive than the outer cytosol. Thus, it is reasonable to 

suppose that the inner mitochondrial region has a higher ionic concentration, and this 

could lead to stronger build-up of localized charge densities upon external electric field 

application. In the schematic of Fig. 4.16, the potential build-up across the cathodic side 

of the outer membrane/inner membrane system could thus be higher as compared to that 

on the anodic side. The greater charge build-up at the cathodic side of the IMM (due to 

the high conductivity of the mitochondrial matrix) would fashion this asymmetry as 

shown in Fig. 4.16.

As a preliminary first step towards testing the above hypothesis of cytochrome C 

release from the mitochondria, MD simulations on twin-bilayer system were performed. 

The twin-layer mimics the mitochondrial structure. Clearly this is an initial first step, 

since a variety of factors are expected to be at play. These involve miochondrial 

membrane poration, the possible role of cardiolipin, their possible separation and finally 

the exit of cytochrome C through the porated membrane. The gap between the twin 

bilayers was taken to be around lnm as shown in Fig. 4.17(a). For simplicity, Fig. 4.17(b) 

shows the bilayer structure with solvent around, but without the lipid tails for purposes of 

clarity. Fig. 4.17(c) shows the initiation of water defects at time instant t = 6.6ns on the 

top side of the twin-bilayer system. The time taken for the pore formation in one of this 

twin bilayer structure is somewhat larger than that for poration for a single bilayer 

membrane. This can be explained as follows. The solvent sandwiched between the 

bilayers has very little space to move and as a result the water dipoles are practically 

immobilized. Hence, the permittivity is almost an order lower than that of the bulk water . 

Treating this bilayer-water-bilayer system as capacitors in series, the permittivity of the 

whole system in the electric field direction can be found to approximately be that of the 

bilayer (~8). Thus, the system can be considered to effectively be a dielectric with 

permittivity of approximately 8 and length lOnm (=4.5 nm + 1 nm + 4.5 nm). As a 

result,
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the time taken to charge this twin-bilayer system will be more compared than that 

required for a single bilayer membrane. With more time needed to set up the critical 

poration field, pore formation in the composite membrane can naturally be expected to 

take longer. Fig. 4.17(d) shows the hydrophilic pore formation. Fig. 4.17(e) shows the 

diffusive/drift movement of the lipid molecules within the bilayer system. Following an 

initial poration event, a second hydrophilic pore formation is predicted to take place in 

the second bilayer a time of about t=T3ns.

4.8 Electric-field Induced DNA damage

Most of the molecular dynamics simulations done on DNA were the studies of 

hydration shell around it (111, 112). These studies were possible after several x-ray 

crystallography experiments on DNA molecule (113). There were also a number of 

proposals for including nucleic acid force-fields for more accurate simulations (114). 

Here, results on MD simulations of oligonucleotide dodecamer d(CGCGAATTCGCG) 

are presented and discussed. One of the main goals was to see the possibility of 

deformation and/or fragmentation of DNA bonds upon the application of high electric 

field.

The initial structure of the DNA oligomer considered is shown in Fig. 4.18(a). 

This DNA molecule has a charge of -22e. So, 22 Na+ molecules were added to neutralize 

the charge of the system and maintain overall neutrality. The electric field applied in this 

simulation was taken to have a constant value of 4V/nm. This high electric-field of 

4V/nm perhaps needs an explanation. The dimensions of the DNA structure taken for 

these simulations are less than a cubic nanometer and have only 12 base-pairs. Generally, 

DNA’s are very long and have thousands of base-pairs. If that were the case, the charge 

of the DNA molecule considered will be very large, owing to the strong electrical effects 

upon the application of lower electric-fields. For this reason, instead of taking long 

realistic DNA, a short DNA was simulated at higher electric field. This was done in part
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to speed up the computational time. Similar simulations have been recently carried out to 

demonstrate the diffusion of plasmid DNA through the lipid bilayer at lV/nm (53).

Fig. 4.18. Electric Field Induced DNA damage.

The results of the simulation are described here. Fig. 4.18 (b) shows the DNA 

structure at t= l .8 ns during the application of electric field. It can be seen that the double­

helix is starting to break-up. This break-up is more clear and evident in Fig. 4.18 (c),
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which is at t = 2.2 ns. Eventually, all the bonds between the double-helix are broken as 

shown in Fig. 4.18 (d). This looks like double-helix getting separated into 2 single 

strands. Thus, these preliminary simulations are indicative of the possibility of electric 

field induced DNA damage.

4.9 Electric Field Induced Intracellular Calcium Release

Simulations for the time-dependent calcium concentrations within both the 

cytoplasm and endoplasmic reticulum, in response to a 60 ns, 15 kV/cm electric pulse 

were carried out. These electrical pulse parameters were chosen to match previous 

experimental reports (115) on electric-field-induced calcium release. The mathematical 

model is described in detail in Chapter III. All calculations assumed an absence of extra­

cellular calcium and hence can be considered as a closed-cell situation as shown in Fig.

4.19.

E.R.

IrwP.tR thM w eJ

Fig. 4.19. Closed-cell situation model.

A very brief summary of the simulation results is presented here. The results for 

the averaged Ca2+ concentration in the cytosol are given in Fig. 4.20. The plot also
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includes experimental data points that have been reported in the literature (116). In Fig.

4.20, the Ca2+ concentration starts from an initial 0.1 pM value and increases in time to a 

maximum of about 0.23 pM. The data is for HL-60 cells. The sharp increase, seen during

the initial phase, is due to electric field-induced poration within the ER that leads to a
2+Ca outflow. Drift rather than diffusion is the primary transport mechanism during this 

initial phase when the external voltage remains applied. Beyond this initial sharp Ca2+ 

release, IP3R-activated calcium transfer arising from the CICR mechanism begins to set 

in. A slow and more gradual recovery down to the initial concentrations is predicted, 

with final steady state being achieved after about 300 seconds. This ~ 4-5 minute 

recovery time is in accord with reported measurements (116). The experimental data of 

White et al. (116) are also shown in Fig. 4.20, and matches the predictions well. The 

model predictions were within the experimental error deviations for all the points. Due to 

limitations in the temporal resolution of experimental techniques, values of the Ca2+ 

concentration at the earlier times could not be measured, and hence, such data points 

could not be shown. The experimental data in Ca-free extra-cellular environments 

(11,116) is in accord with this prediction.
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Fig. 4.20. Simulation results for average Ca-concentration in cytosol as a function of 
time. The experimental data points are from the reports White et al. (116).
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CHAPTER V 

SUMMARY AND SCOPE OF FUTURE WORK

5.1 Introduction

Ultra-short, high-field pulses open the way to targeted and deliberate apoptotic 

cell killing (e.g., of tumor cells). Though experimental data is very useful, it usually 

yields information on macroscopic variables that is inherently an average over time 

and/or space. Measurements often do not provide the molecular level information or 

details, as might be possible through numerical simulations. Here we focus on the MD 

technique, as it provides the most comprehensive, time-dependent, three-dimensional 

nanoscale analyses with inclusion of the many-body aspects. This dissertation research 

presents simulations and analyses of several aspects including membrane poration and its 

dynamics; predictions of transport parameters under high-field, non-equilibrium 

conditions; electric fields effects on DNA; micelle disintegration; protein unfolding; and 

intra-cellular calcium release. Summarizing conclusions on the simulations done in this 

dissertation research is presented briefly in Section 5.2, while Section 5.3 points to few 

potential problems that can be solved using MD simulations. This section is basically the 

scope of future work.

5.2 Summary of Research

This section basically summarizes the simulation results already presented in 

Chapter IV in this dissertation research report. These include DPPC membrane Poration, 

PS extemalization in DPPC-DPPS membrane, calculation of transport parameters and 

permittivity of water molecules inside the pore as well as near the membrane, high
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electric field effects on DNA double helix, simulations showing membrane fragmentation 

and also continuum approaches used to simulate electric field induced calcium release.

5.2.1 Membrane Poration and PS Externalization

The MD simulator was used to probe the pore-formation dynamics, assess the size 

and temporal duration of the membrane pores, analyze the electrically driven PS- 

extemalization process, and study the physics underlying the observed polarity 

dependences. The above was carried out using “all-atom” models of pure DPPC and a 

combination of DPPC-DPPS lipid molecules.

5.2.2 Transport Parameters for Electroporation Analyses

Transport analysis and evaluations of the membrane dynamics are often based on 

simplified approaches that use a set of macroscopic parameters. However, these 

parameters are field dependent, and in the vicinity of the membrane would have strong 

spatial variations. Here, microscopic details and inhomogeneities have been considered 

based on molecular dynamics applied to a DPPC membrane structure. The results given 

here could primarily be applied to coarse-grained, macroscopic transport modeling work 

and can play a vital role in understanding transport phenomena of drug delivery.

5.2.3 Electric Field Induced Membrane Fragmentation and DNA damage

The physical phenomena of electrically stressing cells to high external voltages 

has been shown to cause significant increases in conductivity of the cellular medium and 

that this conductivity rapidly decreases upon voltage termination. Such conductivity 

increases and the relatively fast conductivity turn-offs cannot be accounted for on the 

basis of simple electroporation alone. A new hypothesis of localized membrane rupture
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and fragmentation on the “nanoscale” at high electric fields has been proposed in this 

dissertation work and the hypothesis was supported with MD simulations. Finally, such 

application of high external voltages on cells might damage DNA and could also porate 

double-membrane of mitochondria possibly leading to cell death. Initial MD simulations 

on DNA and mitochondrial double membrane system have also been shown in the 

present dissertation report.

5.2.4 Electric-Field Induced Calcium Release

The objective of this study constitutes a first step in quantitatively probing the 

time- and spatially-dependent modulation of calcium dynamics through the application of 

external voltages. The simulation results have been shown to be in agreement with the 

observed calcium dynamics in experiments.

5.3 Scope of Future Work

Throughout this dissertation report, a range of discussions were presented 

spanning from molecular dynamics simulations on membranes, micelles, proteins and 

water to continuum simulation approaches on calcium dynamics, to show and validate the 

experimental results of pulsed electric fields on cells. This area of simulations is one of 

the rapidly growing fields in the world of computational biology. The MD simulation 

technique, coupled with continuum approaches (“multiscale modeling”) can widen the 

scope for analyses and help in solving a broad array of different problems. Here, a brief 

discussion will be presented on a few problems of interest that merit subsequent work. 

These topics include MD simulations on membrane proteins, denaturation of proteins, 

membrane electro-fusion and multiscale modeling of electrodelivery of bio-active agents.
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5.3.1 Membrane Proteins

Proteins are the most abundant macromolecules present in the membranes, 

cytosol, organelles and chromosomes. They constitute more than 50% of the mass of the 

living cell. The function of a cell membrane generally revolves around its proteins. 

Different kinds of proteins are found in cell membranes, and are generally globular. They 

are not held in fixed pattern and they move in the phospholipid bilayer. These proteins 

normally fall into 3 categories: carrier proteins that regulate transport and diffusion, 

marker proteins that identify cell to other cells and receptor proteins that allow the cell to 

receive instructions, communicate and transport proteins, and regulate what enters or 

leaves the cell. These proteins are either peripheral or integral. As the name implies, 

peripheral proteins are generally bound to the exterior parts of head-groups and hence can 

be easily extracted, while the integral proteins are tightly bound to lipid tails and are 

insoluble in water.

Proteins play crucial roles in dynamic processes within living cells. For example, 

insulin regulates the metabolism of glucose; rhodopsin converts incoming light in the 

retina of the eye to ionic signals in the optic nerve. Actin and myosin generate forces in 

muscle cells. Dynein is an energy-producing component of the cytoskeleton. Kinesin 

performs intracellular transport. Functional proteins catalyze nearly all cell metabolic 

proceses. Each functional protein has a specific conformation suited for its function 

(117). The membrane proteins are a class of proteins that are embedded in the lipid 

bilayer. Most of the membrane proteins have channels for the exchange of ions and other 

proteins. It is also proven that around 50 top pharmaceuticals bind to membrane proteins, 

whose molecular models are available and hence it will be very interesting to understand 

the molecular details of binding through MD simulations (118). In the next 2 sections, a 

brief discussion is made on Channel Proteins and Voltage gated ion channels.
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5.3.1.1 Channel Proteins

One of the proteins which helps in the exchange of ions for ATP and for the 

metabolism of the cells are the channel proteins. Channel proteins extend through the 

bilayer and form a pore through the membrane that can move molecules in several ways. 

One way to understand these channel proteins is to study very simple peptides that form 

channels. One of the peptaibols is alamethicin, which is a family of fungal peptides.

Fig. 5.1. Alamethicin in POPC in side (left) view and top (right) view.

Alamethicin is an alpha helical channel-forming peptide, which inserts into lipid 

bilayers in a voltage-dependent, asymmetrical fashion. Alamethicin channels have been 

modeled as parallel helix bundles of transbilayer helices containing between 4 to 8 

helices per bundle (119) Previous MD simulations on these varying channel sizes has 

shown that there is a continous water-filled pore from 6 helices onwards. Alamethicin 

channel with 6 helices embedded in a bilayer is shown in Fig. 5.1. These kind of channels 

allow us to use MD simulation to study the conformational changes as well as the 

conductivity changes upon the application of electric fields.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 6

5.3.1.2 Voltage Gated Ion Channels

The remarkable work of Hodgkin and Huxley (120) set the physical basis of the 

nerve impulse generation and propagation using the giant axon of the squid as a model. In 

their description, the initiation and conduction of the action potential is the result of a 

transient influx of Na ions that is followed by an outflux of K ions across the axon 

membrane. Their voltage-clamp studies revealed that the ion flow through these two 

specialized pathways occurs with distinctive kinetics and that the conductance of these 

pathways is voltage dependent.

Ion Channel

Ion Filter

Fig. 5.2. Voltage gated Potassium channel model.

Voltage-dependent ion channels can be thought as made up of three basic units: 

voltage sensor, pore and the gate. A model of the voltage-gated channel is shown in Fig. 

5.2. The exchange of ions through pure lipid bilayer is known to be almost rare, since it 

takes a large amount of energy to put ions through a low-dielectric constant lipid 

environment (121). The protein channels help lower this energy barrier and provide ion- 

exchange capability which, is necessary for cell survival. The gate in the channel allows 

exchange of selective ions and at selective times. The voltage sensor in the proteins 

determines these timings. These channels generally have 4 to 6 sub-units. A subunit of 

the voltage-gated channel is shown in Fig. 5.3. The pore and the gate are formed by S5-
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loop-S6 region. The voltage sensor is S1-S4 region, where S4 is composed of charged 

(positive) amino acid residues and is considered vital in voltage sensing.

S1 S2 S3 S4 s s  se

n

Fig. 5.3. One subunit of Voltage gated ion channels (59).

Some of the recent work on this voltage-sensing mechanism includes different 

models of this S4 domain. Three current models on this mechanism are shown in Fig. 5.4 

and are briefly described below:

1. In the “helical screw” model (shown in (a) of Fig. 5.4), S4 helix moves through 

the transmembrane region on gating (122). This is shown to be more energetically 

favourable and many groups are working to prove this hypothesis.

2. In the second model which is known as “transporter model”, S4 does not move 

much upon gating (123). This is similar to helical screw model, but in this model, 

S4 has to cross 2 barriers, instead of 1 in helical screw model.

3. The third model is known as “paddle model” and is shown in (c) of Fig. 5.4. In 

this model, S4 lies in the core of the membrane and moves through this 

unsaturated fatty acids upon gating. The model seems to look energetically 

unrealistic, but the crystal structures revealed clearly showed that S4 lies in 

interior and the model can actually work like paddle (124, 125).
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Fig. 5.4. Current models of Voltage-sensing mechanism.

Through MD simulations, there is a possibility to unveil the voltage-sensing 

mechanism of voltage gated ion channels and hence can contribute lot towards ion 

channel research.

MD simulation work to study the effects of ultra-short very high amplitude 

electric pulses on channel proteins as well as voltage gated ion channels are expected to 

reveal conformational changes, possible voltage-thresholds, and the changes in channel 

conduction through voltage-gating. Initial efforts have been done with alamethicin 

channel, but an in-depth study is required to understand the structure and function of ion 

channels.

5.3.2 Membrane Electro-fusion

"Membrane fusion is one of the most basic processes of life," said James McNew, 

assistant professor of biochemistry and cell biology at Rice University. "It begins at
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fertilization and occurs billions of times a second in our bodies, and if it ever stops, we 

die."

Membrane fusion is mediated by few proteins. The main role of these proteins is 

to facilitate the fusion, rather than actively drive it. Experimentally, fusion between two 

membranes is a slow-process, but could become a fast-process if two membranes were 

very close to each other (126).

Fusion is believed to be caused by topological changes in lipid membrane arising 

from local fluctuations of the molecules. The initial bilayer destabilization leading to 

fusion is believed to result from either a high curvature binding defect or a hydrophobic 

defect — that both lead to the appearance of lipid "stalks" e.g., the inverted micelle (127) 

and hemifusion -  fusion (128) models. These models are shown in Fig. 5.5. The basic 

idea is that as two membrane surfaces come in close nano-proximity, the fluctuating 

lipids will drive away the water from the nano-space between the two adjacent membrane 

surfaces. Molecular re-arrangements to minimize total energy then result in fusion.

Studying this phenomena at the atomic level through MD simulations, would help 

answer the following important and critical questions:

(a). Can E-field-induced pores facilitate membrane fusion in cases when two membrane 

surfaces are in close nano-proximity ?

(b). Could external E-fields be made to alter fusion dynamics ? If so this might be of 

interest in the context of viruses (flu/HIV) fusing into molecules and proteins.
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Fig. 5.5. Siegel model (left)- Inverted Micelle Intermediate (IMI) and Fusion Pores 
(ILA). Melikyan model (right)- Hemifusion intermediate to finally fusion.

5.3.3 Artifical “Chaperoning” of Denatured Proteins

Denaturation of proteins by high temperatures is one of the major causes of tissue 

death. The cause for denaturation is that the supra-physiological temperatures affect the 

protein leading to unfolding of its inner hydrophobic structure. Naturally chaperones are 

heat shock proteins that take care of denatured proteins by disaggregating the proteins 

and hence aid the damaged protein back to its native-folding structure. So, if the 

concentration of chaperones can be increased near the tissue wound, then there is a 

possibility of quicker wound healing.
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Fig. 5.6. Hen Egg White Lysozyme (HEWL), natural and denatured versions.

Recently, there have been experiments done to probe the injection of artificially 

induced synthetic polymers of polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) 

near the damaged tissue. These surfactant polymers do the functioning of natural 

chaperones. These experimental results showed the ability of these polymers to prevent 

formation of stable aggregates of heat denatured hen egg lysozyme. This protein’s 

structure along with the denatured version of this protein is shown in Fig. 5.6 above. Fig.

5.7 below shows one of this polymer near the denatured protein.

J-

m,,

Fig. 5.7. PEO (cyan-red)-PPO (orange)-PEO surfactant placed near HEWL.
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The hypothesis was that the synthetic polymers function in chaperoning the heat 

denatured lysozyme by reducing their aggregation. The actual molecular mechanism is 

not well understood and hence here we propose MD simulation to understand this 

mechanism in detail. Initial efforts were done in this area, but a detailed study is required 

to understand the exact mechanism of these surfactant polymers interactions with the egg 

lysozyme.

5.3.4 Pulsed Electric Field’s on Mitochondria

Mitochondria is regarded as the power-house for biological cell. It has 2 

membranes as shown in Fig. 5.8. Generally outer membrane can be easily permeated but 

the inner membrane is highly impermeable. Outer membrane has porins, which act as 

channels for the exchange of water molecules along with proteins upto 10k Daltons. On 

the other side, inner membrane is highly impermeable, as cardiolipin binds strongly to it. 

There are large number of studies to understand the structure and function of aquaporins 

(129). There have also been numerous studies on cardiolipin (130) to understand the 

binding properties.

One of the crucial factors for apoptosis is the release of cytochrome C from the 

inner mitochondrial membrane. Cytochrome C in general binds to cardiolipin in the inner 

membrane. Release of cytochrome C is shown to initiate by a 2-step process. In the first 

step, cytochrome C will be released from its binding to cardiolipin and in the next step, it 

will be extruded from outer mitochondrial membrane into cytosol. One other process that 

accompanies cytochrome C release is mitochondrial membrane depolarization (131). This 

is the general consensus about the release of cytochrome c and its role in apoptosis.
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Fig. 5.8. Mitochondrial Structure (132).

The crystal structures of cytochrome C have recently been found and there were 

already simulations done on cytochrome C regarding the structure and its function (132). 

There were also simulations done to understand cardiolipin-cytochrome C binding. Ultra- 

short PEF’s have also shown to induce cytochrome C release. With this background 

motivation and with the computational resources availability, the MD simulation to show 

release of cytochrome C can lead to a major contribution to understand apoptosis caused 

by pulsed electric fields.

5.3.5 Kinetics of Electro-delivery of Bioactive Agents -  Multiscale Modeling

Pulsed electric fields were found to increase the uptake of DNA into cells (4). 

There were molecular simulations done to show the uptake of plasmid DNA’s into the 

cell (53). But, these simulations did not explain the kinetics of the DNA uptake and 

concentrated more on just showing the trajectory of plasmid DNA through the 

membrane. To understand the kinetics of electro-delivery of molecules, evaluation of 

their transport parameters is necessary. Recently, MD simulations were done to calculate 

the transport parameters of water through the membrane pores . Using the same technique
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(MD simulation), there is scope to calculate the transport parameters (diffusion constant) 

of the bioactive agents of interest. These simulations (parameters of interest) coupled 

with continuum approaches (drift-diffusion, reaction-diffusion etc.) should explain the 

kinetics of drugs into the cell. Thus, it would be possible to perform a comprehensive 

macro-analyses that includes nanoscale physical details and spans a wide temporal range 

over several orders of magnitude. Fig. 5.9 shows the possible drug delivery into the cell 

upon the application of traditional electroporation pulses.

Fig. 5.9. Schematic of Drug delivery into cells (46).
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APPENDIX A

TIME DOMAIN DIELECTRIC SPECTROSCOPY

A .l The Time Domain Spectroscopy Principle

In Time Domain Spectroscopy, a voltage pulse Vo(t) is sent down a coaxial line 

that is terminated with a dielectric material e.g., a cell suspension. As long as there is no 

heterogeneity in the transmission line, the pulse passes without any reflection. But if  the 

pulse encounters any heterogeneity (cell suspension), a part of the pulse is reflected back 

R(t), while the remaining pulse passes through. Information about the heterogeneity can 

be found from the reflected pulse. This technique is employed to find the dielectric 

properties of the cell suspensions. A schematic of this principle is shown in Fig. A.I.

The mathematics behind this theory is given below. The voltage pulse V(t) across the 

sample is :

row t*mem

Fig. A.I. Incident and Reflected Pulse in TDDS (133).

V(t)=Y0(t)+R(t). (A-l)

The total current I(t) through the sample is then :
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I(t)=  l /Z 0[V 0(t)-R (t)], (A -2 )

where Z0 is the characteristic line impedance.

This total current is composed of the displacement current Io(t) and the low- 

frequency current I r (T) between the capacitor electrodes. The active resistance (r) of 

sample at low-frequency can be calculated by :

r = Lt t~>oo V (t)/I(t)  =  Z 0 Lt t-^oo [V 0(t)+R (t)] /  [V 0( t ) -R (t)] . (A -3 )

The low frequency current ( I r (T)) is given by :

IR(t) = Y(t)/r = V0(t)+R(t) / Z0Lt t->co [Y0(t)-R(t)] / [V0(t)+R(t)]. (A-4)

Then, the displacement current (Io(t)) is given by:

ID(t) =l/Zo {{ [V0(t)-R(t)]}-{ [V0(t)+R(t)] Lt t-»oo [V0(t)-R(t)j / [V0(t)+R(t)]}}. (A-5)

Also, low frequency conductivity (ct) is :

a  = (So/ZoCo )Lt t^oo [V0(t)-R(t)] / [V0(t)+R(t)], (A-6)

where s0 = 8.85e-12 F/m, and C0 is the electric capacitance of the coaxial sample cell 

terminated in the transmission line. C0 is found independently from the geometry of the 

sample cell. Using I(t), V(t) or their complex Laplace transforms i(co), v(co), one can get 

the relations of the dielectric parameters.

The sample admittance (Y(cd)) for the sample cell terminated in the line is then 

given by:

Y(©) = i(oo) / v(oo). (A-7)

The sample permittivity (s(®)) can be found from the sample admittance as follows:
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s(co) = Y(co)/(jcoC0). (A-8)

where j is the imaginary unit.

As a special case, if one takes into account the definite physical length of the

sample and the multiple reflections from the air-dielectric and dielectric-air interfaces, the

permittivity (s*(co)) can be written as:

s*(ca) = c / (jooyd) Y(co) X Cotangent(X), (A-9)

where “d” is the effective length of the inner conductor, “c” is the velocity of light, “y” is 

the ratio between the capacitance per unit length of the cell to that of the matched coaxial 

cable, and

X = (cod/c) sqrt(e*(co)). (A-10)

A.2 Measurements : Drawbacks and Methods for Overcoming Problems

Generally biological systems are conductive. Obtaining low-frequency dielectric 

parameters for these systems involves correcting for the conductivity. If the dc 

conductivity is relatively small, then its values can be obtained from eqn. (A-6) at low 

frequencies. This provides the d.c. value necessary in the evaluation of the loss factor of 

complex permittivity. On the other hand, if the dc conductivity is significant, it should be 

corrected before calculating the dielectric parameters. A high dc value can result from the 

accumulation of charges on the electrodes at low frequency that forms electrical double 

layers. This effect is also known as parasitic capacitance.
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c

r

Fig. A.2. Measurement techniques A) Current electrode, B) Four-Electrode, and C) 
Electromagnetic Induction Method.

Various approaches have been used to correct for electrode polarization. These 

include four-electrode methods (134) and the electromagnetic induction method (135). In 

the four-electrode method, electrodes for current supply are different from the voltage 

electrodes. In the electromagnetic induction method, there are no electrodes and hence 

there is no electrode polarization. The schematics of the above methods are shown in Fig. 

A.2. The details of electrode polarization depend microscopically on the topography of 

the electrode surfaces as well as the area and chemistry of the surface, and the chemical 

interaction of the sample with the electrode surface. The next step after correcting for 

electrode polarization is to fit the experimental data to the “reliable” mathematical 

models and obtaining the dielectric parameters. Various models have been proposed and 

they are outlined in next section.

A.3 Mathematical Models

Depending on the concentration of the dispersed particles, the shape of the 

particles and the conductivity of the media (or dispersed particles), two important mixture
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models i.e., Maxwell-Wagner and Hanai have been used extensively in the past. These 

are briefly discussed below.

A.3.1 The Maxwell-Wagner (M-W) Mixture Model

Generally for low concentrations of cells in a suspension, the M-W mixture model (136) 

is used. The M-W model describes the suspension dielectric parameters in terms of the 

dielectric parameters of the supernatant (or buffer) and the cell. It is assumed that all the 

cells dispersed in the media are same with respect to size, shape and properties.

£*mix(«) =  S*sup(fO)5i!(2s*sup(co)+S*c(co)-2p(2s*sup(co)-8*c(co))/

Jlj
[2s  s u p ( ® ) + e  c(® )+ p (2s  s u p ( ® ) - s  c(®)] » ( A - l l )

where s*mjx is the complex permittivity of the mixture, s*sup is the complex permittivity 

of the supernatant, s*c is the complex permittivity of the cell and p is the volume fraction.

A.3.2 The Hanai Mixture Model

Maxwell-Wagner mixture model is employed for cell suspensions having less than few 

percent (approx. 8 %) of cells. For suspensions with high concentrations of cells, Hanai 

mixture model is generally employed. The Hanai mixture model (137) describes the 

suspension dielectric parameters in terms of the dielectric parameters of the supernatant 

(or buffer) and the cell (similar to the Maxwell-Wagner Model). The effective 

permittivity is given by:

{(E*mix(co)-S*c(co))/(s*sup((o)-S*c((0))}* {(s*SUp/s*mix(co))0 333}= 1-p. (A-12)
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where s*mjx is the complex permittivity of the mixture, s*sup is the complex permittivity 

of the supernatant, s*c is the complex permittivity of the cell and p is the volume fraction.

A.4 Shell Models

The two above mixture models help explain and quantify the average dielectric properties 

of the cell in the suspension. The shell models require one to ascertain the dielectric 

parameters of individual phases of cells, i.e., the s*c values in eqn. (A-12). The individual 

cell permittivities can be computed on the basis of the shell-models, as described below. 

In the single shell model, the cell is considered to be a sphere with a thin insulating

envelope enclosing conductive cytoplasm. While in the double shell, a smaller sphere

representing the nucleus, is incorporated within a big sphere. Every phase is supposed to

have no dielectric losses and the complex permittivity is then written as :

S*i(to) = Si(oo)-jCTi(co)/a)80 , (A-13)

where i represents every phase of the heterogeneous system i.e., cell membrane, and 

cytoplasm for single shell and cell membrane, cytoplasm, nuclear membrane and 

nucleoplasm for double shell models, s represents the relative permittivity, a  represents 

the conductivity, co represents the angular frequency and s0 represents the vacuum 

permittivity. These models are shown in Fig. A.3.
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Fig. A.3. Single and Double Shell Models of Cell (133).

Apart from single and double shell models, plant protoplasts can be very well fitted to a 

double shell model along with vesicles inside it. This model is shown in Fig. A.4. The 

same theory can be extended to construct multi-shell models for representing vesicle like 

structures such as mitochondria, endoplasmic reticulum (ER), or other intracellular 

structures. In such a case, e.g., inclusion of the mitochondria (or the ER), one more phase 

for mitochondria needs to be added to eqn. (A-12). The calculation of these phase 

dielectric properties from Maxwell-Wagner mixture model is given below.

s*c=£*m {2(1-Vi)+(1+2vi)E i}/{(2+V i)+(1-Vi)E i} , (A-14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

where the geometrical parameter vj is given by (l-(d/Rc))3

0 0

Fig. A.4. Double shell model with vesicles (138).

In single shell model, Ei is given by :

E l -  E  cp/£ m-

In double shell model with and without vesicles, Ei is given by :

Ei = (s*cp/s*m){ 2( 1 -v2)+( 1 + 2 v 2 ) E 2}/{( 2 + v 2 ) + (  1 -v2)E2} , 

where the geometrical parameter v2 is given by (Rn/(Rc-dm))3, E2 is given by

E2 = ( e  n c / £  c p ) {  2(1 - V 3 ) + (  1 +2v3)E3}/{ ( 2 + V 3 ) + (  1 -v3)E3} ,

(A-15)

(A-16)

(A-17)
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where the geometrical parameter V3 is given by (l-(dn/Rn))3.

In double shell model without vesicles, E3 is given by :

E 3— 8 np/s ne • ( A - 18)

The same theory is followed for double shell model with vesicles and is not outlined here, 

but can be found elsewhere (138).

For all these models, the specific capacitance of the cell membrane per unit area 

can be calculated directly from :

Cm=1.5e0emix(low)/(Rc*(l-(l-p)1-5)) . (A -1 9 )

A.5 Results

Some of the results on the TDDS experiments on Jurkat cells are summarized in Table. 

A-l. A detailed explanation of the experiment protocols used for this work can be found 

elsewhere (139).
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Table. A.I. TDDS experiments on Jurkat cells and results obtained from double shell 
model.

Parameter / description Name Value

Radius of cell (fixed) Rc 5.12e-6 m

Thickness of outer membrane (fixed) dm 7e-9 m

Radius of nucleus (fixed) Rn Rc*(0.8)1/J m

Thickness of Nuclear envelope (fixed) dn 40e-9 m

Permittivity of Cytoplasm (fixed) 6cp 60

Permittivity of Nucleoplasm (fixed) 6np 120

Conductivity of cytoplasm kcp 0.1 S/m

Conductivity of nucleoplasm knp 0.2 S/m

Conductivity of cell membrane km 6.4e-6 S/m

Conductivity of nuclear membrane kn 4.3e-3 S/m

Permittivity of Plasma Membrane em 7.1

Permittivity of Nuclear Membrane en 22.6

Permittivity of Supernatant eSusp 68

Conductivity of Supernatant ksusp 0.1 S/m
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APPENDIX B

TRANSMEMBRANE POTENTIAL

B .l Introduction

The charging time constant for the outer membrane (plasma membrane) is a measure of 

the time during which the cell interior is exposed to the applied pulse. This can be stated 

equivalently as the outer membrane becomes increasingly transparent for oscillating 

electric fields with frequencies higher than the inverse time constant of outer membrane. 

This is known as Schwan’s theory of oscillating electric fields. These can be calculated 

either analytically or using numerical methods. The next sections are devoted to describe 

transmembrane potentials as a function of electric field, cell diameter and other electrical 

parameters both analytically and numerically.

B.2 Analytical Model

A biological cell can be considered spherical cell with another small compartment called 

nucleus. This is shown in Fig. B.l.

i '  i - l i s i i  

I'itFroar.r:
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rw-inbiana

i

rJ  fRjsjsCj

Fig. B.l. Cell structure and its equivalent electrical model.
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The diameter of the cell is D, that of the organelle (here nucleus) is d, with d « D . The 

organelle and cell are surrounded by cell walls or membranes. They are also called outer 

membrane (plasma membrane) and the inner membrane (nuclear membrane). The 

membranes are characterized by their specific capacitance as the conductivity of these 

membranes is very low (of order le -6 S/m), while the interior and exterior of the cell 

along with the interior of the organelle are characterized by their conductivity. When a 

step electric field is applied, the plasma membrane is charged with time constant given by 

Cole (140):

xc = [ (1+2V/1-V) Pl/2 + P2 ] CmD/2, (B-l)

where V is the volume fraction of the cells, pi is the resistivity of the suspending 

medicum, p2 the resistivity of the cytoplasma, Cm the specific capacitance of the 

membrane.

For an applied electric field, the voltage (VCeii) across the cell is given by:

Vceii= fE D , (B-2)

where f  is a factor equal to 1.5 for spherical cells.

The potential difference (AVC) across the plasma membrane is given by

AVC= f  E (D/2) cos0 (1 -exp(-t/ xc)), (B-3)

where 0 is taken as the angle with reference to application of electric fields.

It can be easily seen that the effect of this electric field will be higher at poles for 0 = 0 

and 7i.

From eqn. (B-2) and eqn. (B-3), the voltage across the interior of the cell can be 

calculated as

Vim (t, 0) = Vceii - 2AVC = f  E D - f  E D cos0 (l-exp(-t/ xc)) = f  E D cos0 exp(-t/ rc), (B-4)
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and along polar axis, it will be:

Vi„t (t) = Vceii - 2AVC = f  E D - f  E D cosO (l-exp(-t/ xc)) = f  E D exp(-t/ xc) . (B-5)

Assuming that the electric field along the polar axis is uniform,

Eint (t) = f  E exp(-t/ xc) . (B-6)

Treating the organelle in the similar manner to that of the cell, as the basic structure 

resembles one another, we get an expression for the voltage across the organelle and it is 

shown by:

Vorganelle(t) = ?  E d exp(-t/ Xc), (B-7)

Again using the similarity of organelle to that of the cell, the potential difference across 

the interior of the inner organelle (here nucleus) can be found to be equal to:

AV0 = f2 E (d/2) (xc/( xc - x0)) (exp(-t/ xc) - exp(-t/ x0) ) , (B-8)

where x0 is the charging time constant for the organelle membrane.

In order to have an idea about the amplitudes of these potentials, a plot has been shown in 

Fig. B.2. This is calculated with the following cell parameters. D = 10pm, d = 2pm and 

f=1.5 The specific capacitance is taken to be equal to lpF/m2 while the resitivities are 

taken to be equal for cytoplasma, content of inner organelle (here nucleoplasma) and the 

outside of the cell, which is 100Q.
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Fig. B.2. Analytical calculations of transmembrane potentials generated across outer and
inner membranes (12).

From the Fig. B.2, it is clear that the transmembrane potential generated across inner 

organelle membrane is greater than that of the cell outer membrane, which supports the 

hypothesis that the short pulses cannot “see” plasma membrane and can directly interact 

with the cell interior.

B.3 Numerical model

The analytical model gives a very good basic understanding of the schwan’s theory of 

oscillating electric fields. The numerical methods of cellular response to ultra-short 

pulses are required for quantitative predictions of many phenomena seen in experiments. 

Another advantage of these numerical calculations is the shape of the biological cell is 

irrelevant. There were 2 such numerical models. One is developed by Weaver’s group

(141) at MIT while the other is developed by our group at ODU. We used a scheme in 

which we treated the cell as a distributed circuit. The current continuity equation coupled 

with the Smoluchowski equation for pore development is considered. Here a brief
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description of this numerical model with transmembrane potential calculations is 

provided.

outer
membrane inner

j-nm) membrane

A0

j= 0 ,1 ,2 ...m

Fig. B.3. Quarter of the cell considered for calculations (142).

In this model, the entire cell volume is broken up into finite segments, and each segment 

is represented by a parallel RC combination to account for the current flow and charging 

effects. Using azimuthal symmetry, the three dimensional structure of call can be mapped 

into the r and “ coordinates of a spherical system. Based on the symmetry, only a quarter 

of the computational region was considered. For simplicity, the membranes were taken as 

integral unit i.e., this region is not discretized further, which seems reasonable if a proper 

value of dielectric permittivity and conductivity is given to these units. This is shown in 

Fig. B.3 above.

The pore growth and size evolution are assumed to depend on continuum Smoluchowski 

theory, with the following equation for the pore density distribution n(r,t):
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dn(r,t)/dt-{D/[kBT]}[ 5{n(r,t)dE(r) I dr] I dr] -  D[52n(r,t)/ dr2] = S(r) , (B-9)

where S(r) is the source term (here, pore formation), D is the diffusion constant of the 

pore (lipid molecules enclosing pore), pore radius r, Electric field E, Boltzmann constant 

kB and temperature T.

For each element, the current continuity equation is given by:

grad. (J+dD/dt) = 0, (B-10)

where J is the current density and D is the electric displacement vector. For a detailed 

description of this model, the reader is directed to Joshi et. al., (142). The transmembrane 

potentials generated by this scheme are plotted in Fig. B.4 below. The time constant of 

the plasma membrane calculated from Cole’s equation 1 is 75ns for specific cell and 

media parameters. The results are shown for 2 cases. In the first case, a pulse of 280ns 

width and 5KV/cm amplitude is taken. Since, the pulse duration is more than charging 

time constant of outer membrane, the effect on outer membrane is more. Initially the 

effect on inner membrane is more, as the frequency of the pulse initially (<75ns) is 

greater than the inverse charging time constant of plasma membrane. But once the pulse 

duration is more than 75ns, the outer membrane charges more rapidly compared to the 

inner membrane.

In the second case, a trapezoidal pulse with rise and fall times equal to 1.5ns and total 

duration of 11ns is applied. Since the duration of the pulse is much smaller than the 

charging time constant of the plasma membrane, the inner membrane charges more 

compared to the outer membrane. A detailed explanation of this scheme can be found 

elsewhere (142).
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Fig. B.4. Transmembrane potential calculations using Current continuity equations for 
distributed circuit model coupled to the Smoluchowski equation for pore development
(142).

Lately, many groups have started working on the numerical models to calculate 

transmembrane potentials generated across the cells upon the application of pulsed 

electric fields (143, 144). There has also been work contributed towards the 

transmembrane potential generation of irregularly shaped cells i.e., oblate and elliptic 

spheres (145). Even though the models considered here are simple, they match very well 

with the experimental results. Thus, numerical simulations provide a great tool for the 

experimentalists to validate their results.
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