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Abstract 

The paper deals with two versions of the fragment with unit, tensor, linear implication and 
storage operator (the exponential !) of intuitionistic linear logic. The first version, ILL, appears 
in a paper by Benton, Bierman, Hyland and de Paiva; the second one, ILL+, is described in this 
paper. ILL has a contraction rule and an introduction rule !I for the exponential; in ILL+, 
instead of a contraction rule, multiple occurrences of labels for assumptions are permitted 
under certain conditions; moreover, there is a different introduction rule for the exponential, 
! I+, which is closer in spirit to the necessitation rule for the normalizable version of S4 discussed 
by Prawitz in his monograph “Natural Deduction”. 

It is relatively easy to adapt Prawitz’s treatment of natural deduction for intuitionistic logic 
to ILL+; in particular one can formulate a notion of strong validity (as in Prawitz’s “Ideas and 
Results in Proof Theory”) permitting a proof of strong normalization. 

The conversion rules for ILL explicitly mentioned in the paper by Benton et al. do not suffice 
for normal forms with subformula property, but we can show that this can be remedied by 
addition of a special permutation conversion plus some “satellite” permutation conversions. 

Some discussion of the categorical models which might correspond to ILL+ is given. 

1. Introduction 

In this paper we shall assume familiarity with the proof-theoretic treatment of 
intuitionistic logic IL as presented e.g. in [9, 131. 

We discuss natural deduction versions of the multiplicative-exponential fragment 
of intuitionistic linear logic, ILL,, (usually shortened to ILL below, since we shall 
not deal with the full system ILL here). The operators and constants of ILL,, 
are * (tensor), 1 (unit), 4 (linear implication), and ! (storage operator, exponen- 
tial). 

! behaves more or less like the modal necessity operator in the well-known system 
S4 of modal logic; in particular, the first natural deduction formulations proposed for 
ILL (e.g. in [l], in the form of a system of terms assigned to sequent calculus 
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deductions for ILL) had the following introduction rule for ! 

!TFA 

!TF!A 

(we use r, r’, . . . , A, A’, . . . for multisets of assumptions) or in tree form 

Urn 

where the brackets [ and 1 in [! rj serve to indicate that [! rj is a complete multiset of 
open assumptions in 58, discharged at the application of !-introduction. This version 
has the disadvantage, as noted by several researchers, that the proof trees are not 
closed under substitution of deductions for open assumptions (substituting deduc- 
tions for the assumptions !r in an application of !-introduction leads to a deduction 
which ends in general not with a correct application of !-introduction). In [3] it was 
proposed to generalize the !I-rule to 

All--!Al, . . . . A,F!A, !Al, . . . . !A,t-B 

A 1, . . ..A.t!B 

In the sequel we shall reserve the designation ILL for this version from [3]. Closure 
under substitution is now taken care of, but for a proof-theoretic treatment the new 
version of the !I-rule turns out to be somewhat awkward; in a sense, the rule both 
introduces and eliminates !-formulas, and there is no direct relation in complexity 
between ! B and the formulas ! Ai; the latter may be much more complex than the 
conclusion. Prawitz’s treatment of S4 in [9] suggests another possibility, which we 
shall call !I+: a correct application of !I+ has the form 

(no assumptions open in Qi become bound in 28; I! Al, . . . , ! A,,] is a complete list of the 
open assumptions in ~2). However, this does not combine very well with the contrac- 
tion rule for the exponential. Therefore we study another version of ILL,,, called 
ILL+, in which !I is replaced by !I+, and contraction is eliminated by considering 
prooftrees where multiple labels of variables are permitted, if they arise by substituting 
‘isomorphic copies of a deduction 9’ for a collection of open assumptions of the form 
! A in another deduction 9. Thus we suppress the dynamic aspect of contraction (i.e. 
the separate operation of replacing two distinctly labelled occurrences of a formula ! A 

by a single occurrence); a precise statement of the conditions permitting multiple 
occurrences of the same label will be given later on. 
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It appears that ILL+ permits a proof-theoretic treatment closely parallel to 
Prawitz’s treatment of intuitionistic logic in [9, lo]. In particular, we can formulate 
a notion of strong validity giving rise to a proof of strong normalization for ILL+; 
normal forms of deductions in ILL+ have the subformula property and can be 
analysed in terms of the structure of tracks (track = path in [9]), which in normal 
deductions always consist of an elimination part, followed by a minimal part, followed 
by an introduction part. Applications of the kind given in [9] follow. 

Returning to ILL itself, the obvious “direct conversions” contracting an E-rule 
application with the conclusion of an I-rule as main premise, and the “permutative 
conversions” permitting to permute E-rule applications upward past minor premises 
of certain E-rules, do not suffice to give a normal form with subformula property. But 
some extra permutation conversions, corresponding to one of the equalities in the 
notion of categorical model of ILL described in [S], and motivated by steps in the cut- 
elimination process for ILL, suffice for this; it is consideration of ILL+ which suggests 
a suitable normalization strategy for ILL relative to this set of conversion rules. 

Finally, one may ask what notion of categorical model corresponds to ILL+? For 
ILL+ as such, the question does not make immediate sense, since the restrictions one 
has to impose on conversions in ILL+ are non-standard for a term-calculus. But the 
question does suggest investigating a notion of categorical model obtained by impos- 
ing one extra equation on the set of equations listed for the models of [3], to the effect 
that any map from !r to !A can be obtained as the result of an ! I-introduction to 
a map from ! r to A. The extra equation is very restrictive; it is true in algebraic models 
(trivially), but we do not know of a non-trivial type-theoretic or categorical model 
where it holds. 

2. Notational representation of natural deductions 

We recall that deductions in the system IL of natural deduction for intuitionistic 
propositional logic can be presented, in a highly redundant way, as trees where the 
nodes are labelled by sequents of the form 

(*) Xl.Ai, . . ..x.:A,t-r:B 

where t is a rigidly typed term of type B, and the free variables of t occur among 

Xl? . . . , x,. Such a representation obviously contains redundancies, since if t is rigidly 
typed, the variables xi in t occur also typed as xi: Ai; moreover, t reflects in its 
construction the complete prooftree up to this node, so the conclusion label at the 
bottom of the tree contains in fact all relevant information concerning the tree. 

Several isomorphic forms of presentation of deductions in IL are obtained by 
stripping certain types of redundant information from the tree. Thus, for example, we 
obtain the usual formula-tree presentation by (1) stripping the terms and the context 
xl:A 1, . . , x,: A, of each label, retaining only B in (*) above, (2) retaining the variable 
labels of assumptions appearing at the top nodes (the leaves) of the tree; (3) indicating 
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the rules used (when needed to avoid ambiguity) and (4) indicating, by repeating the 
labels, where assumptions are discharged. 

The term-presentation is obtained by retaining only the rigidly typed term at the 
root of the tree, etc. 

Each of these styles has its own merits; the formula-tree style has a certain 
“geometric flavour” and permits an appealing formulation of the structure of nor- 
malized proofs (as built from tracks with an elimination part, minimal part, and 
introduction part, cf. [9]) from which we can neatly derive a number of corollaries (the 
subformula property, a generalized form of the disjunction rule, etc.) It is true that for 
IL the v E-rule and the corresponding conversions (normalizing steps) are nastier 
than the other rules (a fact strongly emphasized in [g]) - but really not too nasty, 
I think - it is still manageable. 

The term presentation is very compact and precise, and makes the isomorphism 
between typed-term calculi and deduction systems fully explicit. It also suggests 
further normalization steps, which serve as a stepping stone towards a category- 
theoretic formulation of the logic. 

The preceding remarks apply, mutatis mutandis, also to natural deduction formula- 
tions of intuitionistic linear logic. 

In exhibiting deductions as formula trees, we use some standard conventions. We 
use calligraphic 5@,&‘, F, 3, Z, possibly sub- or superscripted, for formula prooftrees. 

is a prooftree L@ with [A] the set of all open assumptions of the form A with the label x. 
The label is often dropped. Several assumption classes may appear as: 

[;l,h] or [3;][6] 

whenever an open hypothesis 2 is discharged by a rule application, all occurrences 
of A with label x above the application of the rule are discharged (closed) 
simultaneously. It is usually convenient to assume that any label x discharged by 
rule application a occurs only above a; this can be achieved by relabelling 
closed assumptions if necessary (in term-notation this is just renaming bound vari- 
ables). 

3. Intuitionistic linear logic 

In presenting intuitionistic linear logic ILL care has to be taken in handling 
assumptions. For the purely multiplicative fragment with *, ++l, this is simple: in the 
formula-tree style, the assumptions are treated as a multiset, or more precisely, as a set 
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of occurrences, each occurrence with a distinct label; each 41-application discharges 
precisely one occurrence, each *E-application precisely two occurrences. 

If we add the exponential !, however, we must build into the rules that multiple use 
is equivalent to single use of the assumption !A. 

We can stick to the convention that distinct occurrences of assumptions always 
have distinct labels by having a contraction rule. The effect of this rule is to replace 
two distinct labels (x, y say) of a formula occurrence ! A with a new single occurrence 
with a new label (z say). In the formula-tree style an application of the contraction rule 
looks like 

[!i,!i] [!;i, !i] 
9l or more generally 9 9’ 

!fi B !A B 

x, Y B x9 Y 
B 

Similarly with weakening; the possibility of “vacuously” depending on assumption of 
the form ! A (labelled x) is expressed by a weakening rule: 

cst 9 9’ 

!> B or more generally !A B 

B B 

3.1. Definition. In an application of the promotion rule !I 

91 9” d 

!A1 ... !A, B 
!B Xl, ... rx, 

the conclusions ! Ai of the 9i are the side premises of the ! I-application, and B is the 
main premise. 

3.2. Notation. If r, A are used for collections of formulas in versions of ILL, the r, A 
are treated as multisets; for sequences of formulas and derivations we use vector 

notation B,$, etc. 

3.3. Definition (The system ILL). For reference, we give a version of a natural 
deduction calculus for ILL (restricted to !,--, *, l), presented as a termcalculus. 
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Axiom x:.4 a x:A 

*I 
r *s:A A =S t:B 

*E 
r e- s:A+B A,x:A,y:B * t:C 

T,A =P s+t:A* B r, A =S E:,,(s, t): C 

-1 
r,x:A * t:B 

-E 
l- =S s:A-B A =S t:A 

r 3 Ax.t:A-B T,A * st:B 

lI* *:l 1E 
r 3 S:I A a t:A 

T,A * E’(s,t):A 

,*T,kt,:!A,, . . . ,r,t-t,:!A, x,: !A,, . . . ,x,:!A,ks:B 

r 19 **. ,rnt !x,, ,, .,@l, . . . ,t,;s) 

W 
r => s: !B A =z- t:A 

D 
r *s:!B 

T,A * E”(s,t):A I- * Ed(s): B 

C 
r =a s:!B x: !B,y:!B,A a t:A 

T.A =a E;,,(s;t):A 

r, A are sets of statements Xi: Ai with the Xi all distinct; r, A disjoint. In !r($ s) the 
operator !r binds x’ in s; in E~,,(s, t) EY_ binds x, y in t. W = weakening, D = derelic- 
tion, C = contraction. 

In discussing ILL it is often advantageous to generalize both weakening and 
contraction. Weakening is generalized to: 

9, Qn 9’ 

!A, se- !A, B 

B 

and contraction to 

[(!A,)“, . . . ,(!A,)“‘] 

9, a 9’ 

!A, ... !A, B 

B 

where (!AJki refers to ki (ki > 1) assumptions of the form !Ai in 9’. This form of 
contraction is a combination of n applications of 

C(!4)k’1 

9i 9’ 
!Ai B 

B 
which in turn is a mild generalization of the original contraction rule. 
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3.4. Definition. In the applications of the general forms of W and C, the ! Ai appearing 
as conclusions of the pi are called the major premises (plural!) of the application, and 
B the minor premise. 

3.5. In [3] normalization for natural deduction is not discussed, but some conversions 

are listed, in particular, 
(1) “detour-conversions”, i.e. the removal of a formula occurrence introduced by an 

I-rule, only to be immediately eliminated as major premise of an E-rule. 
(2) Permutation conversions of the following general form: a subdeduction of the 

form 

A B 91 52 B C 

B C 
converts to O” 

A c 

C C 

where the final rule is an E-rule with B as major premise (and similarly with more 
premises in the rule). 

Normalization becomes rather complicated in ILL, due to the complicated 
form of the promotion rule, as illustrated by the conversion of an !-introduc- 
tion followed by a contraction. The dotted line in the second prooftree serves to 
make it visually clear that both formulas above it enter as assumptions in the 
deduction 9. 

91 gn 6 [!B !-B] 
!A, ... !A, B 9 

!B 
XI, ... ,%I 

C 

is transformed into 

[!A ‘A”]! 1, ... ,. [!A 1, ... , !A,] 

!‘k, . . . !“;1” B !‘;I, . . . !‘;1, B 

[!B !B] 
_____~~______~~~~~_~~~______~~~~~~~~~~~~~~~~~ 

91 9” 9 

!A, ... !A,, C 

c 
(contractions) x,, y,, . . . ,x,, y. 

Detour conversions and per-mutative conversions are not sufficient to guarantee the 
subformula property for normal proofs, as we shall see. 
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3.6. Example. Here is an example of a deduction in the fragment -0, ! which is normal 
w.r.t. detour- and permutation conversions, but which does not have the subformula 
property. (In particular, !(Bi 4 B,) does not occur as subformula in the conclusion.) 

!(!C-+-&))‘3) 
!C+(B,-Bz) !C4’ !(B1 --o B,)@’ !B’:’ 

!(!C-(B,-OB~))(~) !C”’ BI-Bz 
374 

BI--Bz B, 

!(BPBz) !B\” B2 

6 7 
!B2 

(!B, -!B2) ; 
!Cd(!BI+!B2) 

!(!C-b(B1-B2))-+(!C-(!BI-!B2)) ’ 

Formulating an analogue of the notion of path (track in our terminology) as used by 
Prawitz, it seems natural to let in an application of !I the occurrences of !A( as 
conclusion of 9 be followed by the assumption ! Ai in 8. 

We then see that in our counterexample the introduction of !(Bl 4 B,) on the left is 
followed by a dereliction from the assumption !(B1- B,) on the right; but the 
detour-conversions and permutation conversions mentioned before do not permit 
contracting the ! I followed by ! E (dereliction) in the path. 

The following type of conversion permits us to contract the promotion/dereliction 

in our example. 

[!Bj 

@ 9 [ ... !Ai ... 11 

!B Ai 9’ 

3 !Ai @’ c 

!C 
9 

(!B is a sequence of deductions of the form !;i) is replaced by 

[!BJ 
9 

!B At 

u ... !Ai ... 4 

B 9’ 
9 !B @ C 

!C 

This additional conversion (together with some satellite permutation conversions) 
permits normalization with subformula property for normal deductions, as we shall 
see later; an appropriate normalization strategy will be suggested by the system ILL+, 
to be discussed next. This conversion is not listed in [3] for the natural deduction 
system, but as an equality it occurs in their list of categorical equalities and is 
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motivated by certain steps in the cut elimination process for the sequent calculus for 
ILL. It corresponds to Xl in 5.3. 

For the reasons given above it seems worthwhile to explore the possibility of an 
alternative formula-tree presentation which is geometrically more manageable, at the 
expense of a slightly more complicated treatment of labelling of assumptions. Our 
solution (system ILL+) is closer in spirit to Prawitz’s treatment of natural deduction 
for S4 (cf. [9]) and permits a satisfactory normalization theorem, with the subformula 
property for normal proofs, and a structure of paths in deductions similar to the case 
of intuitionistic logic. 

4. The system ILL’ 

In comparing the two systems we shall stick to the convention that in a proof tree 
[A] always refers to a single assumption occurrence of the form A. The principal 
features in which ILL+ differs from ILL are the following. 

4.1. The promotion rule. In ILL+ the rule, now called !I+, takes the form 

that is to say, in deduction 9 with conclusion B and complete set of open assumptions 
!A Ir . . . , ! A,,, deductions bl, . . . , &‘, have been substituted; this premise permits deriv- 
ing ! B from B. In term style this becomes 

If t[xr, . . . ,x,/sl, . . . ,s,]:B, FV(t) = {xl:!A,, . . . ,x,:!A,} 

s1 :!Al, . . . ,s,:!A,, then !t[Z/S]:!B. 

So in ILL+ the operator ! does not bind variables; we may assume 
(FV(s,)u ... uFV(s,))nFV(t) = 8. 

Definition. An application of !I+ as exhibited is said to be based on br, . . . ,b,,. 

Remark. It is not intended that an instance of the promotion rule in ILL+ is labelled 
with a basis; the existence of some basis is simply a (decidable) condition for 
correctness of the instance. In a deduction an instance of the promotion rule may have 
several possible bases, and a refinement of our term system might consist in adding 
labels for the basis of an application of the promotion rule, but this precisely 
introduces the sort of complication we try to avoid in ILL+. 
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4.2. The contraction rule and multiple label occurrences. The weakening rule is 
not changed. The contraction rule does not appear explicitly, but is built into 
the system by permitting multiple occurrences of the same free variable for assump- 
tions. 

Let us formulate the condition for multiple label occurrences more precisely. 
Whenever a label x for an open assumption A in deduction 9 is used precisely k times 
(k > l), then there are k isomorphic copies dl, . . . ,&Tk of the same deduction 9 with 
conclusion of the form !B, such that in each 6; there is a single occurrence of x, and 
9 is of the form 

8, bl, 9 9 

[!B . . . !B] z [!B . . . !B] or t[x,:!B, . . . ,xk:!B/s, . . . ,s] 

d 8 

A SpeCki case is where the bi consist of ! B alone. Labels y,, . . . , yk in bl, . . . , Cf?k, 

respectively, corresponding to a label y bound in F, are all distinct. (This is 
necessary to guarantee that identical labels are always discharged simultaneously.) 
Intuitively we may think of the multiple occurrence as representing a generalized 
contraction rule application. The set of occurrences of !B is called a substitution 

location. 
The weakening rule is generalized as already indicated for ILL. 

4.3. Definition (The termsystemfor ILL+). 

*I 
t:A s:B 

*E 
t:A+B s[x:A,y:B]:C 

t*s:AtB E:,,(t, s) : C 

41 
t[x:A]:B 

*E 
t:A-B s:A 

Ly.t[x/y]: A- B ts : B 

11 *:l 
lEt[x:l]:A 

E:(t): A 

,I+ t[2:!$3:!;i]:B t:!B 

!t[x’/S]:!B 
Dp C 

?!a s:B 

Ed(t) : B E”(C s) : B 

with restrictions on variables as indicated above. 

4.4. Proposition. There is a map 0 from the deductions in ILL+ to the deductions in 
ILL, and a map+ in the opposite direction, such that if 58 in ILL+ (8 in ILL) proves 

r I- A, then 9’ in ILL (8’ in ILL+) proves r F A. 

Proof. We introduce an auxiliary system ILL++, containing all the rules of ILL+, 

having the same conditions on labels, and in addition has the (derivable) rules ! I and 
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the generalized contraction rule of ILL: 

[!X . . . ,!Z] 
9 d 
!A c 

C 
Xl, ... 3-G 

The map + may be defined on the deductions of ILL, inductively on the length of 

derivations: 
(1) replace any application of C as above by 

9 9 

[!A , . . . ,!A] 

d 

C 

(Nothing in any copy of 9 is bound in 9.) 
(2) Replace an !I-application as on the left by the !I+-application on the right. 

[!;;i, . . . ,!;I a::, . . . ) :j 

91 9” d d 

!A, . . . !A n B B 

!B 
Xl, ..’ 7% 

!B 

(Nothing in any 9i becomes bound in &‘.) For the converse map ‘, we proceed as 
follows. Let 9 be a deduction in ILL+ +; suppose a k-fold occurrence of a label results 
from the substitution of copies of $3’ at k (k > 1) assumptions of the form ! A in W, i.e. 

233’ a 
9 = [!A, . . . ,!A] 

9” 

Then the k assumptions !A form a substitution location (“subl”) and the $3’ is the 
corresponding substitution deduction (“sded”). Define the multiplicity degree md of 
a deduction 93 as the sum of the lengths of its sded’s. (Note: If we encounter nested 

subdeductions 

!A 
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with both ! B and !A elements of substitution sets, then this contributes at least 
length@‘) + length@“‘) (i.e. the elements of 93’ count at least twice!). 

Any replacement of a subdeduction 9”’ of the form 

$I, . . . ,!2] 
[!A, . . . ,!A1 by ~, ~,, 

!v 
!A B 

B 
B 

Xl, ..a 9% 

lowers the md of the deduction. We successively remove multiple occurrences of labels 
from a given deduction 9 as follows. Given a multiple label x, arising from substitu- 
tion of deduction 9’ at k occurrences of ! A in 9, we distinguish two cases: 

(1) x is open in the whole deduction 9, and we replace the multiple substitution of 
9’ by a contraction applied after the last rule application, 

(2) If x is bound, there must be a rule application where all occurrences of x become 
bound simultaneously, so 9 contains a subdeduction 9* 

9’ 9,’ 9,’ 9’ 

[!A, . . . ,!A] [!A, . . . ,!A] 

9 
or 

9’ 

B 6 8 B 
B, %Y, ... B, X,Y, ... 

In this case we introduce the contraction after the conclusion B of 9”. 
We continue till we have found a deduction of md zero. The result is almost an 

ILL-proof, except for the possible occurrences of ! I +-applications 

9, gll 

[!A ’ Al 1, ... 1. 

d 
B 

G 

We may now assume that all assumption occurrences have distinct labels in the whole 
deduction. We replace such an !I+-application by an !I-application 

[ ...!;i . ..I] 

91 9. d 

!A , . . . !A,, B 

!B 
Xl, ... 7% 

(Xl, ... , x, fresh labels). In finitely many steps we reach an ILL-deduction. While there 
are several possibilities for transformation, as e.g. in the case of !I+-applications, 
a unique choice is easily stipulated (e.g. choose highest occurrences ! Al, . . , ! A, which 
can serve as a basis for the !I+-application). 0 
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5. Conversions of ILL+ 

5.1. New conuersions. Permutative conversions are defined as usual, and involve *E, 
1E and (multiple) weakening followed by some elimination rule. Also standard are the 
*-, *- and l-conversions. 

5.2. Notation. We write ~3 D $3’ if 9 reduces to 9, and 9 D, 9’ or 9’ Q 1 93, if 9’ is 

obtained from 9 by a single conversion. 

!I+ followed by dereliction contracts according to 

[ . . . !Ai ... ] gi 

6s II . . . 
DI 

‘Ai . ... I] 

B 9 

!B B 

B 
i.e. 

D4+ E”(!t[?/Z]) = t[x’/X] 

where !t is based on the 3. !I+ followed by weakening contracts as follows: 

gi 

B ‘Ai ..* ] . . . . 

LB 
L2i 8 

D1 
B 6 

... !Ai .a. C 

!B c 
c 

C 

an instance of the generalized rule of weakening (which may be replaced by n success- 
ive weakenings). In term notation: 

E”(!t[l/S];t’) = E”(X, t’). 

With n-fold weakening as primitive, the !I’-W contraction may be formulated 
accordingly: 

Here the x’ indicates the set of occurrences [! Al, . . . , ! A,] in a promotion application, 

i.e. t is based on d 
It is to be noted that application of a single conversion in a subtree belonging to 

a set of isomorphic subtrees inserted at a substitution location, may fall outside our 
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class of prooftrees for ILL+; but finitely many “isomorphic” conversions will then 
bring us back into the class of ILL+-prooftrees. 

5.3. The term equations for ILL. We shall briefly compare the term-equivalences of 
[3] with the equivalences generated by our conversions. For brevity, we state the term 
equivalences of [3] in our notation; it is instructive to write them out as operations on 

prooftrees. We arrange the equations in groups. 

(1) Equalities corresponding to detour-conversions for 1, *, 4 and ! I-! E. 

Dl E’(*, s) = s, 

D2 E:,(r*t’,s) = sCwlt,t’l, 

D3 (Ax.t)s = t[x/s], 

D4 Ed( !,-(3, t)) = t [2/X]. 

In ILL+, Dl-3 also hold as conversions, to D4 corresponds the conversion of 
dereliction following promotion in the form D4+ mentioned before. 

(2) Extensionalities (analogues of pconversion). 

El E’W-Cz/*l) =fCzltl, 

E2 ELW-Czlx*yl) =fCzltl, 

E3 Lx.tx = t, 

E4 !,(t, Ed(x)) = t. 

To El-E4 correspond in ILL+ El-E3 and E4 in modified form 

E4+ !(Ed(t)) = t. 

(3) Equalities involving weakening. E”($ t) is short for 

EW(sl,EW(sZ, . . . , E’“(s,, t) . . . )) 

The equations are 

Wl E”(! ;(3; t), t’) = E”($ t’), 

w2 !x,j;(s,3’; E”‘(x, t)) = E’“(s, !#‘, t)), 

w3 Efx,y(s, E’“(x, 0) = t L-Y/s], E:,yb, E”(Y, t)) = Cxlsl, 

W4 fCWz,41 = E”(z,fC~l). 

Wl corresponds to the conversion of promotion followed by weakening and corres- 
ponds in ILL+ to W 1 + mentioned above. 
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W2 expresses that for a promotion following a weakening the weakening may be 
pushed “downward” past the promotion. In ILL+ it corresponds to (in term notation) 

w2+ !E”(x;t[I/$]) = E”(x,!t[x’/s]). 

W3 corresponds to 

w3+ E”(t, s [x/t1 1 = sCxlt1, 

which is also not among our conversions. W4 permits us to push weakening up/down 
as long as no binding of hypotheses is involved, ad contains our permutation 
conversions for weakening as a special case. 

(4) Equalities with contraction. We use an abbreviation 

E;.,_(G):= E;l,zl(fr,E;Az, . . . ,E;n,z,(t.,s) . . . )), 

where y’ s y i, . . . ,y,, 2 = zl, . . . , z,. The equalities are 

Cl E;+,(!#,r);s’) = Ef,,,-,, ($ s’[y,z/!#‘; t),!,-(Y; t)]), 

c2 !z,z,(s,?; ECx,y(z,t)) = ES;,,,+, !x,y,iW,y’,~; t)), 

c3 ECx,y(s, r) = E;,,(s, t), 

c4 ECx,& E;,z(w, r)) = E;,z(s, E&w, r)), 

c5 fCzlE:,,(s, [)I = E:,,bfCzltl). 
Cl-C5 disappear (i.e. left- and right-hand side of the equation translate into identical 
terms) in ILL+. 

The generalized form of contraction requires a much more involved term operator. 

(5) Other rules. 

Pl fCwlE’(s,t)l = J%sJ-b/d), 

P2 fCwlEL(s> t)l = EXMw/sl). 

The same equations can be adopted in ILL+; these equalities contain the permutation 
conversions for E* and E’ as special cases. 

Xl !y”,Y,y’” (?‘,!,-($j-),T’;g) = !~,,j;,,?,“(~,Zrs;g[y/!~(x”;f)]). 

In ILL+ Xl disappears. 

Remark. If there is a notion of categorical model corresponding to ILL+, which 
might be seen as strengthening of the conversion rules for ILL+ as well as the 
categorical identities for ILL as stipulated in [3], it should be based on the ILL+- 
conversion rules plus El-E3, E4+, W2+, W3+, W4, Pl-P2. 

However, the term calculus of ILL+ does not behave in the standard way, as 
we already pointed out: isomorphic subterms of type !A giving rise to multiple 
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occurrences of the same variable (multiple labels) ought always to be converted 
simultaneously in order to stay within the same class of ILL+-terms. 

It does make immediate sense, however, to ask for the notion of categorical model 
corresponding to a system based on contraction as for ILL, but with the rule !I+. In 
this intermediate system a very natural conversion rule suggests itself, namely 

E4* l,-(3; Ed(r)) = tCWv’1, 

from which it follows that 

!&Ed(t)) = t[jt/3]. 

This conversion has in ILL the effect that 

[!Bj [!A 1, ... , !A,]] 

gi 9 
‘Ai-I!Ai!Ai+l ... . . . . c 

!C 

is equivalent to 

[!A* ... ,!Ai, ... ,!A,] 

9 
!A 1 . . . !Ai-l!B!Ai+l ... !A, c 

!C 

(Replace &‘i by 

[!Bj 

gi 

!Ai 

!B Ai 

!Ai 

and apply the rule Xl, etc.) 
The rule E4* holds in algebraic models for linear logic (intuitionistic linear logic 

with storage, in the terminology of [T2]), but it appears to be very restrictive: we do 
not know of a non-trivial type-theoretic model were E4* is fulfilled.’ On the other 

’ Gavin Bierman noted, in correspondence, that E4* follows from idempotency of the comonad, i.e. in the 
notation of [T2] rlA = !rA, sAorrA = id!,. Idempotency permits to writeanyf:!A + !Bas!gos, by taking 
g = rsof: E4* is implied by !rA o!f”s” =1: Now !rAo!f”sA = !rso!!go!sAosA =!rso!!gos!Aos, = 
(!r~osg)o(!gos,J =1: 
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hand, not all models of the set of equations with E4* collapse to algebraic models: 
ILL+ contains the A , -+ , T-fragment of intuitionistic logic embedded, which corres- 
ponds at least to a non-algebraic Cartesian closed category. E4* is in fact equivalent to 
the requirement that a “change of basis” for the promotion rule leaves the proof term 
the same. Specifically, 

where the first instance of !I has basis !A, the second the basis [!B]; the 
first equivalence is the usual E4, the second is the “change of basis” equivalence, 
the combination yields E4*. We now turn to the description of a strategy for 
normalizing. 

5.4. Definition. A segment in a deduction is a set of formula occurrences Al, . . . , A, of 
the same formula, such that Ai + 1 is immediately below Ai for 1 < i < n, Ai for i < n is 
minor premise of W, 1E or *E, Al is not conclusion of such a rule, and A, is not minor 
premise of such a rule. 

A segment is maximal if either n = 1 and Al = A, is conclusion of an I-rule and 
major premise of an E-rule, or II > 1 and A,, is major premise of an E-rule. 

A terminal segment of $3 is a segment where A,, is the conclusion of 9. (In our 
fragment of ILL+ the terminal segment is unique.) 

A segment is critical if it is a maximal segment of maximal degree (degree of 
a segment = complexity of the formula of the segment). 

5.5. Proposition (Normalization for ILL+). Each deduction LB in ILL+ can be brought 
into notmal form by a Jinite sequence of reduction steps. 

Proof. We may normalize deductions by making conversions at the leftmost- 
opmost critical segment. If this is done in the leftmost subdeduction 9’ of a finite 
set of copies of 9’ inserted for several occurrences of a formula !A, then the 
result might fall outside our class of deductions; but if we next successively 
make the same conversion in each of the copies, we are back at a deduction of 
ILL+. Each step in this procedure according to the strategy just described 
results in a diminishing of the total length of all maximal segments of maximal 
complexity. 

One case requires attention: what if for a substituted deduction 9, at two occurren- 
ces oi and o2 of the substitution location consisting of occurrences of !A say, at o1 
a conversion cutting out !A is possible, and at o2 not? But in this case Rule (9’) is 
promotion, and it is easy to see that in this case we can take the basis of the promotion 
(a set of occurrences of a formula !B say) in all copies of the original 9’ as new 
substitution locations. 
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The form of normal deductions may now be analyzed as done in [9]; more details 
are given in Section 6. 

6. Strong normalization in ILL+ 

We may prove strong normalization for ILL+ using Prawitz’s concept of strong 
validity, adapted to the present system (for an exposition of the intuitionistic case see 
e.g. [ 111). 

Since single conversions do sometimes lead outside ILL+, we consider a wider class 
of proof trees, where multiple labels are permitted (as usual, open assumptions with 
the same label always have to be discharged simultaneously); for the rest the rules 
have the same form as for ILL+. 

If we can prove strong normalization for this wider class of deductions, we have SN 
for ILL+, with respect to those normalization strategies where, if one of a series of 
copies of ~3 substituted at a set of occurrences of! A is converted, then all the others are 
converted in the same way at the next steps until the whole group has again become 
isomorphic. 

6.1. Definition. 3 is a conversion candidate of C@ if the terminal segment of 9 is of the 
form A t B and begins with an +-introduction with deductions 9,F’ of the premises, 
and 3 E (9,s’). 

If $3 D 9* and g* has a conversion candidate 3, we say that d is a deriuate 

of 9. 

Notation. Below we shall (unless indicated otherwise) stick to the convention that 
given a derivation G3 not ending with W, the subdeductions of the premises from left to 
right aregO,gl, . . . ; in the case of weakening g1 is the minor premise and SO stands 
for one of the major premises. This may be iterated giving rise to notations gO1 etc. 
Similarly for 9’. 

We write 53 D 9’ or 53’ U C3 if G3 reduces to CF, i.e. 9’ is obtained from C@ by a series 
of conversion steps. We write 9 D, 9’ or 9’ U 1 9 if 9’ is obtained from $3 by a single 
conversion applied to some subdeduction of 9. 

Rule (2) is the last rule applied in 9. 
“SN” abbreviates “strongly normalizable”. 

6.2. Definition. A deduction !3 is said to be strongly uaZid (SV) if one of the following 
clauses applies: 
(1) 9 consists of an assumption, or the axiom 11. 
(2) Rule (53) E {*I, !I+} and the subdeductions of the premises are SV. 
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(3) Rule (9) = --I, i.e. 9 is of the form 

[Al 

9’ 

B 

then 9 E SV if for all 92* E SV with conclusion A 

is SV. 
(4) Rule (9) E {-J-E, !E}, $9 is normal or for all 9’ Q, 9’, 9’ is SV. 
(5) Rule (9) = W, and 9 is normal or for all 9’ (I1 9,9’ is SV, 3, E SN, ~8~ E SV. 
(6) Rule (9) = lE, and 9 is normal, or for all 9’ a, 9,9’ is SV, SN(9e) and SV(9i). 
(7) Rule (D) = *E, and 9 is normal or for all 9’ a, 9,9’ is SV, and condition (*) 

holds, that is to say SN@,,), SV(gr), and whenever the deduction ~9~ of the main 
premise A * B has a derivate (9, F’), and the minor premise has deduction 

[A, B-J cF F 
91 , then 

CA, Bl is sv 

c 
91 . 

6.3. Lemma. Let Rule@) E {*I, ! I+, -I}. Then, $9 D1 9(l) D, g(2) D, . . . , where 

then . . . D,~~1”‘D,~~f”D,~~‘2’D1 . . . become reduction sequences after deletion of 

repetitions. 

6.4. Lemma. If 9 D 9’ and SV(9) then SV(9’). 

Proof. By induction over the inductively defined class of SV deductions. Obviously it 
suffices to show that if 9 D1 9, and SV@), then SV(9’). [7 

6.5. Lemma. 9 E SV * $3 E SN. 

Proof. By induction over the class of SV deductions. The induction step is immediate 
if 9 E SV by clauses 3-6, since then, if 9 is not normal, all 9’ CI 1 9 are SV, and so by 
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the induction hypothesis SN. If 9 E SV by clauses 1-2, strong normalizability is also 
immediate from the induction hypothesis. 0 

6.6. Lemma. Let Rule(@ E (+E,-+E, !E, W, 1E). Then $3 E SV if 
(i) SN(9i) for all immediate subdeductions 9i. 

(ii) 1f Rule@) = *E or !E, then SV(9i). 
(iii) 1fRule(9) = W, then SN@,,) and SV(9i). 
(iv) ZJRule(9) = lE, then SN@,,) and SV@i). 
(v) If Rule@) = *E, clause (*) in the definition of SV applies. 

Proof. In order to prove this lemma, we assign to each 9 satisfying the conditions of 
the lemma with conclusion of given complexity an induction value IV@) = (/I, y, 6) 
where 

l fi = (sum of) length(s) of reduction tree(s) of .QO (resp. a,); 
l y = (sum of) length(s) of gO (resp. go); 
l 6 = sum of lengths of reduction trees of the deductions of the premises. 

The ordering is lexicographic: (/?,y,s) < (p,y’,LY):= (/l -C /I’) v (/? = /3’ A y < y’) 
v (fi = /I’ A y = y’ A 6 -C 8). We prove the lemma by induction on IV@). It suffices 
to prove V9’Q1 9(SV(CY)), since the other conditions imposed on SV by the defini- 
tion hold automatically if the assumptions of the lemma are satisfied. 

Case 1: 9 normal: we are done. 
In all other cases, let 9’ 4,9; let IV(9) = (fi, y, 6) and IV@‘) = (/I’, y’, 6’) (if defined, 

which has to be shown). 
Case 2: 9’ is obtained by a conversion step applied to the deduction of one of the 

premises of the last rule application in 9. Then 9’ falls under the conditions of the 
lemma, and has a well-defined lower IV. 

Case 3: 9’ 4 1 52 by a detour-conversion involving the final rule-application. Then 
the major premise of the last rule in 9 is obtained by an I-rule. For example, 

By clause (ii), SV(91),SV(90), and hence by the definition of SV, it follows that 
SV(9’). If 

9 00 

9~ B 
3 

9, ~ 900 
B 

x 

then SV(kao), hence SV(Qoo), where go0 = 9’. 
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Case 4: 9’ aI $9 by a permutative reduction involving the final rule application. 

Subcase 4.1: -E or !E is permuted over *E. Let 

CA, Bl 

900 9 
CABI 91 

0.1 
g=A*B C-D g1 

9;’ E 900 go,1 C 
A*B D 

C-D c D 
D 

SN(go), hence also SN(9b). The induction value of GY, if defined, is clearly lower: 
j? < fl’ or p = /Y A y’ < y. We must show that 9’ again satisfies the conditions of the 

lemma. 
Note: SV(90), SV(9r), SV(G201), hence SV(9;) by the lemma, since IV(9’r) = 

(fl”,r”,s”) with /?” < fl v (/I” = fi A y” < y), hence SV(J~~). 
Also, if go0 has a derivative (9, F’), we must show that 

9 9’ 

is SV. For this we need that the left subdeduction of 9” is SV. But SV(90), hence this 
follows by condition (*) in the definition of SV. 

As a result, 9b,9’i are SV, hence SN, and IV@‘) is defined and the IH applies. 
The treatment of !E over *E is completely similar. 

Subcase 4.2: -E or !E over W or 1E. The arguments are quite similar to, but 

slightly simpler than in the preceding case. 
Subcase 4.3: +E or W or 1E over *E or W or 1E. Let us consider the most 

complicated case of *E over +E. 

CA, Bl CA, Bl CC, 01 

9 901 
Qs O0 

CC 01 901 91 
A*B C*D g1 

Q3’r ~ 
00 C+D E 

C*D E A*B E 
E E 

IV@) = (fl,y,6). We have 
(a) go E SN, 9r E SV; 
(b) If go has a derivate (5, F’), then 

9 F’ 

is also SV. 
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We have to show that 9’ falls under the IH. In the first place SN(C~~~) holds, since 
SN@,,). Secondly, we must check that 9; is SV. This requires (1) SN(z?JO,), which 
follows from SN(.9,,), (2) SV(ga,) which holds by (a), and (3) whenever gO1 has 
a derivate (F,S’), then Z’ as above is SV. 

But if gO1 has a derivate (9, F) then (F,F) is also derivate of QO, so (3) follows 
from (b). Hence SV@>) follows by IH, since 9; has a lower IV. 

In order to get SV(9’) it remains to be shown that if C&,, has a derivate (C!J,S’), 
then 

E 

is also SV. This is similar to the preceding part of the argument; the crucial clause to 
be verified is now: if ‘9; has a derivate (F,F’), then # is SV. 

However, if 9,,,, has a derivate (9, Y’), this means that gO reduces to something 
like 

23 9’ 
AB 

6, A+B 
A+B 

CA, Bl 
6”o A+B %* 

A*B C*D 
C*D 

and then 9,, also reduces to 

22 3’ [A,B] 
A B 901 
A*B C*D 

8, C*D 

C*D 
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so 9,, reduces to a deduction 

C*D 

and it appears that (9, 9’) is also a derivate of 9,,, hence 2’ is indeed SV. 
Subcase 4.4: Permutation of 1E over + E. This case is similar to earlier cases, but 

simpler. 0 

6.7. Definition. 9 is SVS (strongly valid under substitution) if every substitution of SV 
deductions for open assumptions in 9 yields a SV deduction. 

6.8. Proposition. All deductions in ILL+ are SVS. 

Proof. By induction on the lengths of deductions. We consider two typical cases. 
Case 1: Let Rule (9) = W. Then 

go, gl are SVS by induction hypothesis. Let 9* be a substitution instance of 9, so 

B 

then 98,97 are SV, hence 58: is SN and so 9* is SV by the preceding lemma. 

Case 2: Rule (9) is *E, so 

CA, 81 
9 5 90 91 

A*B C 

C 

and let 9* be a substitution instance 

CA Bl 
9* E 9; 9: 

A+B C 

c 
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By induction hypothesis 9$, 9: are SV, so 9: is SN. Suppose $9: has a derivate 
(%,%‘) occurring in a 9** Cl 9*; 9** is SV, and it follows that %, 8’ are SV. Then 

% 8’ 

CA> Bl 
97 
C 

is SV, etc. 0 

7. The structure of normal deductions in ILL+ 

7.1. Definition. A track in a normal 9 is a sequence of formula occurrences AO, AI, 
A 2, . . . , A, such that 

(1) 
(2) 

(3) 

(4) 

(5) 

A,, is an axiom, open assumption or assumption closed by 41 in 9; 
Ai + 1 is immediately below Ai if Ai + 1 is conclusion of an I-rule, Ai a premise of the 
same rule; 
Ai + 1 is immediately below Ai if Ai is major premise of an application of ! E = D, 
-+E, or minor premise of an application of +E, W, or 1E; 
Ai is major premise of an application of +E and Ai + 1 is an assumption discharged 
by that application; 
A, is either conclusion of $9, or major premise of lE, or a major premise of W. 

We can divide a track into segments as in the case of intuitionistic logic; in a track of 
a normal deduction we can then distinguish the elimination part, followed by the 
minimal part, followed by the introduction part. 

7.2. Lemma. Each formula occurrence in the proof tree of a normal deduction belongs to 

some track. 

Proof. By induction on the depth of deductions. 0 

7.3. Proposition (Subformula property). Let r F A by a normal deduction 9. Then all 
formulas in 9 are subformulas of r v {A). 

Proof. A truck of order 1 of a deduction 9 ends in the conclusion of 9 (i.e. is 
a terminal track). A track of order n + 1 terminates either in a major premise of lE, or 
in a major premise ! B of W, or in a minor premise of-E, while the minor premise 
in the case of lE, W, and the major premise in the case of-E, belong to a track of 
order n. 

We prove by induction on the order of tracks that all formulas in a track are 
subformulas of r u {A}. 
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For the track of any order we have that all formulas occurring in it are subformulas 
of the open assumptions of the deduction or of the final formula of the track. Let 7~ be 
a track of 9 (with conclusion A) of order n + 1. 

If rc terminates in a minor premise B of dE, then the major premise B- C belongs 
to a track of order n and so by induction hypothesis, B-C is subformula of Tu {A}. 
Then B is also subformula of r u {A}, so rc satisfies the subformula property. 

If rt terminates in a major premise of an lE- or W-application, the last rule must be 
an elimination, and the whole track consists of subformulas of the first formula in the 
track. The first formula is either an open assumption of the deduction, or is discharged 
below the end of the track. If discharged by -1, or by +E, this happens in a track of 
lower order, and the IH applies to this track. 0 

As an example of an application we give the next proposition. 

7.4. Definition. A formula (-occurrence) in a formula A is said to be a strictly positive 

part (s.p.p.) of A according to one of the following clauses: 
(1) A is s.p.p. of A; 

(2) if B* C is s.p.p. of A, then B,C are s.p.p. of A; 

(3) if !B is s.p.p. of A, so is B; 

(4) if B- C is s.p.p. of A, so is C. 

7.5. Proposition. Zf r t- A tB in ILL, and r does nor contain * in a strictly positive 

position (* not main operator of a s.p.p. subformula of r), then rl F A and Tz F B with 
rl and Tz sub-multisets of r. 

Proof. Let 9 be a normal deduction of r /- A * B. If 9 ends with an I-rule we 
done. If the terminal segment starts with an introduction, the deduction takes 
form 

A*B 

$2 A*B 

61 A*B 

A*B 

are 
the 

where the final segment passes through a number of +E, lE, and W-applications. 
However, *E-applications are in fact excluded, since no strictly positive occurrence of 
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* appears in r. But this means that in 9 and F no assumptions are discharged, and 

9 9’ 
J’, A 8, B 

A B 
and 

are both correct deductions. q 

Remark. The statement of the proposition may be considerable refined, e.g. by noting 
that assumptions common to rl, r2 must permit to derive exponential formulas, etc. 

Another application may be (almost) copied from [9, p. 571. 

7.6. Proposition. Let C be without -0, r E {Ai- Bi: 1 < i < n}, and assumer F C. then 

r’ F Ai for some i < n, r’ a submultiset of r. 

8. Normalization in ILL 

We shall now show how the normalization strategy in ILL+ suggests a correspond- 
ing strategy in ILL. 

8.1. Definition. A segment in ILL is a sequence of occurrences AI, . . . , A, of the same 
formula such that 
(1) AI not conclusion of W, lE, +E, nor assumption discharged by C or !I; 
(2) A, not minor premise of W, lE, *E, or side premise of !I, or major premise of C; 
(3) for 1 < i < n, either Ai is minor premise of an application c1 of W, 1E or +E, and Ai 

is the conclusion of cr; or Ai is major premise of C and Ai+ 1 is one of the 
assumptions discharged by a; or Ai is side premise of an instance a of !I, and 
Ai+ 1 is an assumption discharged by CL. 

A segment is maximal if o = AI, . . . , A,, Al conclusion of I-rule, A, major premise of 
E-rule. As before, we define a critical segment as a maximal segment of maximal 
degree. 

8.2. Definition. A truck of 9 in ILL is a sequence of formula occurrences AI, . . . , A, 
in 9 such that 
(1) Al is an open assumption or an axiom or an assumption discharged by 41; 
(2) Ai is major premise of -oE or D, or minor premise of +E, C, lE, W, or premise of 

41, +I, and Ai+ 1 is the conclusion; 



(3) 

(4) 

(5) 

(6) 
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Ai = C * D is major premise of *E, and Ai+ 1 is one of the assumptions dis- 
charged; 
Ai is major premise of a contraction, and Ai+ 1 one of the assumptions dis- 

charged; 
Ai is a side premise of a promotion, and Ai+ 1 is an occurrence discharged by the 
promotion. 
A, is major premise of a weakening or lE, or minor premise of-E. 

8.3. Description of a strategy for normalization. We look for an analogue of the 
strategy which works well in the intuitionistic case and for ILL’, namely: look for the 
rightmost branch in the formula tree containing a critical segment; apply a conversion 
in the topmost critical segment in this branch. 

This strategy works for ILL’, because segments (in contrast to tracks) always 
belong to a unique branch of the tree. But this is not any longer the case for ILL. So in 
order to determine the proper place for a conversion, we construct, inspired by ILL+, 
an auxiliary partially ordered system with nodes labeled by formulas as follows. Given 
9, the auxiliary structure [9] is obtained by systematically replacing 

CQII ... [%I 
[!A,, . . . ,!A,] !A, !A, 

9, Bll 9 by _C!Ai ... !A”] 
____________ 

!A 1 . . . !A, B 
!B 

cm 
B 

E 

and 

CQI 

[!X *.. ,!r;] 
!A 

9 9’ I ... \ 

!A 5 by [!A 1.. !A] 

B cw 
B 

B 

letting the map [ ] act as a homomorphism for all other rules. There is a bijective 
correspondence between the formula occurrences in 9 and in [Q]. 

A more formal description of the partial order of [9] is as follows: [9] = (9, < ) is 
a partial ordered set of the formula occurrences of 92, extending the tree order (52, <) 
of 9. Occurrence A is below occurrence B in [9] if 

(a) A<B in 9, or 
(b) there is an !I-application where B is in the deduction of the main premise below 

assumption ! Ai, and A is in the deduction of the side premise ! Ai, or 
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(c) there is a C-application with A in the deduction of the major premise ! C, and B in 
the deduction of the minor premise below one of the occurrences of ! C discharged 
by the C-application, or 

(d) A below B by an application of transitivity for the ordering <. 
For an instance of !I, all occurrences in the derivations of the side premises are 

above the occurrences in the derivation of the main premise in [9]; and for an 
instance of contraction, all occurrences in the derivation of the major premise are 
above all occurrences in the derivation of the minor premise. 

The strategy is now described as follows. Select in [9] a rightmost branch contain- 
ing a topmost critical segment; take the topmost critical segment in this branch and 
apply the conversion to this segment. 

A crucial instance of conversion may serve to show that the strategy has the desired 
effect. 

[!if?,!A,!pJ 

8 .9’ 8 9 [!B,!B] 

!E !A !??’ B .w 

!B C 

C 

converted to 

[[!g, !A, !i!t’l] [!E, ! A, !lit’J 

!a? 9 

!E !A !g B !E !A !i?’ B 

[!B !B] 
~~_~~~~~~~__~~~~~~__~~~~~ 

8 9’ 8’ w 

!E !A !E’ C 

C 

has as effect that indeed an occurrence of ! B is removed, but on the other hand, there is 
on the right-hand side an extra occurrence of ! A; but if we have chosen the critical 
segment according to our strategy, the occurrences of ! A cannot belong to a critical 
segment. 

In the case where a promotion application a in a deduction of a side premise of 
a promotion application fi is separated from /? by some intervening contractions, 
weakenings, unit- and tensor eliminations, we use some permutation conversions 
(namely W4, C5, Pl, P2 from left to right, wherefis the operator of a promotion rule) 
to bring a closer to /I; these permutations do not increase the number of formula 
occurrences in critical segments. 



A.S. Troelstra / Annals of Pure and Applied Logic 73 (1995) 79-108 107 

9. Concluding remarks 

The simpler version of promotion plus the removal of the “dynamical” aspect of 
contraction (by which we mean that identifying the labels of two distinct assumptions 
of a formula of the form ! A is made into a separate operation) result in a variant ILL+ 
with a relatively simple proof theory. In addition, it suggests the consideration of 
a special class of categorical models for ILL. 

There is a price to pay: the condition on the occurrence of multiple labels for ILL+ 
is not difficult to manage, but if we want to extend ILL+ by additive operators and 
constants, it becomes rather unwieldy. 

On the other hand, the study of ILL:, suggested a suitable normalization strategy 
for ILL,, as well; this strategy seems also suitable for a complete system ILL. 
Although there seems no reason to doubt strong normalization for ILL (presumably 
a variant of the method in [7] would do the job), it is not clear how to extend strong 
validity to ILL. 

We have not troubled ourselves with the Church-Rosser property (confluence), 
which holds for ILL and ILL+. The significance of confluence for these systems seems 
to be limited, as it is not likely that the conversion rules identify all intuitively equal 
deductions. 

It would be interesting to extend the treatment of ILL+ to a multiple conclusion 
sequent calculus for a correspondence fragment for classical linear logic (cf. [6] for 
classical logic) and compare normal forms for this case with proofnets. 

Strong normalization for the ILL-term calculus w.r.t. detour conversions is proved 
in [2] by means of an embedding in the second-order lambda calculus. Can this 
method be extended to cover permutation conversions and Xl as well? 
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